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Abstract. In sedimentary basin studies, gravity data are typically used to 

estimate the basement topography. Gravity inversion methods are expected to be 

able to discriminate between continuous and discontinuous sedimentary basins. 

Most 3D gravity inversion methods require intensive computational resources 

(computer memory and processing time). MDR3D, a variant of the well-known 
Bott method, was transformed into the Gauss-Newton inversion approach for 

extension flexibility. Integration of trend surface analysis (TSA) into the 

inversion scheme for regional anomaly estimation allows basement depth 

estimation from the Bouguer anomaly data. The aim of the additional total 

variation regularization is to stabilize the inversion algorithm and to achieve a 

geologically feasible model, especially for discontinuous basin types. Evaluation 

of the proposed method led to satisfactory results both for the synthetic and the 

field data set. It was found that the regularization parameter can improve the 

stability of the algorithm and also the depth estimation from noisy data up to 

±0.5 mGal. 

Keywords: basement depth; Bouguer anomaly; Gauss-Newton; MDR3D; regional-

residual anomaly; trend surface analysis (TSA); total variation regularization. 

1 Introduction 

In preliminary studies of sedimentary basins, the gravity method is commonly 

used to infer the sediment thickness or the basement depth. The gravity data 
interpretation involves an inverse modeling algorithm. Bott [1,2] was among the 

first to introduce a kind of inversion algorithm to estimate two-dimensional 

(2D) sediment thickness from gravity data. The first estimate of the sediment 
thickness and its iterative modifications are both based on the Bouguer slab 

approximation. In this case, the 2D gravity forward modeling for an N-sided 
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polygon is used to evaluate the model response fitness with respect to the 

observed data [2]. Other approaches of gravity forward modeling and inverse 

modeling in the spatial frequency domain have been proposed by Parker [3] and 

Oldenburg [4]. However, the resulting solutions were not stable, so that the 
concept of Tikhonov regularization was introduced to stabilize the computation 

process [5,6]. In its applications, the Tikhonov regularization has several 

variants, such as smoothness, total variation, minimum support, gradient 
minimum support, minimum entropy, etc. [6,7]. 

It is possible to formulate the algorithm proposed by Bott in the form of the 

Gausss-Newton inversion method, where the Jacobian matrix is based on the 

Bouguer slab formula. Thus the concept of regularization and also constraints 
can be added into the Bott method [6]. The regularization method most 

commonly used is smoothing. Smoothing regularization improves the depth 

estimation result and at the same time stabilizes the inversion process. This 
regularization is suitable only for geological conditions that are relatively 

smooth, such as in intracratonic basins. However, there are basins with steep 

faults, for example in rifting basins, where smoothing regularization is 
considered not appropriate. In such cases, total variation regularization is 

considered more feasible from a geological point of view. Total variation 

regularization basically maintains the minimum sum of the lateral changes of 

the subsurface model according to the total variation stabilizing function in the 
form of L1-norm [8,9]. 

The maximum difference reduction (MDR) method has been applied 

successfully for 2D sedimentary basins [10]. The MDR method for 3D 
sedimentary basins was developed by employing the 3D gravity forward 

modeling from Blakely [2]. We reformulated the MDR3D algorithm in the form 

of the Gauss-Newton inversion method to allow the implementation of trend 

surface analysis (TSA) to solve the subjectivity problem during regional-
residual anomaly separation [11,12]. In addition, we also incorporated 

constraints as well as the total variation regularization concept in the same 

inversion scheme.  

2 The Algorithm 

2.1 Forward Modeling 

Generally, gravity data interpretation is performed by assuming that the source 

of the anomaly has simple and ideal geometry shapes, such as a sphere, 

cylinder, cube, 3D prism, etc. [13]. These simple geometric shapes can be used 
as the building blocks of a model that represents complex geological structures. 

In the case of 3D sedimentary basins, the sediment layers are discretized into 



360 Accep Handyarso & Hendra Grandis 

  

large numbers of 3D prisms with a fixed size laterally but adjustable vertically 

toward the depth according to the calculation results to represent the sediment 

thickness. 

 

Figure 1 Discretization of sediment layers in sedimentary basins based on 3D 

prisms. The light-grey prisms represent the sediment layer while the dark-grey 

prisms correspond to the basement. 

Figure 1 shows the discretization of sediment layers using 3D prisms. The light-

grey prisms represent the sediment layer while the dark-grey prisms correspond 

to the basement. The top of each prism is fixed according to the topography, 
while their bottom depths are to be estimated in the inversion process. The dots 

on the top center of the prisms show the observation points on the surface. The 

gravity response of a 3D rectangular prism at a point P(0,0,0) at the origin of a 
Cartesian coordinate system is calculated by using the equation given in Blakely 

[2] as follows: 

 
2 2 2

1

1 1 1

tan log( ) log( )ρ µ −

= = =

 
= ∆ − + − + 

  
∑∑∑ i j

z ijk k i ijk j i ijk j

k ijki j k

x y
g G z x R y y R x
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 (1) 

where 
11 3 1 2

6.67 10
− − −=G x m kg s  is the universal gravity constant, ρ∆  is the 

density contrast assumed to be constant for the whole sediment layer, 

( ) ( ) ( )1 1 1µ = − − −
i j k

ijk , ( ), ,i j kx y z  are the east, north, and vertical (depth) 

directions respectively, and 
2 2 2= + +ijk i j kR x y z . 

2.2 Maximum Difference Reduction (MDR) 

The MDR method is essentially the same as the Bott method with an additional 

function called absolute maximum regularization of misfit data. The Bott 

method uses the Bouguer slab as a major determinant of depth perturbation, 

while the MDR method uses a misfit value that is normalized using absolute 
maximum regularization at each iteration. A flowchart of the MDR algorithm is 

shown in Figure 2 [10]. In the MDR method, the depth perturbation is 

calculated using several linked equations, i.e. Eqs. (2) to (5): 
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Figure 2 Flowchart of the original MDR method proposed by Zhou [10]. 
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The MDR method starts from calculating the increment model (Eq. (3)). In the 

first iteration, the previous increment value is approximated using the Bouguer 
slab (Eq. (5)). After the increment factor is obtained, the depth perturbation 

calculation will follow Eq. (2). The determination of the initial value (e.g. the 

0~7 value in (Eq. (5)) is based on trial and error; it does not influence the 
inversion results, it only affects the speed of the inversion process [10]. In our 

opinion, the 0~7 value is equivalent to the step size (or step length) of the 

gradient inversion scheme. Depth parameter updating is executed with the 

evaluation of the data misfit signs, whether changed or not. If the data misfit 
sign has not changed, the depth parameters updating will be executed using Eq. 

(6), but when the data misfit sign has changed, the depth parameter updating 

will obey the scaling down mechanism expressed in Eq. (7). 

 
1n n n
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2.3 Inverse Modeling  

Estimation of the basement depth or sediment thickness from gravity data is a 

nonlinear inverse problem. By linearizing the objective or misfit function 

around an initial model, iterative refinement can be performed by using model 
perturbations calculated from a sensitivity matrix and misfit at each iteration. 

Linearization of the misfit function of the nonlinear inverse problem can utilize 

Taylor’s series expansion. The refinement of the initial model can use a local 

minimum approach such as the Newton method, Gauss-Newton method, Quasi-
Newton method, etc. or can be done with a global minimum approach such as 

random search, e.g. Monte Carlo; guided random search, e.g. simulated 

annealing; genetic algorithm; etc. [14]. The basement depth estimation in this 
study is based on the local minimum approach (i.e. Gauss-Newton method). 

The Gauss-Newton approach considers only the first-order or linear term, such 

that the updated depth estimate z at the (n+1)-th iteration is expressed by Eq. 
(8): 

 ( )
1

T T

1 n

obs cal

n nn n n

−

+ = + − 
 z z J J J g g  (8) 

where nJ  is the Jacobian matrix containing partial derivatives of gravity 

response ig
 
with respect to depth elements jz , i.e. i j∂ ∂  g z , i = 1, 2, 3, ... N 

and  j = 1, 2, 3, ... M are indices for the data and model parameters respectively, 

while 
T

nJ  denotes the transpose of a matrix nJ . In Eq. (8), both the model 

response 
cal

ng  and the Jacobian matrix nJ  are evaluated at the current depth 

model nz , while 
obs

g  represent the observed gravity data. 

Bott’s method has been successfully transformed in the Gauss-Newton form [6]. 

Analogously, the incorporation of the MDR3D method in the inversion scheme 

can also be done by replacing the diagonal elements of the Jacobian matrix with 
the MDR3D formula. For this purpose, a single equation is needed to 

incorporate the MDR3D method in the Gauss-Newton form. The modification 

starts with rearranging Eqs. (6) and (2) as in Eq. (9): 

 ( )max
1

n
i i obs cal

n n nn

C
+ = + −

∆
z z g g  (9) 
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Evaluating the misfit signs is not necessary after ignoring the absolute value of 

the misfit  (
obs cal

n−g g ) in Eq. (2). Now, Eq. (9) is sufficient to give the depth 

perturbation value. Eq. (9) is applicable under the assumption of constant 

density (for the whole sediment layer). Based on the equivalences between Eqs. 

(9) and (8), the MDR3D approach can be formulated in the framework of the 
Gauss-Newton inversion method. In this case, it can be shown that the Jacobian 

matrix in Eq. (8) can be represented by Eq. (10): 

 max

n

n n

C
=

∆
J I  (10) 

where I is the identity matrix.  

In the above inversion scheme, 
obs

g  are supposed to be the residual anomaly, 

since the model’s physical property is the density contrast. In fact, the observed 

gravity data are the Bouguer anomaly and are usually separated into regional 

and residual anomalies before the inversion process. Trend surface analysis 
(TSA) is the regional-residual anomaly separation method that is commonly 

used to obtain the residual anomaly with appropriate magnitude and shape for 

modeling [11]. We included TSA in the inversion scheme by assuming that the 

regional anomaly is represented by a low-order (i.e. 2
nd

 order) polynomial. The 
expression of g

reg
(xi, yi) with their coordinates (xi, yi) as variables is shown in 

Eq. (11): 

 
2 2

( , )
reg

i i i i i i i ig x y A x B y C x y D x E y F= + + + + +  (11) 

where A, B, C, ... , F are polynomial coefficients to be determined along with 
the inversion for depth estimation and i = 1, 2, 3, ... N for (xi, yi) is the index 

associated with the position of the observed data. The variable with vector 

notation 
reg

g considers all elements of ( , )
reg

i ig x y . 

The observed gravity data 
obs

g  are now represented by the Bouguer anomaly 

BA
g , while the calculated data 

BAcalc
g  are the sum of the 3D prism gravity effect 

3D
g  calculated by Eq. (1) and the regional anomaly 

reg
g calculated by Eq. (11). 

The Gauss-Newton approach with damping factor µ to minimize the step size of 

the model paramater perturbation ( )1n n+∆ = −p p p  leads to the model 

parameter estimation at the (n+1)-th iteration expressed in Eq. (12): 

 
T T1

1 [ ] [ ( )]
BA cal

n n nn n nµ −
+ = + + −p p J J I J g g  (12) 
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where [ ]1 2

T

Mz z z A B F=p ⋯ ⋯  is the model parameter, the 

number of parameters being M + 6, and the Jacobian matrix 
z reg

n n n=   J J J . 

The expressions for 
z

nJ  and 
reg

nJ  are expressed in Eq. (13) as follows: 
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where, for simplicity, index n for iteration is removed and replaced by 

subscripts z and reg associated with depth and regional gravity respectively. The 

indices for components of 
3D

g , 
reg

g and z show the number of data N and the 

number of model parameters involved, i.e. M for depths and 6 for polynomial 
coefficients. 

Following Martins, et al. [8] and Lima, et al. [9], total variation regularization 

are also included in the inversion algorithm. In this case, the estimate of the 

model parameters at the (n + 1)-th iteration follows Eq. (14): 
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where J
TV

 = R
T
 q and H

TV
 = R

T
 Q R are the gradient vector and Hessian matrix 

of the approximation of the total variation function with respect to p evaluated 

at pn. R is a matrix representing the first-order discrete differential operator. The 

expression for the L × 1 vector q and the L × L diagonal matrix Q are 
formulated in Eq. (15) as follows: 
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where the subscripts i and j define l-th pair of the horizontally adjacent model 

parameters and L is the total number of pairs (see Martins, et al. [8] for further 
details). 

3 Application to Synthetics Data  

The proposed method was applied to synthetic data associated with a relatively 

simple synthetic basin model. Gaussian noise with 0.5 mGal standard deviations 
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was added. We used unity value for the initial parameter of the 0~7 value in Eq. 

5 and the regional coefficients A~F were set to zero at the first iteration. 

Figure 3 shows in general that the outline of the basin is relatively well resolved 

as seen from the east-west profile at x = 14 km (Figure 3(a)), except at abrupt 
depth transitions, shown as larger depth errors, i.e. bright colors (Figure 3(b)). 

The misfit of the final model was very small, leading to almost exactly 

superimposed contours of the synthetic data and the inverse model response 
(Figure 3(c) and 3(d)).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 Inversion result using proposed method for a single interface case. (a) 

Comparison profile at x = 14 km of the basement model (solid line) and the 

inversion result (dot-dash line). (b) Depth excesses (dark) and deficiencies (light) 

of the inverse model relative to the synthetic model. (c) RMS error as a function 

of iteration. (d) Contour of synthetic data and response model at a 10-mGal 

interval. 

Figure 4 shows the effect of the regularization parameter in suppressing the 

influence of noise on the final results. In this case, we have two layers in the 
sedimentary basin, the first layer is assumed known and fixed. It is intended to 

simulate the existence of other geophysical data (e.g. seismic) that can define 

the superficial layers in the basin. The gravity is then used to estimate the 
basement depth, i.e. the second interface in this case. The regularization 
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parameters used were 1, 3, 5, and 7. It was found that the optimum 

regularization parameter was 7 to obtain the best basement estimation result for 

data with 0.5 mGal Gaussian noise. For data with more noise, greater 

regularization parameters should overcome the problem in the basement depth 
estimation. The regularization parameter can be quantitatively determined using 

the L-curve method [17]. 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

Figure 4 Basement depth estimation results for the same noise level (i.e. ±0.5 

mGal) but with different regularization parameters: (a) 1, (b) 3, (c) 5, (d) 7. The 

sections are east-west profiles at x = 14 km.  

In the previous example, using synthetic data, the estimation of the polynomial 
coefficients of the TSA representing the regional anomaly was also included. 

The results in the form of maps and profiles are not shown for the sake of 

conciseness of the paper. Table 1 summarizes the results with and without the 

inclusion of the total variation regularization. It was shown that the use of the 
total variation regularization allowed better recovery of the polynomial 

coefficients in the TSA. This indicates that the regularization improves the 

inversion result [9]. 

5 10 15 20 25

0

1

2

3

4

5

6

7

8

9

10

north

d
e
p
th

subsurface section at xpos = 14

 

 

1st intfc

model

inverse

5 10 15 20 25

0

1

2

3

4

5

6

7

8

9

10

north

d
e
p
th

subsurface section at xpos = 14

 

 

1st intfc

model

inverse

5 10 15 20 25

0

1

2

3

4

5

6

7

8

9

10

north

d
e
p
th

subsurface section at xpos = 14

 

 

1st intfc

model

inverse

5 10 15 20 25

0

1

2

3

4

5

6

7

8

9

10

north

d
e
p
th

subsurface section at xpos = 14

 

 

1st intfc

model

inverse



3D Gravity Inverse Modeling for Basement Depth Investigation   367 

Table 1 Results of polynomial coefficient estimation of the regional anomaly 

from the synthetic data inversion in Figure 4. 

Methods A B C D E F 

Synthetics Model -0.0210 -0.0049 -0.0100 -0.1498 -0.0724 -0.9980 

MDR3D - - - - - - 

MDR3D, TSA 0.0272 0.0433 -0.0171 -1.4682 -1.2530 9.3444 

MDR3D, TSA, 

TVReg 
-0.0179 -0.0018 -0.0106 -0.2161 -0.1350 -0.7098 

4 Application to Field Data 

The field gravity data used were from the Bintuni Basin, West Papua, 
Indonesia. The data were acquired in 2016 with a spacing interval between 

measurement points of ±2 km. The survey area covered the area from 132° 23' 

36.4496" E to 133° 39' 3.6369" E and from 1° 48' 27.2637" S to and 2° 19' 
28.1955" S at Bird’s Head Peninsula, West Papua, as indicated by the white 

rectangle in Figure 5.  

The geology of Bird’s Head Peninsula is relatively complex as a result of the 
tectonic process in the boundary between the Australian Continental Plate and 

the Pacific Oceanic Plate, as shown in Figure 5. In general, the New Guinea 

island can be divided into several parts, namely Bird’s Head and Bird’s Neck 

(in West Papua), Bird’s Body (in Papua and Papua New Guinea) and Bird’s 
Tail (in Papua New Guinea). The Bird’s Head Peninsula shows striking east-

west lineaments indicated by the Sorong Fault Zone (SFZ), Yapen Fault Zone 

(YFZ), and Tarera-Aiduna Fault Zone. The Lengguru Fold-Thrust-Belt is 
dominated by northwest (NW)-southeast (SE) lineaments, especially in the 

Bird’s Neck area [18]. 

The Bouguer anomaly of the survey area varies from -73 mGal up to 47.5 mGal 

(Figure 6). Low anomalies are concentrated in the eastern part of the survey 
area, while high anomalies are concentrated in the western part of the survey 

area. The residual gravity anomaly from the spectral analysis shows the 

presence of anticline structures with southeast (SE)-northwest (NW) lineament 
as the product of the ongoing collision between the Australian Continental Plate 

with the Pacific Oceanic Plate. Several sub-basins in the Bintuni Basin are also 

shown in Figure 7. 

The basement of the Bintuni Basin in Bird’s Head Peninsula consists of 

Mesozoic or older rock of the Australian Continental Plate in the southern part 

of the SFZ and Pacific Oceanic Plate at the northern part of the SFZ [19]. Its 

density is fairly close to the average density of the Continental Plate, i.e. 2.80 
gr/cc [20]. The upper layer (or first interface) is interpreted as Klasafet and 

Steenkool formations consisting of soils, clays, and sands. This group is 
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associated with the density value 2.20 gr/cc. The layer below the first interface 

is interpreted as the New Guinea Limestone group down to the Permian 

formation with a density of 2.50 gr/cc. The depth of the second interface was 

the target of the inversion modeling. 

 
Figure 5 Geological structures in Bird’s Head Peninsula, West Papua. (1) 

Sorong Fault Zone, (2) Yapen Fault Zone, (3) Tarera-Aiduna Fault Zone, (4) 

Banda Trench, (5) Seram Fold-Thrust-Belt, (6) Lengguru Fold-Thrust-Belt, (7) 

Cendrawasih Bay Fold-Thrust-Belt, (8) Central Range Fold-Thrust-Belt, (9) 

Misool-Onin-Kumawa Ridge, (10) Kemum High, (11) Weyland Overthrust [18].  

Figure 9 shows the first interface depth interpreted from seismic data, while 
Figure 10 shows the second interface obtained from the inversion result. Both 

the first and the second interfaces have totally different undulations beneath the 

surface. The first interface is interpreted as the Top Kais Formation, while the 
second interface is interpreted as the Kemum Basement. Based on the inversion 

results, the basement depth in the survey area varies from ±2.5 km around 

Kamundan district up to ±7 km in the eastern part of the survey area (Manimeri 
district). There is a shallowing basement toward Mogoi and Kamundan from the 

eastern part of the survey area. The basement depth around Mogoi area is about 

±4 km. 
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Figure 6 Bouguer anomaly map of the survey area. Low anomalies are limited 
only to the eastern part, while high anomalies dominate in the central and 

western part of the survey area.  

 
Figure 7 Residual gravity anomalies from the spectral analysis showing several 

sub-basins and SE-NW anticlines axis indicated by white arrows.  

 

Figure 8 Contours (5 mGal interval) of the matching observed Bouguer 

anomalies (gBA-Obs) and the calculated Bouguer anomalies (gBA-Calc).  
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Figure 9 First interface depth associated with the Top Kais Formation, based on 

seismic data interpretation.  

  
Figure 10   Second interface depth from the inversion result, showing a similar 

trend with the first interface depth in Figure 9, i.e. thicker sediments in the 

eastern part of the survey area.  

The contours of both observed Bouguer anomalies and calculated Bouguer 
anomalies are practically identical and exactly superimposed (Figure 8), this 

indicates an excellent fitness between data and model response. In addition, 

several oil fields are found in the survey area, such as Petro Papua Mogoi 
Wasian (PPMW) and Petro Energi Wiriagar. The position of their production 

wells is consistently around the anticline structures around Mogoi and Wiriagar. 

These results validate the proposed inverse modeling method for the field data 
set. 
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5 Conclusions 

A versatile 3D gravity inversion method for basement depth estimation was 

presented. The algorithm adopts a modified MDR method that was previously 
devised for 2D gravity inversion and recast the algorithm according to the 

Gauss-Newton approach. Trend surface analysis (TSA) for low-order regional 

anomaly estimation was also included in the inversion algorithm. A subjective 

process for determining regional anomalies can be avoided and the Bouguer 
anomaly can be directly used as input data for inversion. The use of total 

variation regularization in the algorithm is crucial since it increases stability in 

the inversion process, especially when noise is present in the data. The method 
was applied to synthetic and field data with satisfactory results. It was found 

that the basement depth in the survey area in the Bintuni basin varies from ±2.5 

km around Kamundan, ±4 km around Mogoi up to ±7.0 km in the eastern part 
of the survey area. The results are in good agreement with the local geology. 

The deepening of the basement toward the east was also obtained from the 

modeling of airborne gravity and magnetic data partly covering the present 

survey area [21]. 
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