RANCANG BANGUN SENSOR NIRKABEL SUHU DAN KELEMBABAN MENGGUNAKAN METODE HALF-DUPLEX PADA GUDANG PABRIK TAPIOKA

PROTOTYPE WIRELESS TEMPERATURE AND HUMIDITY SENSOR USING HALF-DUPLEX IN TAPIOKA FACTORY WAREHOUSE

Ali Jaya
Balai Riset dan Standardisasi Industri Bandar Lampung
Email: ajay@kemenperin.go.id
Diajukan: 21/5/2013, Direvisi: 1/10/2013, Disetujui: 6/12/2013

ABSTRACT

The purpose of making prototype is how to make multiple input from the sensors to the computer. There are three component on the prototype, first is modul electronics sensor is used this prototype is LM 35 which can measure temperature, second is sensor 8085V5 which can measure humidity, third is computer for displaying measurement temperature and humidity from the sensor. The program uses Visual C# to display data from the sensor, this program will display real time so that can follow any change environment sensor measured. The program will request mikrokontroller which data will be displayed temperature or humidity in every sample time we set. The display will show the data from sensor temperature and sensor humidity that applied in flour warehouse, so operator can see the history of data real time. The use of data history is analyze condition in warehouse which data, in specific time, give anomaly condition that make flour changes in quality.

Keywords: multiple input sensor, microcontroller, temperature, humidity, wireless

ABSTRAK

Tujuan dari pembuatan prototype adalah bagaimana membuat beberapa masukan sensor ke komputer. Ada tiga komponen pada prototype, pertama adalah modul sensor electronics digunakan prototype ini adalah LM 35 yang dapat mengukur suhu, sensor kedua adalah 8085V5 yang dapat mengukur kelembaban, ketiga adalah komputer untuk menampilkan pengukuran suhu dan kelembaban dari sensor. Program ini menggunakan Visual C# untuk menampilkan data dari sensor, program ini akan menampilkan waktu nyata sehingga dapat mengikuti perubahan lingkungan sensor yang dilukis. Program ini akan meminta mikrokontroller dimana data akan ditampilkan suhu atau kelembaban di setiap waktu sample yang kita set. Layar akan menampilkan data dari sensor suhu dan kelembaban sensor yang diterapkan di gudang tepung, sehingga operator dapat melihat sejarah data waktu nyata. Penggunaan sejarah data adalah untuk menganalisis kondisi di gudang dalam waktu tertentu, serta memberikan informasi kapan kondisi anomali yang membuat perubahan kualitas tepung.

Kata Kunci: multiple input sensor, mikrokontroller, suhu, kelembaban, nirkabel

PENDAHULUAN

Sistem pengukuran sudah banyak dirancang dan dibangun dalam banyak penelitian tetapi hanya sebatas satu parameter pengukuran misalnya suhu saja atau kelembaban saja. Hal ini dikarenakan tingkat kesulitan pada pengolahan data komputer dengan data sensor lebih dari satu lebih sulit jika dibandingkan dengan pengukuran data satu sensor. Tantangannya adalah pemantauan menggunakan komputer harus waktu nyata dari sensor, artinya data sensor satu harus bergantian masuk dengan sensor lainnya secara kontinu dalam hitungan perdetik.

Dalam rancang bangun ini dibuat rancangan pengukuran suhu dan kelembaban secara bersamaan, sehingga dihasilkan suatu rancangan sederhana yang dapat diaplikasikan lebih lanjut untuk akuisisi data secara waktu nyata dari sensor-sensor yang dipasang di gudang tapioka. Gudang tapioka memerlukan kondisi suhu dan kelembaban yang baik untuk menghindari penurunan kualitas dari tapioka. Penurunan kualitas dikarenakan suhu dan kelembaban yang tidak sesuai, jika suhu rendah dan kelembaban tinggi akan mengakibatkan tepung tapioka
menggumpal. Sedangkan, jika suhu tinggi dan kelembaban rendah akan mengakibatkan tepung tapioka menurun kadar keputihannya atau berubah warna.

Tujuan dari penelitian ini adalah:

1. Didapatkan suatu prototipe sensor nirkabel suhu dan kelembaban yang dipasang digudang tapioka. Sehingga, dapat memantau keadaan yang terjadi secara waktu nyata dan dapat mengetahui kapan terjadinya penurunan kualitas tapioca

2. Menggunakan metode komunikasi Half-Duplex, artinya komunikasi 2 arah antara sensor (suhu & kelembaban) dan komputer secara bergantian untuk menentukan waktu sampling.

3. Didapatkan teknologi sensor nirkabel yang memanfaatkan produk-produk IT yang terbaru yang 'umum' dipasaran seperti access point nirkabel dijadikan sebagai media untuk komunikasi nirkabel. Sehingga, diperolah sistem instrumentasi yang murah dan terjamin kelanjutan spare part-nya.

METODE

Prosedur Kerja
Sistem instrumentasi yang diterapkan tidak menggunakan kabel sehingga dapat menghemat dan mengurangi biaya pemasangan kabel untuk menghubungkan antara sistem pengendali (komputer) dengan alat-alat ukur yang ada dilapangan. Sistem komunikasi yang akan digunakan pada aplikasi ini adalah Half-Duplex, yaitu komunikasi dua arah secara bergantian antara komputer sebagai pengendali dengan alat ukur atau sensor.

Rancang bangun alat pemantau suhu dan kelembaban ini terdiri dari 3 (tiga) bagian yaitu modul sensor suhu untuk mengukur suhu, modul sensor kelembaban untuk mengukur kelembaban dan server untuk memantau perubahan suhu dan kelembaban hasil pengukuran, grafik dan komunikasi antara modul-modul sensor dengan komputer.

Data suhu dan kelembaban dari sensor akan ditampilkan dengan program Microsoft C # melalui pembuatan Graphic User Interface (GUI).

Gambar 1. Blok Diagram Sistem

Nirkabel

Pada tahun 2006, teknologi 802.11n dikembangkan dengan menggabungkan 802.11b, 802.11g. Teknologi, yang dibawa dikenal istilah MIMO (Multiple Input Multiple Output) merupakan teknologi terbaru Wi-Fi. MIMO dibuat berdasarkan spesifikasi Pre-802.11n. The "Pre-

"Prestandard versi 802.11n." MIMO menawarkan peningkatan throughput, kecepatan reabilitas, dan meningkatkan jumlah klien tersambung. Tembus MIMO kekuasaan penghalau lebih baik dari lingkup yang lebih luas sehingga dapat menempatkan laptop atau klien Wi-Fi. Access Point MIMO dapat menjangkau
berbagai peralatan Wi-Fi di setiap sudut kamar yang sudah ada. Secara teknis MIMO lebih unggul dibandingkan 802.11a/b/g. Access Point MIMO dapat mengenali gelombang radio yang dipancarkan oleh adapter Wi-Fi 802.11a/b/g. MIMO mendukung kompatibilitas mundur dengan 802.11 a/b/g. Peralatan Wi-Fi MIMO dapat menghasilkan kecepatan transfer data 108Mbps dan menggunakan frekuensi bebas ISM (Industrial Science and Medical).

TCP/IP

TCP/IP (Transport Control Protocol / Internet Protocol) merupakan sekolompok protokol yang mengatur komunikasi data komputer dan memungkinkan komputer berbagai jenis dan berbagai vendor serta berbeda sistem operasi untuk berkomunikasi bersama dengan baik. TCP/IP ini dikembangkan pertama kali oleh lembaga riset Departemen Pertahanan Amerika, DARPA (Defence Advance Research Project Agency). Perkembangan TCP/IP yang cepat dan diterima secara luas tidak dikarenakan rekomendasi DARPA, melainkan fitur-fitur penting yang ada TCP/IP, diantaranya:

- TCP/IP dikembangkan menggunakan standar protocol yang terbuka. Tersedia secara bebas dan dikembangkan tanpa bergantung pada perangkat keras maupun sistem operasi tertentu.
- Tidak tergantung pada spesifik perangkat jaringan tertentu. Hal ini memungkinkan TCP/IP untuk mengintegrasikan berbagai macam jaringan.
- TCP/IP menggunakan pengalaman yang unik dalam skala global. Dengan demikian memungkinkan komputer dapat saling berhubungan walaupun jaringannya seluas internet sekarang ini.
- Standarisasi protokol TCP/IP dilakukan secara konsisten dan tersedia secara luas untuk siapapun tanpa biaya. Hal ini diwujudkan dalam RFC (Request For Comment).

HASIL DAN PEMBAHASAN

Diagram Allir

Untuk memudahkan pembuatan program maka perlu dibuat diagram alir, digram alir pada sistem ini terdiri dari program utama dan program rutin baca suhu dan kelembaban. Gambar 2 adalah alur kerja dari bagian utama dalam program server rutin pembacaan suhu/kelembaban. Rutin pembacaan kelembaban adalah sama dengan rutin pembacaan suhu, namun rutin ini tidak akan mendapatkan kesalahan data yang masuk ke server dikarenakan pengalaman melalui IP address tersebut. IP address untuk sensor suhu adalah 192.168.1.151, sedangkan untuk sensor kelembaban adalah 192.168.1.110. Dari hal ini dapat diambil kesimpulan bahwa protokol TCP/IP mampu menangani MIMO (Multiple Input Multiple Output).

Perangkat Lunak

Perangkat lunak atau program sangatlah penting guna menunjang bekerjanya sistem ini. Pembuatan program pemantau suhu dan kelembaban berbasis komputer menggunakan bahasa pemrograman Microsoft Visual C# sehingga dapat diperoleh tampilan yang menarik. Cara kerja program dapat dilihat dari diagram alir Gambar, dimana program akan bekerja sebagai berikut:
1. Proses yang pertama dilakukan adalah deklarasi inisialisasi komponen yang ada dan dapat ditangkap oleh server menggunakan sintak "TcpListener(IPAddress.Any, 3000)". TcpListener() merupakan variabel membaca sinyal nirkebal dengan format IP Address yang bebas, sedangkan 3000 merupakan port ethernet yang digunakan.

2. Konfigurasi terhadap port I/O pada protokol TCP/IP menggunakan port 3000 ethernet sebagai I/O. Konfigurasi UART dilakukan agar mikrokontroler dapat berkomunikasi dengan server melalui pin TXD dan RXD yang merupakan komunikasi serial.

3. Program menunggu datangnya data bernilai '1' dari mikrokontroler yang sebelumnya server memberi perintah kepada mikrokontroler untuk memasukkan data ke server. Data tersebut akan ditangani oleh kelas HandleClientComm(object client). Jika server menerima data bernilai '1' maka akan memulai pembacaan suhu dan kelembaban atau komunikasi sukses. Jika bernilai '0' maka program akan memutus komunikasi antara server dengan client.

Gambar 2. Diagram alir Program Utama Rutin Baca Suhu & Kelembaban
Gambar 3. Tampilan Menu Setting untuk Konfigurasi Suhu

Gambar 4. Tampilan Data Waktu Nyata Suhu dan Kelembaban

Gambar 5. (i) Hardware Sensor Suhu, (ii) Hardware Sensor Kelembaban
Pada Gambar 3, pembacaan suhu dimulai dengan mengirim sinyal start untuk memulai komunikasi. Setelah itu program mengirim "1" ke mikrokontroller yang merupakan perintah untuk memulai pengukuran suhu.

6. Jika program menerima data bernilai '0', maka program akan menunggu selesaiunya hingga mikrokontroller memberi nilai '1' dengan memanggil rutin AcceptTcpClient().

7. Setelah pengukuran selesai, data suhu akan ditampilkan di grafik dengan sumbu x adalah min-max display setting suhu dan sumbu y adalah sampling data. Data suhu juga ditampilkan dalam bentuk tabel, dengan perulangan kode dari program, waktu sampling data dan nilai data tersebut.

9. Pembacaan data kelembaban juga memiliki langkah yang sama seperti langkah 5 hingga langkah 8.

11. Program pada sisi komputer dikembangkan dengan menggunakan Microsoft Visual C# dan komponen grafik menggunakan Developer Express serta penyimpanan data menggunakan MySQL. Program pada sisi komputer memiliki 2 tugas utama, yaitu:
 a. Mengirim karakter '1' secara bergantian setiap n detik sampling data.
 b. Jika karakter '1' yang diterima, maka server akan menampilkan data suhu dan kelembaban.
 c. Menampilkan data suhu dan kelembaban udara dalam bentuk grafik dan tabel dengan kemampuan mereka data sebelumnya (history/log data/akuisisi data).

Pembahasan
Uji coba prototype sistem automasi instrument menggunakan nirkabel telah berhasil dilaksanakan di pabrik Tapioka PT. Umas Jaya Agrotama daerah Lampung Timur. Uji coba tersebut dilakukan di bagian gudang, dasar pemikirannya adalah gudang tapioka memerlukan kondisi suhu dan kelembaban yang baik untuk menghindari penurunan kualitas dari tapioka. Penurunan kualitas dikarenakan suhu dan kelembaban yang tidak sesuai, jika suhu rendah dan kelembaban tinggi akan mengakibatkan tepung tapioka menggumpel. Sedangkan, jika suhu tinggi dan kelembaban rendah akan mengakibatkan tepung tapioka menurun kadar keputihannya atau berubah warna.

Dari Gambar 4 diatas, dapat dikesah bahwa pada Tanggal 4 Oktober 2011 Jam 12:03:57 suhu gudang adalah 37 °C dan kelembaban adalah 46 %RH. Grafik tersebut memberi informasi bahwa gudang dalam keadaan normal dan tidak akan memerikan efek yang buruk pada kualitas tapioka yang sedang disimpannya.

Rancang bangun ini menggunakan sensor suhu yaitu LM 35 dan sensor kelembaban yaitu 808H5V5, mikrokontroller yang digunakan adalah dari ATTEL keluarga C52 sebagai pengolah data dan komunikasi dari sensor-sensor tersebut. Sedangkan, komunikasi yang digunakan adalah komunikasi ethernet menggunakan protokol TCP/IP. Komunikasi antara modul sensor dengan komputer menggunakan mikrokontroller ATTEL 89C52. Modul mikrokontroller ini digunakan selain untuk membaca dan menulis data dari/ke modul sensor LM 35 dan modul sensor kelembaban 808H5V5, juga digunakan untuk men-sinkronisasi proses komunikasi antara komputer dengan modul sensor-sensor tersebut.

Proses komunikasi data yang terjadi antara modul-modul sensor dengan server menggunakan nirkabel access point/router protokol TCP/IP (WiFi), alasan penggunaan protokol TCP/IP (IEEE 802.11b/g/n) beroperasi pada 2.400 MHz sampai 2.483,50 MHz karena access point/router banyak dijual dipasar dengan merk yang berbeda-beda sehingga memenuhi kelanjutan (continuity) spare part.

Dalam rancang bangun ini digunakan 2 (dua) buah software/program, yaitu program untuk sisi komputer dikembangkan dengan bantuan Microsoft Visual C# dan
dan program untuk sisi kontroller ditulis menggunakan asm51°.

Aspek Teknologi
Komunikasi nirkabel yang digunakan menggunakan teknologi 802.11n dikembangkan dengan menggabungkan 802.11b, 802.11g. Teknologi, yang dibawa dikenal istilah MIMO (Multiple Input Multiple Output) merupakan teknologi terbaru Wi-Fi. Peralatan Wi-Fi MIMO dapat menghasilkan kecepatan transfer data 108Mbps. Produk-produk access point yang ada sudah banyak di pasaran, dan merupakan teknologi terkini yang digunakan.

Penggunaan sensor nirkabel belum diaplikasikan di industri dikarenakan terkendala dana dan di monopolis dari pihak luar yang menguasai teknologi tersebut baik dari tingkat hardware maupun software.

Aspek Ekonomi
Dari aspek ekonomi akan diperolah sistem instrumentasi yang murah karena menggunakan produk-produk IT yang 'umum' dipasar. Produk-produk tersebut sangat bervariasi harganya dari yang hanya dibawah 1 juta hingga lebih tinggi lagi.

Melalui nirkabel ini akan dapat menghilangkan sejumlah besar kabel, konduit, tray, marshalling, I/O cards, biaya instalasi, biaya pemasangan kabel, pelabelan, pemotongan kabel, pengupasan kabel dan biaya uji coba – secara significant dapat mengurangi biaya project. Pengembangan selanjutnya dari hasil perekayasaan ini dapat digunakan untuk mengendalikan proses produksi hanya dengan kontrol komputer nirkabel (Gambar 6b).

KESIMPULAN DAN SARAN

Kesimpulan
Berdasarkan penelitian rancang bangun yang telah dibuat, dapat diambil beberapa kesimpulan:
2. Pemantau suhu dan kelembaban ini terdiri dari tiga bagian yaitu, bagian modul sensor suhu, modul sensor kelembaban dan bagian server. Sensor suhu yang digunakan adalah LM 35 yang mengukur suhu dari -55 °C hingga +150 °C dan sensor kelembaban adalah 808H5V5 dengan pengukuran relatif dari 0 %RH hingga 100 %RH.

Gambar 6b. Arsitektur PC Control/Nirkabel

3. Komunikasi antara server dengan mikrokontroler menggunakan komunikasi Wi-Fi 802.11a/b/g/n protokol TCP/IP.

Saran
1. Untuk mendapatkan suhu dan kelembaban yang stabil digudang
diperlukan pengontrolan lebih lanjut, diperlukan pengontrolan gudang yang dapat mempertahankan suhu dan kelembaban yang dibutuhkan.

2. Pengembangan penelitian lebih lanjut yaitu perlu diketahui set point yang tepat untuk gudang tapioka sehingga lama nya penyimpanan tidak mempengaruhi kualitas dan kuantitas tepung tapioka.

3. Pemantauan suhu dan kelembaban ini bisa dikembangkan untuk sistem akuisisi instrument dengan pemantauan keadaan proses suatu produksi dengan I/O yang lebih banyak, dengan penyimpanan data hasil pengukuran dalam tabel database dan display melalui grafik untuk memudahkan analisa proses.

DAFTAR PUSTAKA

