PENGARUH PENYARADAN TERHADAP KERUSAKAN TEGAKAN TINGGAL
PADA BERBAGAI TINGKAT KELERENGAN
The effect of skidding to residual stand damage on several slope degrees

Oleh/By
Dulsalam & Sukanda

Summary

An investigation on the effect of skidding to residual stand damage on several slope degrees has been done at PT Sumpol Timber in South Kalimantan in 1987. The purpose of this investigation is to seek information on the residual stand damage caused by skidding on several slope degrees. The investigation took place in three different slope degrees: i.e.: 0 — 20 %, 20 — 40 %, and > 40%. Sample plots were selected with completely randomized design.

Results of this investigation are concluded as follows:

1. Skidding has caused part of the residual stand to damage.
2. The residual stand damage caused by skidding ranges from 10 Trees/ha to 70 trees/ha (from 6 % to 29 %) with an average of 30 trees/ha (15%) with standard error of 3.60 trees/ha.
3. The residual stand damage caused by skidding on:
 a. 0 — 20 % slope ranges from 10 trees/ha to 50 trees/ha (6 — 18 %) with an average of 23.3 trees/ha (11 %).
 b. 20 — 40 % slope ranges from 10 trees/ha to 70 trees/ha with an average of 30 trees/ha (15 %).
 c. Greater than 40 % slope ranges from 20 trees/ha to 70 trees/ha (from 10 % to 29 %) with an average of 38 trees/ha (19 %).
4. The result of Least Significant Difference (LSD) test on the data revealed that the residual stand damage between 0 — 20% and > 40% slope differs significantly at 95 % level. The higher the slope degree the greater the residual stand damage took place.
5. It is therefore suggested that skidding on 40 % slope degree or more be done with great care in order to decrease the residual stand damage.

I. PENDAHULUAN

Kegiatan penyaradan di hutan alam luar Jawa sebagian besar menggunakan traktor. Penyaradan kayu yang dilakukan pada berbagai tingkat keleren-

Berdasarkan hal tersebut diatas, Fusat Penelitian dan Pengembangan Hasil Hutan telah mengadakan penelitian tentang pengaruh penyaradan terhadap kerusakan tegakan tinggal pada berbagai kelerengan. Yang dimaksud kerusakan tinggal dalam penelitian ini adalah jumlah kerusakan pohon per ha pada areal hutan yang telah dikeslopetisai. Penelitian ini bertujuan untuk mencari informasi tentang kerusakan tegakan tinggal akibat penyaradan pada berbagai tingkat kelerengan.

II. METODE PENELITIAN

A. Obyek dan Alat Penelitian

Obyek yang diteliti adalah tegakan tinggal bekas tebang terbaru pada Rencana Karya Tahunan (RKT) berjalan. Hal ini didasarkan atas pertimbangan bahwa petak tebang terbaru masih jelas ciri-ciri kerusakan tegakan akibat penyaradan.

Peralatan yang digunakan adalah peta kerja perusahaan, kompas, helling meter, altimeter dan meteran.

B. Pelaksanaan Penelitian

Penelitian dilakukan melalui tahap-tahap sebagai berikut:
1. Menentukan lokasi yang akan diamati dengan: bantuan peta lokasi, peta cahac pohon dan keter-
rangan dari karyawan perusahaan.
2. Menentukan petak ukur pada tiga tingkat kele-
renchan yaitu: < 20 %, 20 - 40 % dan > 40%.
4. Bentuk petak ukur adalah lingkaran dengan uku-
ran luas 0,1 ha (jari-jari 17,8 m).
5. Disetiap petak ukur dihitung jumlah pohon yang berdiameter 20 cm ke atas dan dibedakan pohon yang sehat dan pohon yang rusak. Yang dimaks-
sud pohon yang rusak dalam penelitian ini adalah: (a) Pohon yang rebah; (b) Tajuk rusak karena cabang patah; (c) Luka pada batang yang men-
capai bagian kaya (lebarnya lebih dari 10 cm dan panjangnya lebih dari 100 cm); (d) Luka pada batang menyerupai teresan lebih dari sepe-
tiga keliling batang; dan (e) Perkaranan terpotong atau rusak yang diduga akan mengganggu pertu-
tumbuhan pohon.

C. Pengolahan Data

Pengolahan data dilakukan dengan menggunakan rancangan acak lengkap (Completely Randomized Design) dengan perbedaan derajat kelerengan sebagai perikakan.

Respon dalam penelitian ini adalah kerusakan tegakan tinggal yang dinyatakan dalam jumlah pohon/ha. Untuk menghitung persentase kerusakan tegakan tinggal digunakan rumus:

\[KT = \frac{R}{R + S} \times 100\% \]

di mana: \(KT \) = kerusakan tegakan; \(R \) = jumlah pohon yang rusak; \(S \) = jumlah pohon yang sehat.

III. HASIL DAN PEMBAHASAN

Penyaradan kayu di areal hutan PT Sumpol menggunakan traktor. Traktor sarad kadang-kadang berputar-putar mencari kayu yang akan disarad. Hal ini akan menimbulkan kerugian baik menurun-
nnya produksi kayu maupun tegakan tinggal. Ditin-
jaw dari segi lingkungan maka kerusakan tinggal adalah cukup besar nilainya. Hasil pengamatan ke-
rusakan tegakan tinggal akibat penyaradan pada berbagai tingkat kelerengan disajikan dalam Tabel 1.

Tabel 1. Kerusakan tegakan tinggal pada berbagai tingkat kelerengan

<table>
<thead>
<tr>
<th>Ulangan (Sample plot replication)</th>
<th>Kelerengan (Slope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>petak per cobaan</td>
<td>S</td>
</tr>
<tr>
<td>0 - 20 %</td>
<td>1</td>
</tr>
<tr>
<td>20 - 40 %</td>
<td>4</td>
</tr>
<tr>
<td>40 %</td>
<td>7</td>
</tr>
</tbody>
</table>

1	160 20	180 100 20	120 110 20	130
2	110 10	120 90 10	100 100 30	130
3	150 10	160 120 30	150 100 20	120
4	100 10	110 70 10	80 140 30	170
5	70 10	80 110 30	140 120 20	140
6	180 20	200 120 20	140 170 40	210
7	150 30	180 140 30	170 140 50	190
8	220 20	240 170 30	200 170 30	200
9	230 20	250 130 20	150 150 40	190
10	270 30	300 160 30	190 150 30	180

| Rata-rata (mean) | 23,33 | 30 | 38 |

Keterangan: S = Jumlah pohon sehat (Number of sound trees); R = Jumlah pohon rusak (Number of damage trees); T = Jumlah (Total) S + R.
Dari Tabel 1 di atas dapat dilihat bahwa jumlah pohon per hektar berkisar antara 80 - 300 pohon/ha. Jumlah pohon yang rusak berkisar antara 10 - 70 pohon/ha dengan rata-rata 30 pohon/ha dengan simpangan baku 3,60. Rata-rata kerusakan tegakan pada kelerengan 0 - 20 %, 20 - 40 % dan > 40 % berturut-turut adalah 23,33 pohon/ha (11 %) dengan simpangan baku 3,03; 30 pohon/ha (15 %) dengan simpangan baku 3,90; dan 38 pohon/ha (19 %) dengan simpangan baku 3,80. Makin tinggi kelerengan tanah dimana penyaraan dilakukan maka makin besar kerusakan tegakan yang terjadi. Pada kelerengan yang ringan (datar) traktor mudah menyarad kayu, sedang pada kelerengan yang curam traktor memilih jalan yang memungkinkan dan tidak menghiraukan tegakan tinggal yang ada. Pada waktu musim hujan traktor selalu mencari jalan yang baru untuk menghindari lumpur yang menyebabkan traktor tidak dapat bergerak maju. Jadi dalam hal ini jenis tanah juga menentukan tingkat kerusakan tegakan tinggal. Pada tanah yang lunak, jalan sarad akan semakin melebar. Apabila jalan yang demikian dipakai terus menerus maka mengakibatkan tumbuhan di kedua tepi jalan sarad tersebut makin banyak yang rusak. Analisis keragaman kerusakan tegakan akibat penyaraan pada berbagai tingkat kelerengan disajikan dalam Tabel 2.

Tabel 2. Analisis keragaman kerusakan tegakan pada berbagai kelerengan

<table>
<thead>
<tr>
<th>Sumber variasi (Source of variation)</th>
<th>Derajat bebas (Degrees of freedom)</th>
<th>Jumlah kuadrat (Sum of squares)</th>
<th>Rata-rata kuadrat (Mean square)</th>
<th>F hit (F cal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelerengan (Slope)</td>
<td>2</td>
<td>1.617,7778</td>
<td>808,8889</td>
<td>4,16*</td>
</tr>
<tr>
<td>Error</td>
<td>42</td>
<td>8.173,3334</td>
<td>194,6032</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>9.791,1112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan (Remark) : * = Nyata pada tingkat 95% (Significant at 95%)

Dari Tabel 2 dapat dilihat bahwa kerusakan tegakan akibat penyaraan pada berbagai tingkat kelerengan berbeda nyata. Hal ini disebabkan karena kelerengan yang curam menyulitkan traktor untuk menyarad kayu. Dalam hal yang demikian, traktor terpaksa berbelok-belok dalam penyaraan kayu sehingga mengakibatkan kerusakan tinggal yang lebih tinggi. Untuk mengetahui pengaruh kerusakan mana yang berbeda nyata maka dilakukan pengujiang dengan LSD.

Bilangan LSD : LSD 0,05 = 2,019 x 5,09 = 10,2767
LSD 0,01 = 2,700 x 5,09 = 13,7430

Perbedaan rata-rata kerusakan tegakan antara kelerengan :

<table>
<thead>
<tr>
<th>0 - 20% dan 20 - 40%</th>
<th>23,30 pohon/ha - 30 pohon/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= 6,70 pohon/ha (< LSD 0,05)</td>
</tr>
<tr>
<td>20 - 40% dan > 40%</td>
<td>30 pohon/ha - 38 pohon/ha</td>
</tr>
<tr>
<td></td>
<td>= 8 pohon/ha (< LSD 0,05)</td>
</tr>
<tr>
<td>0 - 20% dan > 40%</td>
<td>38 pohon/ha - 23,30 pohon/ha</td>
</tr>
<tr>
<td></td>
<td>= 14,70 pohon/ha (< LSD 0,01)</td>
</tr>
</tbody>
</table>

Dari pengujiang dengan LSD, kerusakan tegakan tinggal antara tingkat kelerengan 0 - 20% dan 20 - 40% dan antara tingkat kelerengan 20 - 40% dan > 40% tidak berbeda nyata. Namun kerusakan tegakan tinggal antara tingkat kelerengan 0 - 20% dan > 40% berbeda sangat nyata. Agar supaya tingkat kepercayaan itu berlaku maka beda nyata terkecil ditentukan. Perhitungan jarak nyata terkecil disajikan dalam Lampiran 1. Dari Lampiran 1 dapat diuji nilai beda sebagai berikut :

Kelerengan 40% dan 0 - 20% = 38 - 23,30 = 14,70 (> 11,05)
Kelerengan 40% dan 20 - 40% = 38 - 30 = 8 (< 10,51)
Kelerengan 20 - 40% dan 0 - 20% = 30 - 22,30 = 6,70 (< 10,51)

Berdasarkan perhitungan beda nyata terkecil, kerusakan tegakan tinggal antara tingkat kelerengan 0 - 20% dan > 40% tidak berbeda nyata pada tingkat 99% tetapi berbeda nyata pada tingkat 95%. Jadi kerusakan tegakan tinggal antara kelerengan 0 - 20% dan > 40% berbeda nyata. Dengan demikian kegiatan penyaraan kayu pada kelerengan lebih dari 40% perlu dilakukan dengan hati-hati dan dengan perencanaan yang matang, sehingga besarnya kerusakan tegakan tinggal dapat ditekan.

IV. KESIMPULAN

Dari hasil pembahasan dalam Bab III dapat ditarik kesimpulan sebagai berikut :
1. Penyaraan kayu di areal HPIL luar Jawa dapat menimbulkan kerusakan tegakan tinggal. Kerusakan tegakan tinggal tersebut dapat mempengaruhi kelestarian hutan tropika.

2. Kerusakan tegakan tinggal akibat penyeradan berkisar antara 10 — 70 pohon/ha (6 — 29%) dengan rata-rata 30 pohon/ha (15%).

3. Kerusakan tegakan tinggal akibat penyeradan pada:
 a. Kelerengan 0 — 20% berkisar antara 10 — 50 pohon/ha (5 — 18%) dengan rata-rata 23,3 pohon/ha (11%).
 b. Kelerengan 20 — 40% berkisar antara 10 — 70 pohon/ha (10 — 21%) dengan rata-rata 30 pohon/ha (15%).
 c. Kelerengan > 40% berkisar antara 20 — 70 pohon/ha (10 — 21%) dengan rata-rata 38 pohon/ha (19%).

4. Berdasarkan hasil pengujian dengan LSD, kerusakan tegakan tinggal akibat penyeradan antara kelerengan 0 — 20% dan > 40% berbeda nyata pada tingkat 95%. Makin besar tingkat kelerengan, makin besar pula kerusakan tegakan tinggal yang terjadi. Namun, kerusakan tegakan tinggal antara kelerengan 0 — 20% dan 20 — 40% dan antara kelerengan 20 — 40% dan > 40% tidak berbeda nyata.

5. Penyeradan kayu pada areal yang mempunyai kelerengan lebih dari 40% perlu dilakukan secara hati-hati agar kerusakan tegakan tinggal dapat ditekan.

DAFTAR PUSTAKA

Lampiran 1.
Appendix 1.

Perhitungan jarak nyata terkecil untuk tingkat kelerengan

Least significant ranges calculation for slope degrees.

1. Rata-rata kerusakan tegakan pada:
 (Residual stand damage at)
 a. Kelerengan (slope) 0 — 20% = 23,3 pohon/ha (tree/ha)
 b. Kelerengan (slope) 20 — 40% = 30 pohon/ha (tree/ha)
 c. Kelerengan (slope) > 40% = 38 pohon/ha (tree/ha)

2. $S_x = \sqrt{\frac{194.6032}{15}}$
 = 3,6019

3. Jarak nyata terkecil pada tingkat 95% dan 99%
 (Least Significant Difference at 95% and 99% level)

<table>
<thead>
<tr>
<th>P</th>
<th>P 0.05</th>
<th>P 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarak nyata (SSR)</td>
<td>2.92</td>
<td>3.07</td>
</tr>
<tr>
<td>Jarak nyata terkecil (LSR)</td>
<td>10.51</td>
<td>11.05</td>
</tr>
</tbody>
</table>

Biodata Penulis

Bambang Wiyono
Lahir di Trenggalek tanggal 26 Maret 1959
Bekerja pada Pusat Litbang Hasil Hutan sejak 1 Oktober 1985 sebagai Staf Peneliti hingga sekarang, dengan spesialisasi Kimia Hasil Hutan.

Barly
Lahir di Bogor tanggal 23 Desember 1947

Dulsalam
Lahir di Sleman tanggal 22 Juli 1955

Ginuk Sumarni Mudijhardjo
Lahir di Solo tanggal 26 Mei 1945

Gusmailina
Lahir di Medan tanggal 1 Agustus 1957

Hartoyo
Lahir di Kediri tanggal 2 Januari 1937

Jamal Balfas
Lahir di Bogor pada tanggal 4 Juni 1958
Lulus Fakultas Kehutanan IPB tahun 1983.
Bekerja di Pusat Litbang Hasil Hutan sejak tahun 1984 sebagai Staf Peneliti hingga sekarang, dengan spesialisasi Teknologi Kayu.
Jasni
Lahir di Bukittinggi pada tanggal 11 September 1955

Maman Mansyur Idris
Lahir di Cianjur tanggal 3 Juli 1950

Mohammad Muslich
Lahir di Kaliwungu tanggal 8 Agustus 1953

Osly Rachman
Lahir di Lubuk Basung tanggal 7 Juni 1944

Pipin Permadi
Lahir di Ciamis tanggal 28 Maret 1961
Lulus Fakultas Teknologi Pertanian IPB tahun 1983.
Bekerja di Pusat Litbang Hasil Hutan sejak tahun 1984 sebagai Staf Peneliti hingga sekarang, dengan spesialisasi Pengawetan Kayu.

Sibati Suprapti
Lahir di Yogyakarta tanggal 9 September 1954

Sona Suhartana
Lahir di Tasikmalaya tanggal 12 Oktober 1960
Sri Rulliaty Muslich
Lahir di Bandung pada tanggal 14 Maret 1957

Sukanda
Lahir di Cirebon pada tanggal 25 Mei 1957

Suwardi Sumadiwangsya
Lahir di Sumedang tanggal 4 November 1941

Sadun Widarmana
Lahir di Garut tanggal 25 Juni 1937

Surjono Surjokusumo
Lahir di Cirebon tanggal 7 April 1936
NOTES FOR AUTHORS

LANGUAGE: Manuscripts must be written in Indonesian with English summary or vice versa.

FORMAT: Manuscripts should be typed double spaced on one face of A4 white paper. A 3.5 cm margin should be left on all sides.

TITLE: Title must not exceed two lines, and should reflect the content of the manuscript. The author's name follows immediately under the title.

SUMMARY: Summary must not exceed 200 words, and should comprise informative essence of the entire content of the article.

TABLE: Title of tables and all necessary remarks must be written in Indonesian and English. Tables should be numbered.

LINE DRAWING: Graphs and other line drawing illustrations must be drawn in high contrast black ink. Each drawing must be numbered, titled and supplied with necessary remarks in Indonesia and English.

PHOTOGRAPH: Photographs submitted should have high contrast, and must be supplied with necessary information as in line drawing.

REFERENCE: References must be listed in alphabetical order of author's name with their year of publications as in the following example:

DAYA HIDUP DAN INTENSITAS SERANGAN BUBUK KAYU KERING HETEROBOSTRYCHUS AEQUALIS WAT PADA KAYU PULAI (ALSTONIA SCHOLARIS R.Br.)
Survival and infestation intensity of powder post beetle Heterobostrychus aequalis Wat on pulai (Alstonia scholaris R.Br.)
Ginuk Sumarni & Jasni ... 287

ANALISIS KIMIA SEPULUH JENIS BAMBU DARI JAWA TIMUR
Chemical analyses of ten bamboo species from East Java
Gusmailina & Suwardi Sumadiwangsa ... 290

PENGARUH KONDISI LINGKUNGAN TERHADAP SERANGAN PENGGEREK KAYU DI LAUT
The effect of environmental condition on marine borers attack
Mohammad Muslich & Ginuk Sumarni ... 294

STRUKTUR ANATOMI DAN IDENTIFIKASI DELAPAN JENIS KAYU PERDAGANGAN DARI KEBUN PERCOBAAN DI JAWA BARAT
Anatomy and identification of eight commercial woods from forest experimental garden in West Java
Sri Rulliat M. .. 298

PENAWETAN KAYU AGATHIS, BUNGUR, KARET, DAN TUSAM DENGAN METODE PENCELUPAN
The preservation of agathis, bungur, karet and tusam woods by momentary immersion process
Barly & Pipin Permadi ... 303

PENGARUH PENYARADAN TERHADAP KERUSAKAN TEGAKAN TINGGAL PADA BERBAGAI TINGKAT KELERENGAN
The effect of skidding to residual stand damage on several slope degrees
Dulisalam & Sukanda .. 307