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ABSTRACT: Trimethylolpropane esters were synthesized by transesterification of calophyllum methyl esters and 

trimethylolpropane using a calcium oxide as the catalyst. The results showed that the optimal reaction conditions (temperature: 

130 0C, reaction time: 5 h, reactant molar ratio: 3.9:1, catalyst amount 3%w/w, and formed  trimethylolpropane ester of 79.0% 

were obtained. The basic physicochemical properties of the trimethylolpropane esters were the following : kinematic viscosities of 

56.40 cSt and 8.8 cSt at 40 0C and 100 0C,  viscosity index 193, flash point 218 0C and pour point -3 0C. So Methyl esters of fatty acids 

of would callophylum  methyl ester is good raw material for the synthesis of lubricating oils. 
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1. Introduction 

These last few years, the environmental issues and 
austerity of fossil raw materials require the 

development of environmentally friendly lubricants. 

Mineral oil-based lubricants are classified as non-

renewable and environmentally-unfriendly materials 

(Salimon et al. 2010). In order to meet the demands of 

environmentally friendly lubricants and to use modern 
machines, it must be developed a synthetic lubricants. 

Esters of vegetable oils are one of the 

recommended materials to be developed into a 

lubricant (Willing. 2001). Some vegetable oils used to 

make a synthetic lubricants are sunflower seed oil, 

castor, palm, rapeseed and soybean (Lathi PS & 
Mattiason 2007; Gryglewics et al. 2003). On the other 

hand, vegetable oil is environmentally friendly, because 

it is a renewable natural resource and can be degraded 

biologically. 

There are several reasons to use vegetable oils or 

vegetable oil derivatives as biolubricants. Because as 

much as 40% (Castro et al. 2006) of a lubricant can be 

lost to the environment, the inherent biodegradability 
of vegetable oils reduces their environmental impact. 

Other advantages include low volatility, superior 

lubricity and good anticorrosion properties (Doll et al. 

2007; Metzger 2009). 

However, vegetable oils also have the poor 

properties such as having a low oxidation stability and 
high pour point, both of which are critical factors for 

lubricants. The low oxidation resistance is caused by the 

carbon-carbon double bonds in the fatty acid chain and 

beta hydrogen on glycerol susceptible to oxygen assault.  

If there are two or more double bonds 

(polyunsaturated), the more easily oxidized. Meanwhile 
the presence of betta hydrogen will facilitate the 

breakup of triglycerides into acid and olefin. 

Transesterification is defined as the reaction (Leung et 

al. 2010) in which a triglyceride molecule reacts with 

three moles of methanol to result in glycerol and 

mixtures of fatty acid methyl esters. The 

transesterification of vegetable oil-derived methyl 
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esters with polyols is essentially the reverse of the 

transesterification reaction, in which glycerol is 

replaced by a commercial polyol. The most significant 

advantage of using a polyol instead of glycerol is that 

the absence of betta hydrogens enhances the thermal 

stability of the lubricant at high temperatures by 
preventing self polymerization to form free fatty acids 

(Leung et al. 2010). Figure 1 show the chemical reaction 

between calophyllum methyl esters (CMEs) and 

trimethylolpropane (TMP). 

 

 
 

 

 

 

 
 

Fig. 1 reaction of TMP with CMEs 

 
 

Previous studies reported on transesterification of 

palm oil methyl ester (POME) and palm kernel oil (PKO) 

with trimethylolpropane (TMP), which has been 

successfully converted into triesters of 98 % (Yunus 

2003). Another study work reported using 

trimethylolpropane (TMP) and neopentylglycol (NPG) 
as a polyol with some vegetable oils such as olive oil, 

rapeseed oil and lard (Campanella et al. 2010). 

Uosukainen et al. (1998) describe the synthesis of 

trimethylolpropane esters of rapeseed oil methyl ester 

(ROME) using sodium methylate catalyst (0.5% w/w) 

were added to the reaction mixture. The reaction 
mixture is passed under pressure of 3.3 kPa for 8 hours. 

The effects of pressure, the molar ratio (TMP: ROME), 

reaction time, and reaction temperature investigated. 

The production of canola oil-based lubricant was 

studied transesterification with trimethylolpropane 

(TMP) using sodium methoxide as catalyst. They found 

the reaction conditions to obtain maximum yield of TMP 
trioleate. Canola derived biolubricant with TMP triester 

composition of 90.9% was obtained after 5 h (Sripada et 

al. 2013). 

In the present study, calophyllum methyl esters is 

used to produce TMP esters. Calophyllum oil is semi-

dried oil, rich in unsaturated fatty acids (oleic, lenoleic 
and lenolenic) which form 69.46% of total fatty acid 

composition of the oil. Presently, many studies on 

calophyllum oil  shown that it has many potential for 

industrial application such as methyl esters. The 

objective of this study is to optimized the 

transesterification of calophyllum methyl esters with 
TMP to achieve the maximum production of TE. 

Through this process, TMP ester which is formed can be 

used as a basic material in the lubricant production.  

 

 

2. Materials and Methods 

2.1 Materials 

Calophyllum methyl esters (CMEs),  2-ehtyl-2-

(hydroxymethyl)- 1,3-propanediol and calcium oxide, 

was purchased from Merck Schuchardt. Other chemicals 

such as ethyl acetate and N, O-Bis (trimethylsilyl) 
trifluoroacetamide (BSTFA) were purchased from 

Sigma Aldrich. 

 

2.2 Fractionation 

Approximately 50% of the original calophyllum 

methyl esters (CMEs) were fractionated via vacuum 
distillation at temperatures of 170–180 0C under 

vacuum pressures of 2 mbar. The bottom product, 

which contains CMEs, was dried overnight in an oven at 

110 0C to decrease the moisture content, and 200 g of it 

was used as the starting material in the synthesis of 

high oleic calophyllum oil based trimethylolpropane 
esters. 

 

2.3 Transesterification 

Transesterification reactions were performed in a 

500 mL threeneck flask equipped with a thermometer, a 

sampling port and a reflux condenser. The condenser 

was connected to a vacuum line equipped with a relief 

valve, accumulator and vacuum trap. The reactor was 

filled with a known amount of TMP at a molar ratio of 
CMEs to TMP of 3.9 : 1, our now day study. The reactant 

was then heated and stirred with a magnetic stirrer in 

the temperature-controlled oil bath while under 

vacuum until the TMP melted at about 60 0C. Then the 

CMEs was added to a flask, and the mixture was heated 

to the operating temperature of 110 0C under vacuum 
pressure of 1–2 mbar. The calcium oxide catalyst was 

then added at a fixed 3% w/w based on the total mass 

of reactants. The vacuum was applied gradually to avoid 

spill over of the reaction materials. Samples were taken 

at specific time intervals, where each sample was 

collected in a small, capped vial and was immediately 
refrigerated at 2 0C for products analysis. Finally, the 

reaction mixture was cooled to room temperature and 

vacuum filtered to remove the catalyst and solid 

materials formed during the reaction. 

 

2.4 Analysis  
Analysis of TMP  esters was performed on a HP 

5890II gas chromatograph fitted with a capillary inlet 

system and flame ionization detector. The capillary 

column, HP INNOWAX, was 30 m long, with 0.25 mm i.d. 

and 0.25 µm film thickness. A split injection system 20:1 

was used with helium carrier gas at head pressure of 
0.6 atm. The column temperature was held at 50 0C 

throughout the entire 6 min run. Temperature 

programming was initiated at 50 0C at the rate of 10 0C 

min-1 to reach a temperature of 250 0C. The inlet 
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temperature was 250 0C and the detector temperature 

was 280 0C. 1.0 mL of each prepared sample was 

automatically injected into the GC system. 

 

2.5 Viscosity 
Viscosity measurements were made at 40 and 100 

0C using Cannon Fenske viscometer tubes in a Cannon 

Constant Temperature Viscosity Bath (Cannon 

Instrument Co., State College, PA). Viscosity and the 

viscosity index were calculated using ASTM methods 

D445 and D2270, respectively. All viscosity 

measurements were made in triplicate, and the average 
value was reported. 
 

2.6 Pour point 

Pour points were determined by ASTM method D97 

with an accuracy of ±3 0C using Automatic Pour Point 

Tester manufactured by Dott. Gianni Scavini & Co., Italy. 
All the runs were carried out in duplicate. Sample 

temperature was measured in 3 0C increments at the 

top of the sample until it stopped pouring. 

 

2.7 Flash point 

Flash point of the products was determined using 

Koehler Inc. apparatus as per ASTM D 93 method. The 

lowest temperature at which application of the test 

flame causes the vapour above the surface of the liquid 

to ignite is taken as the flash point of the product at 
ambient barometric pressure. 

 

3.  Result and Discussion 

3.1 Effect of Temperature 

The results show that the reaction temperature 

influences the formation of ME, DE and TE. The 

formation of TE increases with the increase of reaction 

temperature but drops slightly at 1500C (Figure 2). 

CMEs content in the reaction mixture also decreases 
during the reaction as it being transformed into ME, DE 

and TE. High temperature can cause the vaporization of 

CMEs from the reaction mixture and thus, encouraging 

forward reaction to form TE (Yunus 2003a). Vaporized 

CMEs mixture and produce a reversible reaction [8]. 

The aim of the study is to focus on TE production as it 
has good high temperature properties compared to ME 

and DE. The production of TE is high at 150 0C with few 

DE (5.80 %) and ME (0.40 %) formation in the final 

product. Although ME formation records the lowest 

(0.30%) at 130 0C, and DE (2.02%) at 1100C, both 

temperatures however record lower TE compare with 
when it was at 150 0C.  

 

 
Fig. 2 Effect of temperature on transesterification of 

calophyllum methyl ester with  TMP (TMP : CMEs = 1:3.9 ; 

catalyst 3%w/w, 5h) 

 

3.2  Effect of Molar Ratio 

One of the methods to promote forward reaction (fig. 1) 

is by using excess amount of one of the reactan. Since 

calophyllum methyl ester are relatively cheaper 

compared to trimethylolpropane, the reaction was 

subjected to excess methyl ester. The stoikiometri 

molar ratio between the calophyllum methyl ester and 

trimethylolpropane is 3 : 1.  This is to ensure that the 
reaction was unconstrained by the effectof excess 

reactant. The investigation on the effect of CMEs : TMP 

molar ratio to conversion to TMP esters was carried out 

at 130 0C in 5 hours and catalyst was maintained at 3 % 

w/w in all experiment.  The effect of molar ratio of TMP 

: CMEs on product composition is shown in Figure 3. 

The results are summarized in figure 3 which show that 
there is no significant effect of increasing molar ratio on 

the conversion of TMP ester. Slightly higher percentage 

of TMP esters was obtained at molar ratio of 1 : 3.7 and 

1 : 3.9. However, the difference was so small (70.40 % 

and 71.80 %) that no conclusion could be withdrawn 

from the study.  
 

3.3 Viscosity 

 

The biolubricant product obtained from calophyyllum 

methyl esters under the developed optimum synthesis 

conditions was evaluated for its lubrication properties. 

These properties were then compared with those of 
palm oil, canola (B. Napus)  biodiesel-derived 

biolubricant, esterifed rapessed oil and ISO VG 46. Table 

1 shows a comparison of the lubrication properties of 

both biolubricants with reference to ISO VG 46 

specifications. Determination of kinematic viscosity is 

important from the point of view of the ability of a 
lubricant to efficiently lubricate contact surfaces. 
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Kinematic viscosities were determined at 400C and 

1000C. Previous researchers reported kinematic 

viscosities at 400C and 1000C of 52.40–10.20 cSt for 

TMP esters of palm oil  (E. gueneensis) (Yunus et al., 

2003b). 

 

 

 

Figure 3 Effect of molar ratio on transesterification of 

calophyllum methyl ester with  TMP (catalyst 3%w/w, 130 0C, 

5h) 

 

Similarly reported are kinematic viscosities at 40 0C 

and 100 0C of 40.5 cSt - 7.8 cSt for TMP ester canola oil 
(B. Napus) (Sripada 2013), respectively. Calophyyllum 

methyl esters-derived biolubricant on the other hand 

was found to have kinematic viscosities of 56.40 cSt and 

8.8 cSt at 40 0C and 100 0C respectively. ISO VG 46 is a 

standard specification for light gear oil lubricant. This 

specification was used as a reference for comparison. 
All the tribological properties of biolubricants were 

found to meet these specifications, except for the 

viscosity of calophyllum methyl esters-derived 

biolubricant, kinematic viscosities of 56.40  cSt at 40 0C, 

which was a bit higher than the recommended value of 

41.4 cSt. This was due to the high monounsaturation 
and polyunsaturation in calophylllum methyl ester, 

which effectively resulted in higher viscosity. The 

viscosity of fluids tends to decrease as temperature is 

increased. VI quantifies the extent of change in the 

viscosity of lubricant with a change in temperature. 
Higher the VI, lesser is the change in viscosity of the 
lubricant with a change in temperature. A previous study 
reported the synthesis of TMP esters of palm oil (E. 

gueneensis) were found to exhibit high VI values of 167–
187 (Yunus et al. 2003b). A VI value of  204 was obtained 
for polyol esters of canola oil  (Sripada et al. 2013). TMP 
esters of C5–C18 fatty acids were observed to have VI 
values of 80–208 (Åkerman et al. 2011). Using the 
kinematic viscosity values at 40◦C and 100◦C, viscosity 
indices for calophylllum methyl ester derived biolubricants 
were calculated. Calophyllum methyl ester derived 
biolubricant was found to have high VI value of 193.  

 
Table 1  

Properties of calophyllum  biolubricant at various temperatures 
and comparison with other plant based biolubricants. 
 
 
 
 
 
 
 
 
 
 
a Yunus et al. 2003 ; b Sripada et al. 2013 ; c Gryglewicz et al. 

2003 ;  d Comercial lubricant 
 

 

3.4 Pour Point 

Low-temperature fluidity is the most important 

property for a lubricant to perform in extremely cold 

environments typical during the harsh winters of 

Canada, especially in Saskatchewan. A measure of the 
pour point values determine the cold flow properties of 

a lubricant. Pour point is the lowest temperature at 

which movement of the liquid is observed. A lot of work 

has been reported on the development of TMP triesters 

derived from palm (E. gueneensis) oil methyl esters 

(Yunus et al. 2003). They synthesized TMP lubricants 

from palm kernel (E.gueneensis) oil methyl esters, 
which had high pour points between+10C and −10C. In 

this work the pour point of the calophyllum metyl 

esters is -3 0C. 
 

3.5 Flash Point 

Flash point is used to determine the beginning of the 
lubricant will fire or flame arise while in the machine. 

The flash point of the calophyllum methyl ester is 212 
0C indicating a low tendency to evaporation which fulfils 

one of the basic requirements of lubricants.  

 

 

 
4. Conclusion 

The transesterification of CMEs with TMP using 

calcium oxide as catalyst has successfully formed TMP 

esters with the percentage of TE (79%). Results of 

reaction duration: 5 hours, temperature 130 0C,  molar 

ratio of CMEs: TMP is 3.9:1 and catalyst concentration: 
3 % w/w (based on weight of reactan) are sufficient for 

the transesterification of TMP esters as biolubricant 

base stocks. In addition, the pour point of the product 

was observed of –3 0C, flash point is 212 0C and 

kinematic viscosities of  56.40 cSt and 8.8 cSt at 40 0C 

and 100 0C that resulting calophyllum TMP esters has a 

high potential for the production of lubricants. 

 Detail Calophyllum oil biolubricant Palm oil 

biolubricant a 

Canola oil 

biolubricant b 

Esterified 

rapeseed oil c 

ISO VG 46d 

 

Temperatur (0C) 110 120 130 140 150     

Viscosity 

40 0C 

100 0C 

 

35.28 

7.68 

 

54.43 

8.49 

 

56.40 

8.80 

 

56.87 

8.70 

 

56.93 

8.32 

 

52.40 

10.20 

 

40.5 

7.80 

 

35.34 

7.99 

 

> 41.4 

> 4.1 

Viscosity Index 

(IV) 

190 192 193 188 184 186 204 209.2 > 90 

Pour Point -1 -2 -3 -1 -1 -5 -66 -15.5 -10 

Flash Point 222 214 212 214 213 - - - - 
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