
Bulletin of Electrical Engineering and Informatics
ISSN: 2302-9285
Vol. 6, No. 2, June 2017, pp. 201~218, DOI: 10.11591/eei.v6i2.652 � 201

Received April 10, 2017; Revised May 10, 2017; Accepted May 25, 2017

VTrace-A Tool for Visualizing Traceability Links among

Software Artefacts for an Evolving System

C. J. Satish*, Anand M.
School of Computer Science and Engineering, VIT University

SJT 116 A07 VIT University, Vellore, Tamilnadu, India
*Corresponding author, e-mail: satish.cj@vit.ac.in

Abstract
 Traceability Management plays a key role in tracing the life of a requirement through all the

specifications produced during the development phase of a software project. A lack of traceability
information not only hinders the understanding of the system but also will prove to be a bottleneck in the
future maintenance of the system. Projects that maintain traceability information during the development
stages somehow fail to upgrade their artefacts or maintain traceability among the different versions of the
artefacts that are produced during the maintenance phase. As a result the software artefacts lose the
trustworthiness and engineers mostly work from the source code for impact analysis. The goal of our
research is on understanding the impact of visualizing traceability links on change management tasks for
an evolving system. As part of our research we have implemented a Traceability Visualization Tool-VTrace
that manages software artefacts and also enables the visualization of traceability links. The results of our
controlled experiment show that subjects who used the tool were more accurate and faster on change
management tasks WKDQ�VXEMHFWV�WKDW�GLGQ¶W�XVH�WKH�WRRO�

Keywords: traceability management software maintenance, software engineering, software
documentation, traceability visualization

1. Introduction

The maintenance of software systems is one of the most time consuming and tedious
tasks. There are many issues that surround the maintenance of systems and one of the
foremost issues is non availability of up to date system artefacts. Comprehension of a systems
architecture becomes very complex without up to date documentation [1]. The absence of
valuable information makes software maintenance to take up a significant portion of the system
cost [2-3]. A lot of importance is given to documentation during the development stages of the
project. The baselined documentation gets handed over to the maintenance team for knowledge
transfer and for system architecture comprehension during change impact analysis. Such
documentation carries with it rich information on the system and plays a significant role in the
maintenance of a system. It is proven that usage of system documentation helps in improving
the functional correctness of the changes made to the system [4].

The documentation handed over to the maintenance team should be updated for the
changes made to the system. As the system evolves there is the need for the documentation to
evolve such that it can help with system comprehension for engineers who are new to the
system. However maintenance teams fail to update the baseline documentation for all change
requests. Documentation over a period of time gets outdated and obsolete. Documentation
quality is listed as one of the ten most acute problems in software maintenance [5].

There is a tendency for engineers to create a separate set of documents for every
change they are making to the system. After many years of system maintenance, a system
tends to have hundreds of documents generated for each version of the system. These
documents are highly difficult to trace and comprehending the actual system using these pile of
documents is again a very challenging task.

1.1. Significance of Traceability Management

Lifecycle of a requirement can be traced among several software artefacts. This
traceability link is important with respect to understanding the transition of a requirement in to
design, code and test cases. Such traceability links help maintenance engineers understand the

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

202

impact of a change and also aid with estimation of the change requests. The traceability links
also give an insight on the artefacts that are missing and the progress of the project.
Relationships between software artefacts are usually accomplished by construction of a
traceability matrix.

Traceability among software artefacts is very important for understanding the various
changes made to the system [7]. Traceability paths can have a positive impact on evolution of
system artefacts as we can trace whether a low level code led to artefact changes [8]. There are
several activities in software engineering that need information on traceability. These activities
are risk analysis, impact analysis, test coverage analysis, verification and validation of systems
[9]. Industries have started using more number of traceability environments as traceability is
considered to be a critical success factor in software projects [10]. Traceability is considered to
be an investment that should be retained [11]. Traceability techniques help us with identification
of all the artefacts that should be updated for a change request [12].

Traceability links which gets baselined after implementation of a project play a critical
role in maintanence. Maintenance is mostly performed by engineers who were not part of the
development life cycle. Industries have a tendency to outsource most of their maintenance tasks
to third party vendors as a cost reduction activity. The maintenance engineers solely rely on the
training and the documentation provided to them during software handover for system
comprehension. The availability of traceability links between software artefacts provides the
information on the impact of a change to maintenance engineers.

Most of the research done stresses on the importance of project documentation from
the system development perspective. Documentation maintenance for evolving systems is one
of the areas that need further investigation. In this paper, we propose a traceability framework
which supports maintenance of system documentation content and also enables visualization of
traceability links among different versions of the contents using models.

1.2. Traceability Management Issues
Though traceability management brings lot of value addition to a project, establishing

traceability links and maintenance of those links is a time consuming and tedious task. Software
projects are plagued by many issues like cost over runs, lack of communication among teams,
schedule slippages, employee attrition etc. [15-16]. Traceability maintenance needs lot of effort
and is error prone [18]. Maintenance of traceability links manually in software projects that has
stringent deadlines and budget limitations is a difficult task. As a result established traceability
links get outdated and is not maintained by engineers.

Traceability management for a software project that is continuously evolving can be
very costly and maintenance of the traceability links involves lot of effort [17]. Certain artefacts
are considered to be of higher priority and frequently updated whereas other documents
become obsolete. The inconsistency in updating of documents with system evolution leads to
broken traceability links [18]. Another problem reported is the enormous dual data entry work
that should be done when tools are used for traceability maintenance. The presentation of data
by such tools was also disliked by engineers. Many development engineers were not aware of
the importance of traceability matrices and its importance. Moreover mainstream development
team is not immediately benefitted from traceability and project implementation is not hindered
by the absence of a traceability matrix [19].

Traceability matrix is created during the development phase of the project just because
some process wanted it.Moreover the engineers do not trust the traceability models because
they are not up to date and they do not carry the correct information. The models are reduced to
pictures without life [20]. There are many commercial and research tools available that enable
traceability among artefacts [21-22]. However these tools do not provide automatic traceability
link maintenance. The links have to be maintained manually and the updating must be done
frequently due to the iterative nature of software development. Even with semi-automatic
traceability the link maintenance needs a lot of manual effort and is also error prone [23].

In this paper we are proposing a tool; VTrace which will help system engineers to
maintain software artefacts content online and also maintain the traceability links between
different versions of artefacts for an evolving system with minimal effort. We have achieved this
by generation of traceability matrix and models for traceability link visualization. In Section 4, we
detail the proposed system architecture. In Section 5, we demonstrate our implementation using

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

203

a sample scenario. In Section 6, we have documented our experimental results. In Section 7,
we have discussed the threats to validity and finally summarized our research in Section 8.

2. Related Work
Patrick Mäder [13] in his paper revealed that traceability had a significant positive

impact on subjects who performed maintenance tasks. A controlled experiment with 71 subjects
performing real maintenance tasks on two development projects was conducted. The subjects
were asked to provide the solution for eight maintenance tasks on the two projects. Subjects
were asked to solve half of the tasks using traceability links and other half without using
traceability links. The performance of the subjects was measured using the time taken and
correctness of the completed task. It was reported that subjects who used traceability performed
24% faster and had 50% more correct solutions. Another observation is that the traceability links
provided consistent results for all subjects irrespective of their subject experience and project
domain. This study very well establishes the fact that the quality of maintenance tasks improve
with the availability of traceability links irrespective of the development experience of the
subjects.

Khaled Jaber et al. [12] have conducted a study on the effects of traceability links on the
software maintenance activity. The study has proved that traceability links will reduce the effort
and increase the accuracy of maintenance tasks. Survey was conducted at an industrial firm to
understand the kinds of traceability links that stake holders are interested in.Traceability links
were caWHJRUL]HG�EDVHG�RQ� VWDNHKROGHU¶V� UROHV��$� WUDFHDELOLW\� OLQN� WUDFLQJ� WRRO�ZDV�GHYHORSHG�
and was given to the experimental group used in the study. The control group was not using the
tool.28 subjects from both academia and industry participated on the study consisting of five
maintenance tasks. The results show that the subjects who used the traceability tool were
�������PRUH�DFFXUDWH�WKDQ�WKH�VXEMHFWV�WKDW�GLGQ¶W�XVH�WKH�WRRO��$QRWKHU�LPSRUWDQW�FRQFOXVLRQ�
that this study has arrived at is that the use of the tool reduced the gap between high and low
ability subjects and also between academic and industry subjects. This study establishes the
importance of traceability links during the maintenance phase and the fact that a tool for
traceability establishment will help even inexperienced users to perform better.

Charrada et al. [23] present an approach for automatically identifying requirements that
are outdated for evolving systems. They identify code changes by comparing the new and old
versions of the code. Then the keywords about the change are extracted from documentation
and elements related to the change. The keywords are then used to trace the requirements for
those code changes in the requirements specification documents using an automated
traceability tool. This approach is very useful for maintaining up to date requirements
specification documentation during the maintenance phase. The team has reported 79%
precision by analyzing two source code versions and were able to detect 12 changes made to
the code that are requirement related.

Xiaofan et al. [24] have presented an approach for visualizing traceability links between
source code and documentation. A treemap view and hierarchical tree view visualization is
proposed to avoid visual cluttering when visualizing traceability links for large systems. Parts of
the documentation and source code is given as an input to the traceability recovery engine that
retrieves the traceability links using composite set of traceability recovery techniques. The
traceability links are filtered using a threshold and only those links that are above the threshold
are visualized as a treemap or a hierarchical tree. Participants using the tool agreed that the tool
help maintain traceability links with ease. This research not only focusses on retrieving links
between source and documentation but also on the type of visualization of the links. This
approach enables engineers to visualize traceability links for large systems without visual
clutter.

Dasgupta, Tathagata, et al. [25] have proposed an approach for effectively retrieving
traceability links between source code and artefacts using extended corpora with relevant
documentation. The problem reported is that the same names should be used across different
artefacts for efficient traceability link retrieval. The program source code, requirement
documentation and other artefacts are taken up as the base corpora whereas the API
documentation and other external resources for references are considered as expansions to the
base corpora. They have tested this approach on three open source java projects and have
reported an increase in precision of 31%.

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

204

Mohamed Yassine et al. [26] have reported a method for maintenance of traceability for
evolving model driven systems. Two model versions are compared for any changes. The
changes that need to be made to the traceability links are then identified and classified.The final
stage involves the application of the changes to the traceability links. This approach details the
automatic updates to the traceability links for any model changes in the maintenance phase.
Marcus et al. [27] has reported the importance of visualization techniques for traceability links.
They have reported a set of requirements for a traceability visualization tool. The part of the
requirements were implemented as a prototype traceability visualization tool. TraceViz, the
prototype tool displays the files impacted by a source file as squares. This tool enables the
identification of traceability links between a source file and all its artefacts. Different colors were
used in the visualization to represent normal links, missing links and warning links.

De Souza et al [28] analysed the importance of traceability links in global offshore
development projects. It was reported that management of change propagation for artefacts in
globally distributed teams is a major challenge and mostly the change management information
if shared through emails. The study has revealed that customers at offshore development
projects demanded tools that established different visualizations for the traceability links. The
team has investigated the significance of two tools Ariadne and TraceVis for traceability
management across globally distributed teams. The study has proved that use of tools for
traceability management and visualization is welcomed by practitioners at offshore development
projects.Reza Meimandi et al. [29] have analysed all the traceability recovery approaches and
tool support available for test to code traceability. The team has analysed several recovery
approaches bases on the traceability analysis type, trace type, trace direction, trace scheme,
visualization and tool support. There are many papers that address traceability link recovery
[30-35] and tools for traceability management [36-40].

Based on our literature survey, a lot research has been done on traceability recovery
techniques and these techniques have been demonstrated by the usage of prototypes using
subjects from the academia and industry. Traceability management effectiveness has been
analyzed for the maintenance phase and also on projects that are globally distributed. The need
for traceability links according to user categories and the different modes of visualization of
traceability links have also been studied in-depth. Some researchers have also focused on the
automatic maintenance of traceability links for evolving systems. A detailed analysis of all the
papers reveals the fact that traceability management is considered to be a separate process in
the projects life cycle. Research has only focused on establishing traceability links between the
available software artefacts created for a project and also the usage of tools to manage the links
between these artefacts. As it is well established that traceability management itself is a tedious
process and it offers of no immediate benefit to the development team, it is very unrealistic to
conclude that such a team will spend more effort on establishing traceability links. Performing
various activities like recovering traceability links or trying to understand traceability tools will
have a drastic impact on project budget and deadlines. The new algorithms and tools for
traceability link recovery has been proposed without keeping in mind the time and effort needed
by developers to apply them to real time projects. Though these prototypes and techniques
prove beneficial on a controlled group it will indeed be of little interest to engineers as it is not in
OLQH�ZLWK�WKH�SURMHFW¶V�GHYHORSPHQW�DFWLYLWLHV�

Therefore our research was not only focussed on proposing different visualizations for
traceability links but also on the process of making traceability management a part of the project
development process. Our objective is that traceability links should be automatically available to
engineers by the nature of organization of artefacts contents during the development phase and
not by an additional process. For instance an engineer will be using our tool for managing all
their artefact contents and as a result traceability links will be available to them at no extra effort.
:H� KDYH� GHVLJQHG� RXU� V\VWHP� VXFK� D� ZD\� WKDW� WKH� HQJLQHHUV� ZRQ¶W� EH� GHYLDWHG� IURP� WKH�
mainstream development or maintenance effort for establishing traceability links. The standards
enforced on management of artefacts inside the tool itself will enable the automated traceability
link maintenance.

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

205

3. Proposed System
3.1. Concept of Systems, Projects and Versions

In the design of our tool we have used the concept of systems, projects and versions. A
brief explanation on the context of their usage is given below;

3.1.1. System

Every organization is managed by a collection of systems. A system comes into
existence to handle a new business process that has well defined boundaries within an
organization. For instance a University is managed by systems like Student Management
System, Employee Management System, Transport Management System, etc. Each system
manages a set of well-defined functionalities for its users. All these systems interact with each
other for accomplishment of various tasks. Usually each system will be maintained by a
separate group of maintenance engineers. For every new system created in our tool we assign
system ids. The system ids are prefixed with an S. For instance if an organization has two
systems S1 and S2 already in place, then the third system which is created is assigned the id
S3.

3.1.2. Projects

Every system that manages the organization goes through several revisions due to
business demands or internal process refinements. Every time a system change is demanded
by the business, a new project is initiated to accomplish the change. The project is handled by
the maintenance engineers and a new version of the system with the required changes is
released. Every system there by goes through various revisions by means of projects. Every
Project is assigned a project id in the tool. If a project is carried out under System S1, then the
system id is prefixed with the project id and assigned a project id as S11. For subsequent
projects in System S1, the project ids are S12, S13 and so on.

3.1.3. Versions

During the maintenance phase, a system undergoes many revisions. A change request
can be initiated to modify an existing functionality or to add a new functionality to the system.
Whenever an existing functionality needs modification it means the existing baselined
requirement for that functionality should be revised. If the baselined functional requirement is
assigned an id S11FR1, then the revised requirement is assigned S12FR1.1 as shown in Figure
1. For subsequent revision of the same requirement in project S13 we assign the requirement id
S13FR1.3. If we need to change the system by adding a new functionality then we assign the
new requirement id by incrementing the previous requirement id by 1. The new requirement id is
S11FR2 and any revisions to S11FR2 will be traced as S12FR2.1, S13FR2.2 etc. This enables
us to track the evolution of a requirement within the system across multiple projects. The
tracking of requirement revisions is shown in Figure 1.

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

206

Figure 1. System and project hierarchy

The Sample system ids are S1, S2 and S3. The project ids are prefixed with the system
id. For instance if system S1 needs a revision then project with project id S11 is created.
Prefixing system ids with project ids for every system allows the unique identification of projects
along with the system. The first project created for every system represents the development
project with the baselined artefacts. For instance, the project S11 under system S1 represents
the development project that lead to the creation of all baselined artefacts. If the baselined
functional requirement S11FR1 needs a change, then a new project S12 is created and
requirement S12FR1.1 is added to the list of requirements for system S1. Here S12FR1.1
denotes that this requirement is a modified version of the already existing requirement S11FR1
for System S1. If S12FR1.1 gets modified further in a future project S13, then the version of the
latest modified requirement is S13FR1.2. For every modified requirement there exist design
elements and test cases which are logged in with the respective version number.

4. Vtrace Architecture
The system maintains the requirements, design and test cases in relational tables. The

Functional requirements are maintained as part of the requirements database. The
requirements are maintained as revisions for each project as mention in section 3.1.3. The
system also maintains the mapping of projects to systems and details about the projects in the
project database.All design models like UML Class diagrams, sequence diagrams, state chart
and data flow models are mapped with the respective requirements using the design database.
The test cases and details of the requirements they are being mapped is maintained inside the
test case database. Revisions to design and test cases are tracked in for every requirement
change. If a design element like class diagram gets revised for requirement S12FR1.1 then the
design element is assigned a revision id as Class diagram CD1.1. This enables us to track all
design elements for the requirement revision S12FR1.1. The same concept apply to test case
modifications.

The system utilizes the databases to retrieve information on the tracelinks between
different artefacts. A traceability matrix is generated on demand for the users as a table. The
matrix gives the details of the requirements, design and test case elements available for every
project. The visualization module generates two models; a tree view model and a version
model. A tree view model is generated for every project. This model displays the traceability
links between every requirement to its design and test cases as a hierarchical structure. The
version model displays the number of versions for a selected requirement as different nodes.
The traceability links for each requirement revision and associated design and test cases is
shown as a hierarchical structure in the version model. If a requirement has gone through three

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

207

revisions S11FR1, S12FR1.1 and S13FR1.2 then the version model displays the three versions
of the requirements along with the associated design and test elements for each version. The
tool architecture is given in Figure 2.

Figure 2. System architecture

5. Implementation
5.1. Sample System

The system that we consider here is a Grievance Redressal system that was developed
for software engineering course work. As part of the project all software engineering artefacts
namely requirements, design, source code and test cases were created. The requirements,
design and test cases for the implemented project were considered to be baselined versions.
The Grievance Redressal System was assigned a system id S1 in the tool. As we need to test
the version traceability among artefacts that evolved during the maintenance phase we
considered ten revisions to our system in terms of change requests. Each change request is
assigned a project id in the tool. Change request one for system S1 is assigned a project id
S12. For every system the first project is mapped to the baselined content. For system S1, the
project S11 refers to the baselined version.

In every project we have considered both requirement revisions and addition of new
requirements. We have also created a corresponding design and test case documentation for
the revisions. We have used the documents created for Grievance redressal system in our
experimental analysis detailed in Section 6. As part of the system implementation demonstration
we have limited our system change requests to 2 and the details of the revisions used are given
in Figure 3. The grievance redressal system has 2 baselined requirements [S11FR1 and
S11FR2]. We have taken three baselined design elements namely class diagram and two
sequence diagrams. The project S12 is created to accommodate the revisions to requirement
S11FR1 and to add a new requirement S12FR3. The revisions to the design elements impacted
by S12FR1.1 is shown as Class diagram GRCD1.1 and GRSD1.1. A new sequence diagram
PVSD gets added as a result of project S12.Project S13 is initiated to complete revisions to
requirement S11FR2 and S12FR3.The requirement revisions are shown as S13FR2.1 and
S13FR3.1.The corresponding design element changes are shown as GRCD1.2, FVSD2.1 and
PVSD3.1.

97UDFH� WRRO¶V� 8,� GHVLJQ� DQG� YDOLGDWLRQ� ZDV� GRQH� XVLQJ� +70/�� &66� DQG� -DYD6FULSW��
PHP and MySQL were used for server side scripting and construction of all the databases.
GoJS libraries were used for construction of the models for visualization. All contents with
respect to the artefacts were manually loaded into relational tables using Phpmyadmin interface
of MySQL. As part of this implementation we have only completed the traceability matrix
generation, traceability links model generation and traceability version modelling modules.

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

208

Figure 3. Sample system requirements

5.2. Generation of Traceability Matrix for the Sample System
The contents of the grievance redressal system were manually transferred to the tool.

Three projects were created, Project S11 for baselined contents, S12 and S13 for change
requests. The requirement revisions were tracked as given in Figure 3. The design and test
cases were also mapped to requirements. The traceability matrix is generated for a selected
project in a selected system. The generated traceability matrix for project S11 under system S1
is given in Figure 4. The mapping between Design and Requirements is given as Design
element id (Requirement Id) in the Table. For instance Grievance Redressal Sequence Diagram
GRSD is mapped to Requirement S11FR1 and it is mentioned as GRSD (S11FR1). A similar
mapping representation is followed for Test cases and Requirements. Class Diagram GRCD is
mapped to the project id and not any specific requirement as it is generated for an entire
system. The tool also aids engineers to view the requirement and test case descriptions.

5.3. Generation of Traceability Model for the Sample System

A tree view is generated for a selected project in a selected system. The view
represents the traceability links between requirements, design and testcases. The first node of
the view represents the project id and the second level nodes denote the requirement ids for
that project. The second level nodes further expand to show the availability of design and test
cases for a selected requirement. The description of the requirement, design and test case
elements is shown to the user as the user hovers the cursor over a node. The information
displayed to the user on mouse hover is shown in Figure 5 for Project S13. This model not only
gives the traceability links but also information on each node. The user is given the flexibility to
expand or shrink a given node there by conserving space and helping the user focus only on a

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

209

particular subtree of interest. The models established for all the three projects is given in Figure
5. This graphical representation enhances users perceptions and there by aid quicker system
comprehension

Figure 4. Requirements traceability matrix for project S11

Figure 5. Traceability tree view model for project S11, S12 and S13

5.4. Visualizing Version Traceability
Visualizing how a selected requirement has evolved across multiple projects and what

are the associated design and test case elements for each requirement version is the main

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

210

concept behind this visualization. The engineer selects a requirement id from a list of
requirements and the visualization is generated by the tool for the selected requirement. We
have shown the evolution of three requirements across two change requests S12 and S13 in
Figure 6. Requirement S11FR1 is the baselined requirement for System S1. The functionality
supported by this requirement needs revision and is accomplished usinJ�3URMHFW�6����6LQFH�LW¶V�
a revision of an existing requirement it is assigned a requirement id as S12FR1.1. The model
tracks the revision and also displays the associated test cases and design element for the
baselined and revised version of the requirement. We have generated the model for all
requirement revisions in our sample system and are shown in Figure 6. The model offers more
flexibility in terms of expansion and shrinking of specific versions of interest to engineers.

This kind of a visualization aids the engineers understand the evolution of a system
from a requirement perspective and also the design changes and test cases written for that
specific change. Moreover the visualization gives us the information on the completeness of
documentation for a version. Any missing links indicate the absence of artefact content for that
version. A frequently changing requirement can be identified using this model. Information on
test cases written and design elements modified for a frequently changing requirement will be of
great significance for future change requests on that requirement. The description of the
elements is given in a box below the model. This description is shown in the box whenever the
engineer selects a node on the model. This model gets genHUDWHG�LQ�D�FOLFN�RI�D�EXWWRQ�DQG�LW¶V�
easy for any user to comprehend the system evolution using this model. As we are generating
this model only for selected requirements by the user we are also avoiding information overload
and generation of an over complex model for the users.

)LJXUH����5HTXLUHPHQW�UHYLVLRQV�DFURVV�SURMHFWV

6. Experimental Results and Analysis
Research Question 1:

Is the manual effort with respect to system evolution comprehension and change impact
analysis reduced by the usage of the tool? Here we analyze the reduction of time taken with the
usage of the tool to establish the traceability among different artefact versions for a system and
comprehension of the system evolution

Node representing a Requirement

Node displaying the Test Case ID

mapped to the requirement

Node displaying the design element

for that requirement

Node displaying the Test Case ID

mapped to the requirement revision

Node displaying the design element

for that requirement revision

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

211

Measure:
By manual effort we mean the time taken to identify all the documents and to manually

establish the traceability between requirements, design and testcases. This also includes the
time taken to understand how the system has evolved with the changes. The measure will be
the time taken to complete a given set of tasks on establishing traceability links and change
impact analysis with and without the tool.

Research Question 2:

Is the accuracy of the tasks completed using VTrace tool better than the tasks
completed without using the tool?

Measure:

By accuracy we mean the number of tasks completed correctly divided by the total
number of tasks in each group.

Research Question 3:

How did the tool enhance user experience? Is the tool playing a significant role in
increasing the quality of the task completion?

Measure:

%\�WKH�TXDOLW\�RI�XVHU�H[SHULHQFH�ZH�PHDQ�KRZ�IDU�WKH�XVHU¶V�SHUFHSWLRQ�JHWV�HQKDQFHG�
by the traceability models and how the tool enables the easy comprehension of traceability and
system evolution. We also measure the ease of use of the tool and the flexibility offered by the
models for better understandability and usability of the tool.

Experimental Set up
Subjects

The subjects comprised of 60 undergraduate students of computer science. The
students have completed their software engineering and software project management courses.
The students are well aware of the significance of traceability management in software
engineering. The students were all in the final year of their graduation. The students were
randomly assigned to two groups. The first group is VT group which uses the VTrace tool to
establish and visualize traceability and the next group is the no-VT group which does the task
manually. Each group had 30 members assigned to it. All subjects had the same level of
expertise in software engineering and therefore we reduced the impact of any other external
factor on the experiment.

Activity

Students were given Grievance Redressal System project documentation for
completion of their tasks. Sample requirements, design and test case documentation was
created for each revision of the system. Six revisions had all the three documents where as two
revisions had only requirements and test case documentation and two revisions had only
requirements and design documentation.

no-VT group was given the baselined files and the files for all the revisions in separate
folders. The name of the folders was given as change request numbers and each document
had the change request number to be part of the title. Each revision document had only
description on the changes made to the system for that revision. VT group had the contents of
the artefacts loaded into the relational databases before the start of the activity. Both groups
were asked to complete the given tasks.

Task 1:

The students of both groups were asked to construct a traceability matrix for each
project and to identify and list the number of documents missing in each project. The students
should record the time taken to complete this task.

Task 2:

The students were asked to study the number of times a requirement got revised across
change requests and to identify the respective design elements and test cases for each

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

212

requirement revision. They were asked to record the number of documents that are missing in
each revision.

The VT group should use the tool for the completion of the two tasks whereas the no VT
group should perform the tasks manually. Both the group members were asked to record the
time taken to complete the given activity.

Task 3:

Task 3 was on identifying the time taken for solving an emergency fix on the system.
6WXGHQWV� ZHUH� DVNHG� WR� DQDO\]H� WKH� SUREOHP� EHKLQG� SDUHQW¶V� FRPPHQWV� RQ� JULHYDQFHV� QRW�
getting posted to the system. They have to record the results for the fix on paper and document
the time needed to complete the emergency fix.

Task 4:

Students were asked to identify all the artefacts that needs a revision for a given
change request. The change request was on introducing a functionality to collect feedback on
the resolved grievances. The students were asked to identify all the artefacts that needed
revision and record the time taken for completion of analysis of this task.

Experimental Procedure

x All subjects were given a briefing on the concept of systems, projects and versions and
significance of traceability management in the maintenance phase.

x All subjects were given a briefing about the sample test documents that was used and the
tasks that they should complete as part of the activity.

x VT group subjects were also given a briefing on the tool and the functionalities offered by
the tool. They had some hands on training on the generation of traceability matrix and
models using the tool. They were briefed on the relational tables used in the tool so that
they understand the organization of artefact data for different systems in the tool.

x All subjects were asked to record the time taken to complete the tasks assigned to them in
the given questionnaire.

x The VT group students were asked to fill a questionnaire that was focused on the quality
and user satisfaction of the tool.

Data Gathering

Data gathering was performed using questionnaire distributed to all subjects. The
subjects were asked to record the completion time of their tasks in the given form. VT group
also recorded their user experience on the usage of the tool. They gave a rating between 1 and
5 for the product usefulness and usability for the tool.

Hypothesis formulation

The experiment has one independent variable (the use of VTrace Tool) and two
treatments (VT and no_VT group).The dependent variables on which we compare treatments
are Task Completion Speed [TCS@�DQG�7DVN�$FFXUDF\�>¨3@�

H1: There is no significance difference between the task completion time [TCS] between the VT
group that uses the tool and no VT group that does the task manually.

TCS[VT Group]=TCS[no_VT Group]
+���7KHUH�LV�QR�VLJQLILFDQW�GLIIHUHQFH�LQ�WKH�SUHFLVLRQ�>¨3@�RI�WDVNV�FRPSOHWHG�EHWZHHQ�

the VT and no VT group

¨3>97�*URXS@ ¨3>QRB97�*URXS@

Results
Independent 2 sample t tests were conducted to determine the statistical significance

between the two groups. The level of significDQFH�IRU�WKH�WHVW�ZDV�VHW�WR�. 0.05.The p values for
the t tests are given in Table 1.

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

213

Table 1 Computed P Values
7DVN 9DULDEOH 7UHDWPHQW 0HDQ 6' W-7HVW

$OO 7&6
1R�97�*URXS ����� �����

S�������
97�*URXS ����� �����

7DVN�� 7&6
1R�97�*URXS ����� ����

S�������
97�*URXS ���� ����

7DVN�� 7&6
1R�97�*URXS 56.84 7.88

S�������
97�*URXS 4.79 1.00

7DVN�� 7&6
1R�97�*URXS 58.85 7.25

S�������
97�*URXS 30.00 8.78

7DVN�� 7&6
1R�97�*URXS 91.29 16.41

S�������
97�*URXS 53.22 4.85

Research Question 1:
Based on our independent 2 sample t tests we have found that the calculated t value

falls inside the rejection region and hence the Null hypotheses is rejected. The computed p
values are given in Table 1. Therefore we conclude that the performance of the VT group with
respect to the task completion speed is better than the no-VT group.The students who were
using the VTrace tool completed the task faster than then the group that was not using the tool.
The students of no_VT group had to spend a lot of time on Task 2 as they need to read every
change document and understand if a requirement has been revised or is it a new requirement.
They were scanning the documents back and forth and had to spend a lot of time in establishing
whether the requirement is a revision or a new requirement. The establishment of traceability
links between revised requirements and their design and test case elements was challenging for
the no_VT group. 11 students were not able achieve the outcome of Task 2 as they were
having difficulty in understanding a requirement revision from a new requirement.

Task 3 was relatively easy for VT group students as they were able to immediately
retrieve all the documents associated with the requirement. The test cases retrieved for this
requirement helped the students in identifying the solution to the fix at a faster rate when
compared to the no_VT group. The no_VT group was able to accomplish the task after retrieval
of the associated documents but then they had to scan through all the change request
documentation to establish the solution for the fix.

Task 4 was on change management and students had to spend time on impact analysis
for the system. As the information was readily available on the evolution of the system and the
traceability links well established for all artefacts, the VT group had taken less time for impact
analysis on the change. The flow of information from the instigation of the system was well
structured for VT group and thereby understanding the system or managing changes was
relatively easy.The students of no_VT group spent much of their time locating and organizing
the artefacts for understanding the system evolution. A box plot analysis for all the tasks based
on the Task completion time for both the groups is given in figure 7

For VT group students the tasks were relatively easy to complete as the contents were
already loaded in the relational tables as required and the time they spent was only on logging
in, generation of the model and analysis based on information retrieved by the models. The
information required was quickly available and hence they were able to complete the two tasks
faster than no_VT group. The T test led to a positive conclusion and therefore we conclude that
the tool plays an important role in the reduction of manual effort on system evolution
comprehension and change management tasks.

Research Question 2:

The accuracy of the tasks completed by two groups was calculated using precision. The
results of the groups were manually validated by the facilitator. The number of correct and
incorrect results for both the groups across all tasks is represented in Figure 8. Establishing how
a requirement got revised across many change requests was a very tedious task for no_VT
Group students. It was found that 11 students from the no_VT group did not arrive at the correct
results.

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

214

Figure 7. Box plot analysis for tasks based on task completion time

Task 4 was also difficult for no_VT group students as they need to spend a lot of time in
locating and organization of content.9 students from no_VT group were not able to arrive at the
correct results for Task 4. VT group students were more accurate on the tasks due to the
information presHQWHG�WR�WKHP�LQ�WKH�IRUP�RI�PRGHOV��3UHFLVLRQ�¨3�LV�FDOFXODWH�IRU�HDFK�JURXS�DV�
shown below

3UHFLVLRQ�¨3=Number of tasks completed correctly/Total number of tasks

Total Number of tasks in each group=Number of Tasks * number of subjects in that

group
Total Number of tasks in each group=4 * 30=120 Tasks
Total Number of Tasks completed correctly for no_VT group=91
Total Number of Tasks completed correctly for no_VT group=112

¨3�>QRB97@=91/120=75%

¨3�>97@=112/120=93%

From our experiment we were able to conclude that the precision for VT group is 18%

higher than the no_VT group.

Figure 8. Precision analysis for tasks

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

215

Research Question 3
The user experience of the tool was rated based on the usability of the tool and the

product usefulness with respect to the completion of the task. The VT group students were used
in the rating of the tool. Almost all students who used the tool were satisfied with the usefulness
and the usability of the tool. A few of the users felt that the model becomes large for many
requirements and comprehension of the traceability model consumes time. There is a need to
slide the model back and forth as it is not fitting to the screen. The questions used for collection
of user experience feedback on the tool is given in Table 2. The focus was on measuring the
ease of learning with respect to using the tool, ease of using the tool, how well the tool helps the
user in solving the given task, the flexibility offered to the user in terms of interaction with the
tool. Here by flexibility we mean how the user can generate models for different projects with
PLQLPDO�HIIRUW��+RZ�GLG� WKH� WRRO� VROYH�XVHU¶V�H[SHFWDWLRQV�DQG�KRZ�PRWivating it is to use the
tool? The users rated the tool from a scale of 1 to 5. In Figure 9 we have given the results of the
user experience survey as a graph.

Table 2. User Experience Questionnaire
4XHVWLRQ�,' 4XHVWLRQ

4� +RZ�HDV\�LW�LV�WR�OHDUQ�KRZ�WR�XVH�WKH�WRRO"
4� +RZ�HDV\�LV�WKH�WRRO�WR�XVH
4� +RZ�IOH[LEOH�LV�WKH�LQWHUDFWLRQ�ZLWK�WKH�WRRO"
4� 'RHV�WKH�WRRO�PHHW�\RXU�H[SHFWDWLRQV"
4� ,V�LW�PRWLYDWLQJ�DQG�H[FLWLQJ�WR�XVH�WKH�WRRO
4� :DV�LW�KHOSIXO�LQ�VROYLQJ�\RXU�WDVNV�ZLWKRXW�XQQHFHVVDU\�HIIRUW"

Figure 9. User Experience Graph

The user ratings were mapped to categories like bad, below average, above average,
good and excellent as shown. A rating of 1 was mapped to bad, rating 2 to below average,
rating 3 to above average, rating 4 to good and rating 5 to excellent. As we can see from the
graph that almost 80% of the users have rated the tool above 3 for all the questions. A few of
the users have felt the tool was below average when it comes to the learning and ease of use
perspective. This should be mainly due to the fact that they have to understand the organization
of the content in the relational tables and the mapping of requirement revisions that happen in
projects across systems. Initial learning of organization of data and maintenance of revisions
using the tool is a time taking task. However once when the traceability links are established
and understood, the process becomes easier for further maintenance. Moreover the models get
larger for many revisions and the users should be sliding the model back to understand the
entire traceability for the project. Thus from our analysis of the questionnaire we can establish
the fact that the tool plays a very crucial role in enabling users complete their maintenance tasks
with ease and there by enhances their productivity.

7. Threats to Validity
7.1. External Validity

Our objective was to explore how novice engineers who are in to system maintenance
understand the system evolution by visualizing traceability links. We have created software

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

216

artefacts for each revision and used that in our experiments to simulate a real project. The
expertise of the subjects used in the experiments was that of novice engineers who are new to
maintenance. We have reduced the impact of any external factors that can play a role on the
outcome of our experiment. The usage of the tool reduces the time and effort on system
evolution understanding and maintenance of artefact versions. The results that we arrived at
using our sample will indeed be applicable to a wider population as the expertise and
complexity of the task matches a real world application.

7.2. Internal Validity

Internal Validity deals with establishing a relationship between the use of the tool and
the reduction in the time taken to complete the activity assigned to the group. The experience
level of all the users of the tool was that of entry level engineers to an organization. We have
used the same facilitator for briefing and validation of the results from both the groups. The
assignment of team members to groups were also random to keep the experience levels
balanced in both the groups.

8. Conclusion and Future Work
In this paper, we have addressed the problem of traceability management among

artefact versions created for various change management tasks in the maintenance phase. We
have presented our prototype and its usability with results. The current prototype that we have
implemented is limited to visualization of traceability links among artefact contents loaded in
relational tables. The contents of the artefacts were loaded directly into the tables. The tool
should be further enhanced to allow engineers use a GUI interface to enter content. The
versions among the contents were also entered manually in to the relational tables. The
identification of a requirement revision and maintaining such revisions in our relational tables
should be done using a front end application program.

The model has aided the subjects understand system evolution using the version
modelling interface. The model also enhances visibility and progress of any maintenance
project. It will aid project managers understand the status or the absence of documentation for a
release. This enables project status tracking and maintenance of documentation for all versions
Moreover we have proposed a design where in the entire project artefact content is maintained
inside relational tables. This is not only helpful for traceability establishment but also
maintenance of every project artefact online. The tool also offers different views of the
traceability relationship in terms of traceability matrix and tree view models. This aids users get
a better understanding on the relationship between different versions of the artefacts. The
project is still under development and our initial research on the traceability of artefacts versions
using the tool has yielded positive results. As the tool provides the needed support for content
retrieval, organization and visual analysis of the system evolution, we believe that such a tool
will enhance maintenance quality of industry standard applications where impact analysis
consumes a major portion of the effort. This research addresses one of the key issues that
plague the maintenance of evolving systems and we believe our completed tool will be great
interest to software maintenance researchers.

References
[1] Satish CJ, T Raghuveera. Visualizing Object Oriented Software Using Virtual Worlds. Proceedings of

the 4th WSEAS International Conference on Software Engineering, Parallel & Distributed Systems.
World Scientific and Engineering Academy and Society (WSEAS). 2005.

[2] Das Sumita, Wayne G Lutters, Carolyn B Seaman. Understanding Documentation Value in Software
Maintenance. Proceedings of the 2007 Symposium on Computer Human Interaction for the
Management of Information Technology. ACM, 2007.

[3] Satish CJ, M Anand. Software Documentation Management Issues and Practices: A Survey. Indian
Journal of Science and Technology. 2016; 9(20).

[4] Fernandez-Saez Ana M et al. On the Use of UML Documentation in Software Maintenance: Results
from a Survey in industry. 2015 ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 2015R. Nicole, The Last Word on Decision
Theory, J. Computer Vision, submitted for publication. (Pending publication)

Bulletin of EEI ISSN: 2302-9285 �

VTrace-A Tool for Visualizing Traceability Links among Software $UWHIDFWV�IRU�DQ�«��C J Satish)

217

[5] Palvia Prashant, Aaron Patula, John Nosek. Problems and Issues in Application Software
Maintenance Management. Journal of Information Technology Management. 1995; 6(3): 17-28.

[6] Miller William L, Lawrence B Compton, Bruce L Woodmansee. Assuming Software Maintenance of a
Large, Embedded Legacy System from the Original Developer. Software Maintenance (ICSM), 2013
29th IEEE International Conference on. IEEE, 2013.

[7] I Jacobson, G Booch, J Rumbaugh. The Uni_ed Software Development Process. Addison-Wesley,
1999.Lago, Patricia, Henry Muccini, and Hans Van Vliet. A Scoped Approach to Traceability
Management. Journal of Systems and Software. 2009; 82(1): 168-182.

[8] Sundaram, Senthil Karthikeyan, et al. Assessing Traceability of Software Engineering Artefacts.
Requirements Engineering. 2010; 15(3): 313-335.

[9] Dömges Ralf, Klaus Pohl. Adapting Traceability Environments to Project-specific Needs.
Communications of the ACM. 1998; 41(12): 54-62.

[10] Mäder Patrick, Orlena Gotel, Ilka Philippow. Enabling Automated Traceability Maintenance Through
the Upkeep of Traceability Relations. European Conference on Model Driven Architecture-
Foundations and Applications. Springer Berlin Heidelberg, 2009.

[11] Cleland-Huang, Jane, Carl K Chang, Mark Christensen. Event-based Traceability for Managing
Evolutionary Change. IEEE Transactions on Software Engineering. 2003; 29(9): 796-810.

[12] Jaber, Khaled, Bonita Sharif, Chang Liu. A Study on the Effect of Traceability Links in Software
Maintenance. IEEE Access 1. 2013: 726-741

[13] Patrick Mäder, Alexander Egyed. Do Developers Benefit from Requirements Traceability When
Evolving and Maintaining a Software System?. Empirical Software Engineering. April 2015; 20(2):
413-441,

[14] Keil Mark. Pulling the Plug: Software Project Management and the Problem of Project Escalation. MIS
quarterly. 1995: 421-447.

[15] Wallace Linda, Mark Keil. Software Project Risks and Their Effect on Outcomes. Communications of
the ACM. 2004; 47(4): 68-73.

[16] Cleland-Huang, Jane, et al. Software Traceability: Trends and Future Directions. Proceedings of the
on Future of Software Engineering. ACM, 2014.

[17] Perera Indika, Dulani Meedeniya, Madhushi Bandara. A Traceability Management Framework for
Artefacts in Self-adaptive Systems. 2015 IEEE 10th International Conference on Industrial and
Information Systems (ICIIS). IEEE, 2015.

[18] Ramesh B, Stubbs C, Powers T, Edwards, M. Lessons Learnt from Implementing Requirements
Traceability. IIEEE International Symposium on Requirements Engineering, York, England. 1995. 89-
99

[19] Egyed Alexander. A Scenario-driven Approach to Traceability. Proceedings of the 23rd international
conference on Software engineering. IEEE Computer Society. 2001.

[20] Cleland-Huang Jane, Carl K Chang, Mark Christensen. Event-based Traceability for Managing
Evolutionary Change. IEEE Transactions on Software Engineering. 2003; 29(9): 796-810.

[21] CJ Satish, M Anand, Puyalnithi Thendral. A Review of Tools for Traceability Management in Software
Projects. International Journal for Research in Emerging Science and Technology. 2016

[22] De Lucia, Andrea, et al. Enhancing an Artefact Management System with Traceability Recovery
Features. Software Maintenance, 2004. Proceedings. 20th IEEE International Conference on. IEEE,
2004.

[23] Charrada, Eya Ben, Anne Koziolek, Martin Glinz. Identifying Outdated Requirements Based on
Source Code Changes. 2012 20th IEEE International Requirements Engineering Conference (RE).
IEEE, 2012.

[24] Chen Xiaofan, John Hosking, John Grundy. Visualizing Traceability Links between Source Code and
Documentation. 2012 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2012.

[25] Dasgupta, Tathagata, et al. Enhancing Software Traceability by Automatically Expanding Corpora with
Relevant Documentation. ICSM. 2013.

[26] Haouam, Mohamed Yassine, Djamel Meslati. Towards Automated Traceability Maintenance in Model
Driven Engineering. IAENG International Journal of Computer Science 43.2 (2016).

[27] Marcus Andrian, Xinrong Xie, Denys Poshyvanyk. When and How to Visualize Traceability Links?.
Proceedings of the 3rd International Workshop on Traceability in Emerging Forms of Software
Engineering. ACM. 2005.

[28] De Souza, Cleidson RB, Tobias Hildenbrand, David Redmiles. Toward Visualization and Analysis of
Traceability Relationships in Distributed and Offshore Software Development Projects. International
Conference on Software Engineering Approaches for Offshore and Outsourced Development.
Springer Berlin Heidelberg. 2007.

[29] Parizi Reza Meimandi, Sai Peck Lee, Mohammad Dabbagh. Achievements and Challenges in State-
of-the-art Software Traceability between Test and Code Artefacts. IEEE Transactions on Reliability
2014; 63(4): 913-926.

 � ISSN: 2089-3191

Bulletin of EEI Vol. 6, No. 2, June 2017 : 201 ± 218

218

[30] De Lucia A, Oliveto R, Tortora G. IR-Based Traceability Recovery Processes: An Empirical
Comparison of "one-shot" and Incremental Processes. In: Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2008), IEEE Computer Society.
2008: 39-48, DOI 10.1109/ASE.2008.14

[31] Mader P, Gotel O. Towards Automated Traceability Maintenance. Journal of Systems and Software.
2012; 85(10):2205-2227, DOI 10.1016/j.jss.2011.10.023

[32] Cuddeback D, Dekhtyar A, Hayes J. Automated Requirements Traceability: The study of Human
Analysts. In: Proceedings of the 18th IEEE International Requirements Engineering Conference
(RE10), 2010; 231-240, DOI 10.1109/RE.2010.35

[33] Walters, Braden, et al. Capturing Software Traceability Links from Developers' Eye Gazes.
Proceedings of the 22nd International Conference on Program Comprehension. ACM. 2014.

[34] A Marcus, J Maletic, A Sergeyev. Recovery of Traceability Links between Software Documentation
and Source Code. International Journal of Software Engineering and Knowledge Engineering. 2005;
15(4):811±836.

[35] A Marcus, JI Maletic. Recovering Documentation to-source-code Traceability Links Using Latent
Semantic Indexing. In ICSE. 2003; 125±137.

[36] Ali Nasir, Yann-Gaël Guéhéneuc, Giuliano Antoniol. Trustrace: Mining software repositories to
improve the accuracy of requirement traceability links. IEEE Transactions on Software Engineering
2013; 39(5): 725-741.

[37] Mäder Patrick, et al. traceMaintainer-Automated Traceability Maintenance. 2008. 16th IEEE
International Requirements Engineering Conference. IEEE, 2008.

[38] De Lucia, Andrea, et al. Adams re-trace: A Traceability Recovery Tool. Ninth European Conference on
Software Maintenance and Reengineering. IEEE, 2005.

[39] S Klock, M Gethers, B Dit, D Poshyvanyk. Traceclipse: An eclipse plug-in for Traceability Link
Recovery and Management. in Proc. 6th Int.Workshop Traceabil. Emerg. Forms Software Eng.,
Honolulu, HI, USA, 2011: 24-30.

[40] FAC Pinheiro, JA Goguen. An Object-Oriented Tool for Tracing Requirements. IEEE Software. Mar.
1996; 13(2): 52-64.

