Review
PENCEMARAN TANAH DAN AIR TANAH OLEH PESTISIDA DAN CARA MENANGGULANGINYA

PESTICIDE CONTAMINATION IN SOIL AND GROUNDWATER AND ITS CONTROL METHODS

Rachman Sutanto
Jurusan Ilmu Tanah, Fakultas Pertanian UGM
E-mail: rachman@faperta.ugm.ac.id

ABSTRACT

The large increase in the use of modern agricultural chemicals, including pesticides and fertilizers has made agriculture an important non-point source of soil and groundwater contamination. Nitrogen, heavy metals, and organic associated with pesticides are presumably the most common contaminants introduced into the environment by modern agricultural practices. The present and abundance of the chemical contaminants in the soil and underlying groundwater largely depends on their chemical species as well as the various physical, biological and chemical properties of the soil.

Understanding these processes and interactions between the contaminants and soil constituents would be useful in identifying effective techniques to restore the soil and groundwater contaminated by modern agricultural practices and others modern society activities.

When the level of these contaminants in the soil are such that the quality of the plants, food crops and the groundwater are being compromised, then remedial actions are necessary. Such remediation could include in situ technologies, including bioremediation or phytoremediation combined as well as agronomic-types approaches. The best strategy in reducing soil contamination is to reduce pollution at the source and to use best management practices, such as adopting the most appropriate land use for a given type of soil contamination.

Key words: pesticides, contamination, adsorption, bioremediation

INTISARI

Peningkatan yang cukup besar penggunaan bahan kimia pertanian modern, termasuk pestisida dan pupuk dianggap sebagai sumber pencemar baur (SPB) terhadap tanah dan air tanah. Bahan pencemar yang umum dijumpai di lingkungan akibat kegiatan pertanian modern adalah nitrogen, logam berat, dan senyawa organik yang berasosiasi dengan pestisida. Kejumpanan dan kemelimpahan bahan kimia pencemar di dalam tanah sangat dipengaruhi oleh sifat kimia bahan pencemar, dan sifat fisik, kimia dan biologi tanah.

Memahami berbagai cara proses dan mekanisme interaksi antara bahan pencemar dan komponen tanah, akan memudahkan usaha remediiasi apabila tanah atau air tanah tercemar oleh bahan-bahan yang berasal dari kegiatan pertanian modern maupun kegiatan masyarakat modern lainnya.

Apabila arus bahan pencemar di dalam tanah mempengaruhi kualitas tanaman, bahan pangan dan air tanah, maka program remediiasi in situ termasuk bioremediasi dikombinasikan dengan teknik-teknik budidaya yang sepadan perlu segera dilaksanakan. Strategi terbaik yang harus dilakukan dalam menekan terjadinya pencemaran tanah adalah mengurangi sumber kontaminasi dan melaksanakan pengelolaan yang baik dengan cara mengadopsi dan menerapkan prinsip tataguna lahan dan memperhitungkan jenis bahan pencemar.

Kata kunci: pestisida, pencemaran, jerapan, bioremediasi
PENDAHULUAN

Interaksi antara bahan pencemar dan komponen tanah sangat dipengaruhi oleh sifat biofisika-kimia komponen tanah dan bahan pencemar. Memahami interaksi antara bahan pencemar dan komponen tanah memudahkan kita untuk mengetahui perilaku bahan pencemar dan cara pengangkutannya ke dalam tanah dan air tanah. Pengetahuan tentang interaksi bahan pencemar dan komponen tanah dapat digunakan untuk mengidentifikasi teknik yang efektif dan efisien untuk memperbaiki tanah dan air tanah yang terkontaminasi bahan pencemar.

Suatu lingkungan dikatakan tercemar apabila telah terjadi perubahan dalam tatanan lingkungan itu sehingga berbeda sama sekali dengan tatanan asalnya, sebagai akibat masuknya dan/atau dimasukkannya suatu zat atau benda asing ke dalam tatanan lingkungan itu. Apabila lingkungan tercemar dalam aras tinggi, maka kemungkinan dapat membunuh dan bahkan menghilangkan satu atau lebih organisme penghuni lingkungan yang semula hidup normal dalam tatanan lingkungan yang ada.

Senyawa aromatik tersebut banyak digunakan oleh pabrik pestisida dan dianggap bersifat toksik terhadap kehidupan air, dan berpotensi meracun mamalia. Senyawa tersebut akan menimbulkan masalah apabila bersifat karsinogenik, meskipun di dalam air tanah dijumpai pada konsentrasi yang sangat rendah. Senyawa yang dianggap sebagai karsinogenik potensial adalah dietil- dan dimetil-ptalat, dinklorobenzien, tetrakloroetilen, dan lindane.

Pada umumnya interaksi antara bahan pencemar dan komponen tanah tidak sepenuhnya dapat dipahami karena bersangkut paut dengan bermacam-macam reaksi fisik, kimia dan biologi secara simultan. Pada umumnya proses-proses serapan (adsorption), pertukaran ion, pengendapan, ikatan komplek organik, dan alir hidup biologis tidak berjalan secara individual tetapi simultan. Kondisi lingkungan setempat sangat berpengaruh, kemungkinan salah satu proses lebih dominan dari proses yang lain. Sangat penting memahami proses-proses yang dominan dalam suatu ekosistem, karena banyak memberikan informasi reaksi yang berpengaruh terhadap proses pelonggokan (accumulation), pengangkutan (transportation) dan perilaku bahan pencemar termasuk pestisida, baik di dalam tanah maupun air tanah.

SIFAT KIMIA GUGUS FUNGSIONAL

Pestisida yang ada di dalam tanah, karena bahan aktifnya merupakan bahan kimia buatan, maka bersifat asing terhadap
sistem tanah. Jerapan oleh koloid tanah menyebabkan bahan aktif pestisida menjadi tak aktif, tetapi fenomena yang terjadi bersifat tak-balik (irreversible). Kapasitas tukar kation (KTK), pH dan kandungan bahan organik tanah merupakan parameter utama yang mempengaruhi aras jerapan pestisida. Pada kondisi lapangan yang menguntungkan 90% residu pestisida tertentu dapat dijerap oleh koloid tanah, sehingga menurunkan aktivitas pestisida dan risiko bahaya pencemaran tanah dan air tanah.

Banyak molekul organik (gugus amina, alkohol, dan karbonil) yang bermuatan positif melalui proses protonisasi dijerap oleh lempung, tetapi aras jerapannya sangat dipengaruhi KTK lempung. Penjerapan kation organik oleh lempung tergantung pada berat molekul-nya. Karena kation organik mempunyai berat molekul yang lebih besar, maka dijerap lempung lebih kuat daripada kation anorganik (Morrill, 1982).

Senyawa alifatik amina merupakan bentuk asam yang lebih kuat daripada amonium, sedang amina aromatik lebih lemah daripada amina alifatik. Amina di dalam tanah dapat mengalami protonasi dan menggantikan kation anorganik melalui pertukaran ion. Etildiamina (EDA) dijerap mineral montmorillonit melalui koordinasi ikatan hidrogen, dan anilin dijerap lempung melalui jembatan H₂O. Gugus fenolik dapat berkaitan dengan komponen lain seperti pestisida dan hidrokarbon, membentuk senyawa baru seperti asam sinamat dan galat. Jenis senyawa fenolik yang dijumpai di dalam tanah termasuk pestisida, seperti 2,4-D-kresosol, nitrofenol, dan PCP (Overcash & Crawford, 1979).

Gugus sulfosida merupakan salah satu gugus fungsional organik yang bersifat lebih polar, dan membentuk ikatan kompleks dengan oksigen atau sulfur. Gugus sulfosida dapat langsung membentuk ikatan anorganik dengan kation tertukarkan dan/atau jembatan H₂O melalui ikatan hidrogen antara sulfosida oksigen.
dan kation tertukarkan (Morrill, et al., 1982).

Interaksi hidrokarbon dan tanah berbeda dengan gugus fungsional yang reaktif Jerapan senyawa organik nonionik oleh tanah lempungan dipengaruhi oleh aktivitas molekul CH yang meningkat dari aktivasi elektrostatik gugus metilen yang kehilangan elektron, seperti C=O dan C=N (Yong, et al., 1992). Molekul yang berpengaruh pada gugus C=O dan C=N yang dekat dengan gugus metilen bersifat lebih polar, dengan demikian lebih kuat terjerap daripada senyawa yang hanya sedikit berikatan dengan gugus ini.

MIGRASI PESTISIDA DARI TANAH KE DALAM AIR TANAH

Apabila kondisi tanah jenuh air untuk waktu yang relatif lama sehingga tanah berada pada kondisi reduktif (penggunaan air limbah, curah hujan tinggi, rawa permanen, atau karena genangan air irigasi), maka senyawa organik akan terlindungi dan kemungkinan besar mencemari air tanah. Perpindahan senyawa organik di dalam tanah dipengaruhi oleh tiga proses utama: (a) pelepasan (desorption) senyawa organik dari fase padat menjadi fase cair, (b) aliran massa air, (c) difusi melalui air. Kelarutan senyawa organik juga dipertimbangkan sebagai faktor penting dalam membentuk senyawa organik di dalam tanah. Pola agihan bahan terlarut yang terbawa air banyak dibahas dalam literatur. Jumlah air yang diperlukan untuk memindahkan senyawa organik terlarut sampai kedalam tanah tergantung pada nisbah bahan organik dan air sebagai pelarut.

Pengukuran bahan aktif pestisida menggunakan teknik TLC sangat bermanfaat untuk mengetahui imobilisasi relatif senyawa organik. Teknik pengukuran ini digunakan untuk mengevaluasi karakteristik pelindian dan difusi fungisida dan herbisida. Mobilitas relatif suatu senyawa organik di dalam tanah yang diukur menggunakan TLC kurang lebih sama dengan pengukuran metode kolom dan lisimeter. Ketahanan terhadap
perombakan yang dimiliki oleh masing-masing senyawa organik sangat penting untuk mengevaluasi kemungkinan adanya senyawa yang bersifat mobil sehingga mencemari air tanah.

BIOREMEDIASI AKIBAT PENCEMARAN PESTISIDA

Apabila tanah terkontaminasi senyawa organik yang bersifat toksik melalui kegiatan pertanian, remediaksi *in situ* adalah cara yang paling efektif untuk perbaikan lingkungan. Perlakuan yang dapat dilaksanakan termasuk degradasi mikrobiologis, netralisasi secara kimia atau proses imobilisasi, dll. Dalam kasus pencemaran tanah oleh pestisida, aktivitas mikroorganisme tertentu dapat digunakan untuk mendekomposisi senyawa organik tersebut. Pada umumnya, setiap bahan pencemar (atau dalam beberapa kasus, golongan bahan pencemar, misalkan bahan aktif pestisida) di dalam tanah memerlukan bahan kimia berbeda untuk menekan sifat toksisitasnya. Penambahan bahan kimia untuk menekan toksisitas senyawa tertentu akan menimbulkan reaksi yang bersifat kontra produktif dengan senyawa lain. Penambahan senyawa pengoksidasi yang mampu menekan sifat toksik senyawa organik kemungkinan besar juga mengubah status oksidasi ion logam sehingga mendorong menjadi lebih meracun atau lebih mobil.

Ada beberapa contoh mikroorganisme, seperti *Arthrobacter* sp., *Achromobacter* sp., dan *Pseudomonas* sp. (Bollag & Liu, 1990) banyak digunakan untuk mendegradasi limbah pestisida dan remediaksi tanah yang terkontaminasi pestisida. Metode yang diterapkan berkisar antara penggunaan mikroorganisme asli sampai penggunaan kultur mikro-
organisme. Untuk meningkatkan kemampuan mikroorganisme mendegradasi bermacam-macam pestisida dari tanah yang terkontaminasi berat, maka sangat diperlukan adanya penambahan unsur hara (Winterlin et al., 1989). Kemungkinan dapat juga terjadi beberapa jenis pestisida tidak terdegradasi meskipun sudah dilakukan penambahan bahan stimulan.

Penelitian dengan memanfaatkan kultur mikroorganisme menunjukkan bahwa dalam praktek penggunaan mikroorganisme pendegradasi pestisida terjadi pada kondisi tertentu. PCP kemungkinan dapat dihilangkan dari tanah yang terkontaminasi dengan cara menginokulasi dengan bakteri pendegradasi PCP (Norber & Persson, 1984).

Untuk memperoleh hasil yang memuaskan dalam menanggulangi pencemaran pestisida maka beberapa faktor yang berpengaruh terhadap efisiensi dan efektivitas remediasi yang perlu diketahui, ialah: 1) macam dan sifat kimia pestisida yang digunakan, 2) lokasi (site) yang terkontaminasi biasanya mengandung beberapa jenis pestisida; 3) penggunaan pestisida dengan konsentrasi tinggi secara langsung bersifat meracun pada mikroorganisme; dan 4) senyawa kimia yang segera terbentuk pada saat proses degradasi, akan menghambat kehidupan mikroorganisme.

KESIMPULAN DAN SARAN

Bermacam-macam proses dan mekanisme interaksi antara bahan pencemar dan komponen tanah perlu dipahami, akan memudahkan dalam melaksanakan usaha remediasi apabila tanah atau air tanah tercermin oleh bahan-bahan yang berasal dari kegiatan pertanian maupun kegiatan masyarakat modern lainnya.

Salah satu sumber pencemar baur (SPB) yang umum dijumpai akibat kegiatan pertanian adalah pestisida. Sedang bahan pencemar yang umum dijumpai adalah nitrogen, logam berat, dan senyawa organik yang berasosiasi dengan pestisida. Kejumpan dan kelimpahannya di dalam tanah sangat dipengaruhi oleh sifat kimia bahan pencemar, dan sifat fisik, kimia dan biologi tanah.

Apabila aras bahan pencemar di dalam tanah mempengaruhi kualitas tanaman, bahan pangan dan air tanah, maka program remediasi perlu segera dilaksanakan. Program remediasi yang dilaksanakan harus merupakan teknologi remediasi in situ, termasuk bioremediasi atau fito-remediasi dikombinasikan dengan teknik teknik budidaya yang sepadan.

Strategi terbaik yang harus dilakukan dalam menekan terjadinya pencemaran tanah adalah mengurangi sumber polusi dan melaksanakan pengelolaan yang baik ditinjau dari garis lingkungan, dengan cara mengadopsi dan menerapkan prinsip PHT

DAFTAR PUSTAKA

