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Abstract—Possibility theory can be used as a suitable frame-
work to build a normal behavioral model for an anomaly detector.
Based on linear and/or nonlinear systems, sub-optimal filtering
approaches based on the Extended Kalman Filter and the Un-
scented Kalman Filter are calibrated for entropy reduction and
could be a good basis to find a suitable model to build a decision

variable where, a decision process can be applied to identify
anomalous events. Sophisticated fuzzy clustering algorithms can
be used to find a set of clusters built on the decision variable,
where anomalies might happen inside a few of them. To achieve
an efficient detection step, a robust decision scheme is built, by
means of possibility distributions, to separate the clusters into
normal and abnormal spaces. We had studied the false alarm
rate vs. detection rate trade-off by means of ROC (Receiver
Operating Characteristic) curves to show the results. We validate
the approach over different realistic network traffic.

Index Terms—Extended Kalman Filter, Unscented Kalman
Filter, Fuzzy Clustering, Anomaly Detection, Possibility theory.

I. INTRODUCTION

Recently, some works, related to anomaly detection in

communication networks, have been concentrated on Linear

Kalman filtering [16], [15], [14]. However, despite its strength,

the linear Kalman filter runs well with hard difficulties. Gen-

erally, the innovation process is expected to be a Gaussian

white noise. However, in practice, this is hardly the case as

frequently the observed signals are non gaussian/nonlinear

themselves. In this work we show that a decision variable

can be made from the innovation processes and organize in

clusters where anomalies might be detected. Another difficulty

is related to the calibration of the input matrices of the linear

Kalman filter. Another problem is related to the choice of the

model type: linear or nonlinear. This is generally a challenging

task to build a good system for anomaly detection.

Our hope in this paper is to show that the sub-optimal

algorithms based on EKF and UKF can be view as valuable

and alternative tool for anomaly detection, in case when the

state and measurement processes are linear. We believe that

one should build a bank of different filters and perform a

comparative study which could have as a final hope to find

out the best model.

A. Normal behavior modeling

The framework of EKF and UKF is based on the following

difference equations:
{

xt+1=f(xt) + wt

yt =h(xt) + vt
(1)

where xt ∈ R
n and yt ∈ R

m are multi-dimensional vectors

representing respectively the system state and the measure-

ment. The system is assumed to be excited by an unknown

process noise wt ∼ N(O,Qt) and the measurement are

disturbed by unknown measurement noise vt ∼ N(O,Rt).

B. How to build the Decision Variable ?

The decision variable is built using the multi-dimensional

innovation process obtained as output of the filters. The one-

dimensional decision variable (DV) process is obtained by

applying the formulas:

decisionvariable = e(t)TV e(t) (2)

where the matrix V (obtained as output of each Kalman

filter) is the inverse of the variance of the multi-dimensional

innovation process e(t), T denotes the transpose.

1) Extended Kalman Filter: We use the first order EKF

which is based on linear quadratic approximations with a

gaussian: p(xt|y1:t) = N(xt|mt, Pt). Due to lack of space,

we give the necessary equations needed to run the EKF [3],

[2]. The filter runs into two steps as a predictor-corrector

algorithm:

• prediction:

{

m−
t = f(mt−1)

P−
t =Fx(mt−1)Pt−1F

T
x (mt−1) +Qt−1

(3)

• correction (update):























vt = yt − h(m−
t )

St=Hx(m
−
t )P

−
t HT

x (m
−
t ) +Rt

Kt= P−
t HT

x (m
−
t )S

−1
t

mt= m−
t +Ktvt

Pt= P−
t −KtStK

T
t

(4)

where the matrices Fx(m) and Hx(m) are the Jacobians of

the functions f and h, with elements:

[Fx(m)]t−1
jj′

=
∂fj(x,t−1)

∂x
′

j

|x=m (5)
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[Hx(m)]t
jj′

=
∂hj(x,t)

∂x
′

j

|x=m (6)

2) Unscented Kalman Filter: In the following, we derive

the prediction and update equations for the UKF based on UT

(Unscented Transformation) [11].

• prediction: computed the predicted state mean m−
t and

the predicted covariance P−
t as:















Xt−1=[mt−1 . . .mt−1] +
√
c[0

√

Pt−1 −
√

Pt−1]

X̂t = f(Xt−1)

m−
t = X̂t(wm)

P−
t = X̂tW [X̂t]

T +Qt−1

(7)

• correction (update): Compute the predicted mean µt

and covariance of the measurement St, and the cross-

covariance of the state and measurement Ct:























X−
t =[m−

t . . .m−
t ] +

√
c[0

√

P−
t −

√

P−
t ]

Y −
t = h(X−

t )
µt = Y −

t wm

St = Y −
t W [Y −

t ]T +Rt

Ct = X−
t W [Y −

t ]T

(8)

One can then compute the filter gain Kt and the updated

state mean mt and covariance Pt as:






Kt= CtS
−1
t

mt=m−
t +Kt[yt − µt]

Pt= P−
t −KtStK

T
t

(9)

II. HOW TO BUILD THE NORMAL SUBSPACE ?

Once the number of clusters found, we run a two-step

approach to build the normal space formed by some clusters,

the remaining labeled as abnormal. First, since we do not

have any a priori knowledge of the clusters distribution, we

affect to each cluster a degree of possibility by means of

possibility distribution. The second step try to extract the

”normal” clusters. We believe that the degree of normalcy of

a cluster depends only of the degree of normalcy of the data

inside the cluster itself. We use the memberships from the

clustering operation to calculate the degrees of possibility of

the data themselves. A thorough analysis of the second king

of possibility distributions makes us find a threshold to apply

to a cluster’s degree of possibility to decide if it is normal.

A. Clustering operation

Here, for the purpose of efficiency and comparison , we

perform the clustering operation with five algorithms, namely:

k-means, k-medoid, fuzzy c-means (FCM) and Gustafson-

Kessel (GK)algorithms.

1) K-means and K-medoid clustering algorithms: With an

N×n dimensional data set, K-means allocates each data point

to one of c clusters to minimize the within-cluster sum of

squares defined as:

c
∑

i=1

∑

k∈Ai

||Xk − vi||2, (10)

where Ai is a set of data points in the i− th cluster and vi is

the mean for that points over cluster i. In K-means clustering

vi is called the cluster prototypes, i.e the cluster centers; it is

defined by:

vi =

∑Ni

k=1 xk

Ni
, xk ∈ Ai, (11)

where Ni is the number of data points in Ai.

In K-medoid algorithm, the cluster centers are the nearest

data points to the mean in one cluster V = {vi ∈ X|1 ≤ i ≤
c}.

2) Fuzzy C-means clustering algorithm: The Fuzzy C-

means clustering algorithm is based on the minimization of

an objective function called C-means functional. It is defined

by Dunn as:

J(X;U, V ) =

c
∑

i=1

N
∑

k=1

(µik)
m||xk − vi||2A, (12)

where V = [v1, v2, . . . , vc], vi ∈ R
n is a vector of cluster

prototypes, which have to be determined, and the quantity:

D2
ikA = ||xk − vi||2A = (xk − vi)

TA(xk − vi), (13)

is a squared inner-product distance norm.

The equation Eq. 12 is a measure of the total variance of xk

from vi. The minimization of this quantity can be done with

the popular Picard iteration trough the first-order conditions for

stationary process of the objective function. These stationary

points can be found by means of Lagrange multipliers as:

J(X;U, V, λ) =
c

∑

i=1

N
∑

k=1

(µik)
mD2

ikA +
N
∑

k=1

λk(
c

∑

i=1

µik − 1),

(14)

and by setting the gradient of J with respect to U, V and

λ to zero. If D2
ikA > 0, ∀i, k and m > 1, then (U, V ) ∈

Mfc × R
n×c may minimize Eq. 12 only if

µik =
1

∑c
j=1(DikA/D

2/(m−1)
jkA

, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (15)

and

vi =

∑N
k=1 µ

m
ikxk

∑N
k=1 µ

m
ik

, 1 ≤ i ≤ c, (16)
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3) Gustafson-Kessel clustering algorithm: Gustafson and

Kessel extended the standard fuzzy c-means algorithm by

employing an adaptive distance norm, in order to detect

clusters of different geometrical shapes in one data set. Each

cluster has its own norm-inducing matrix Ai, which yields the

following inner-product norm:

D2
ikA = (xk − vi)

TAi(xk − vi), 1 ≤ i ≤ c, 1 ≤ k ≤ N. (17)

The matrices Ai are used as optimization variables in the

c-means functional, allowing each cluster to adapt the dis-

tance norm to the local topological structure of the data.

If A denotes a c-tuple of the norm-inducing matrices A =
(A1, A2, . . . , Ac), then the objective functional of the GK

algorithm is defined by:

J(X;U, V,A) =

c
∑

i=1

N
∑

k=1

(µik)
mD2

ikAi
. (18)

We implemented in Matlab the numerically robust algorithm

described in [12].

To find the appropriate number of clusters, one can cluster

data for different values of c ∈ {2, 3, . . . , cmax}, and using

validity measures to assess the goodness of the obtained par-

titions. Different scalar validity measures have been proposed

in the literature, none of them is perfect by itself, therefor we

used several indexes in our work for the hope of comparison.

B. Optimum number of clusters

We use the following validity measures [7] as a tool to

determine the optimum number of classes in our clustering

operation.

• Partition Coefficient (PC): measures the amount of ”over-

lapping” between clusters. It is defined by Bezdek [6] as

follows:

PC(c) =
1

N

c
∑

i=1

N
∑

k=1

(µij)
2, (19)

where µij is the membership of data point j in cluster i.
The optimal number of cluster is at the maximum value.

• Classification Entropy (CE): it measures the fuzzyness of

the cluster partition only, which is similar to the Partition

Coefficient. It is defined as:

CE(c) = − 1

N

c
∑

i=1

N
∑

k=1

(µij)log(µij), (20)

• Partition Index (SC): It is defined as [7]:

SC(c) =
c

∑

i=1

∑N
j=1(µij)

m||xj − vi||2

Ni

∑c
k=1 ||vk − vi||2

, (21)

SC is useful when comparing different partitions having

equal number of clusters. A lower value of SC indicates

a better partition.

• Separation Index (S): on the contrary of partition index

(SC), the separation index uses a minimum-distance

separation for partition validity [7]. It is defined as:

S(c) =

∑c
i=1

∑N
j=1(µij)

m||xj − vi||2
Nimini,k||vk − vi||2

, (22)

• Xie and Beni’s Index (XB): It is defined as [10]:

XB(c) =

∑c
i=1

∑N
j=1(µij)

m||xj − vi||2
Nimini,j ||xj − vi||2

, (23)

The optimal number of clusters should minimize the

value of the index.

• Dunn’s Index (DI): It is defined as:

DI(c) = mini∈cminj∈c,j 6=i

minx∈Ci,y∈Cjd(x,y)

maxk∈c{maxx,y∈Cd(x, y)}
(24)

The maximum of DI gives the optimum number of

clusters.

III. BUILDING NORMAL SPACE WITH POSSIBILITY THEORY

The normal space is built into a two step-wise approach

is necessary. Dubois and Prade’ s procedure, [1], produces

the most specific possibility distribution among the ones

dominating a given probability distribution. In this paper, this

method is generalized to the case where the probabilities (of

generating the clusters) are unknown. It is proposed to char-

acterize the probabilities of generating the different clusters

by simultaneous confidence intervals with a given confidence

level 1 − α. So a procedure for constructing a possibility

distribution is described, insuring that the resulting possibility

distribution will dominate the true probability distribution in

at least 100(1− α) of the cases.

In a second phase, we will also use a procedure to computing

possibilities for data points inside a cluster in order to know

if this cluster is normal or abnormal. This can be achieved by

means of memberships of the data points, i.e the probability

of generating the data sample.

In the following, we suppose that there’s K well-

formed clusters. We consider the parameter vector p =
(p1, p2, . . . , pK) of probabilities characterizing the unknown

probability distributions of a random variable X on Ω =
{ω1, . . . ., ωK}. Let nk denotes the number of observations

of cluster k in a sample of size N . Then, the random

vector n = (n1, . . . , nK) can be considered as a multinomial

distribution with parameter p. A confidence region for p at

level 1 − α can be computed using simultaneous confidence

intervals as described in [4]. Such a confidence region can be

considered as a set of probability distributions.

A consistency principle between probability and possibility

was first stated by Zadeh, [5] in an unformal way: ”what is

probable should be possible”. This requirement is translated

via the inequality:

P (A) ≤ Π(A) ∀A ⊆ Ω (25)

where P and Π are, respectively, a probability and a possibility

measure on a domain Ω = {ω1, . . . ., ωK}. In this case, Π
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is said to dominate P . Transforming a probability measure

into a possibilistic one then amounts to choosing a possibility

measure in the set ℑ(P ) of possibility measures dominating

P . This should be done, by adding a strong order preservation

constraint, which ensures the preservation of the shape of the

distribution:

pi < pj ⇔ πi < πj ∀i, j ∈ {1, . . . ,K}, (26)

where pi = P ({ωi}) and πi = Π({ωi}), ∀i ∈ {1, . . . ,K}.

It is possible to search for the most specific possibility

distribution verifying (25) and (26) (a possibility distribution

π is more specific than π
′

if π ≤ π
′

, ∀i). The solution of this

problem exists, is unique and can be described as follows. One

can define a strict partial order P on Ω represented by a set of

compatible linear extensions Λ(P) = {lu, u = 1, L}. To each

possible linear order lu , one can associate a permutation σu

of the set {1, . . . ,K} such that:

σu(i) < σu(j) ⇔ (ωσu(i), ωσu(j)) ∈ lu, (27)

The most specific possibility distribution, compatible with p =
(p1, p2, . . . , pK) can then be obtained by taking the maximum

over all possible permutations:

πi = max
u=1,L

∑

{j|σ−1

u (j)≤σ−1

u (i)}

pj (28)

A problem arises for calculating the possibilities for the

clusters themselves, since we do not know the probabilities p.

A solution can consist to build confidence intervals for each

cluster ωi. In interval estimation, a scalar population parameter

is typically estimated as a range of possible values, namely a

confidence interval, with a given confidence level 1− α.

To construct confidence intervals for multinomial proportions,

it is possible to find simultaneous confidence intervals with

a joint confidence level 1 − α. The method attempts to

find a confidence region Cn in the parameter space p =

(p1, . . . , pK) ∈ [0; 1]K |
K
∑

i=1

pi = 1 as the Cartesian product

of K intervals[p−1 , p
+
1 ]...[p

−
K , p+K ] such that we can estimate

the coverage probability with:

P(p ∈ Cn) ≥ 1− α (29)

At this moment, we can use the Goodman, [13] formulation

in a series of derivations to solve the problem of constructing

the simultaneous confidence intervals. Let

A = χ2(1− α/K, 1) +N (30)

Bi = χ2(1− α/K, 1) + 2ni, (31)

Ci =
n2
i

N
, (32)

∆i = B2
i − 4ACi, (33)

Finally, the bounds of the confidence intervals are defined as

follows:

[p−i , p
+
i ] =

[

Bi −∆
1

2

i

2A
,
Bi +∆

1

2

i

2A

]

(34)

It is now possible, based on these above interval-valued

probabilities, to compute the most possibility distributions

(degrees of the different clusters) dominating any particular

probability measure. Let P denotes the partial order induced

by the intervals [pi] = [p−i , p
+
i ]:

(ωi, ωj) ∈ P ⇔ p+i < p−j (35)

As explained above, this partial order may be represented

by the set of its compatible linear extensions Λ(P) =
{lu, u = 1, L}, or equivalently, by the set of the corresponding

permutations{σu, u = 1, L}. Then for each possible permu-

tation σu associated to each linear order in Λ(P), and each

cluster ωi, we can solve the following linear program:

πσu

i = max
p1,...,pK

∑

{j|σ−1

u (j)≤σ−1

u (i)}

pj (36)

Finally, we can take the distribution of the cluster ωi domi-

nating all the distributions πσu :

πi = max
u=1,L

πσu

i ∀i ∈ {1, . . . ,K} (37)

At this point, we propose to build a measure of possibility

distribution πnormal as a threshold, and then a cluster will be

considered as normal if its possibility distribution satisfies :

πi ≥ πnormal, (38)

Otherwise it is ranged in subspace potentially suspicious. And

our attention will be placed in this subspace for anomaly

detection.

To find the possibility distribution πnormal, we take into

account the memberships of the data points inside a cluster.

The memberships can be seen as the probability that data

point belongs to the different clusters. These memberships

are calculated with the Gustafson-Kessel clustering algorithm

which gives us, for each data point xt the probability distribu-

tion p = (p1, p2, . . . , pK) (for each data point the constraints
K
∑

i=1

pi = 1 is always true.

We can use Eq. (28) to calculate the possibility distribution of

each data point xt of the sample x. We obtain a matrix πN
K of

dimension K×N (remember K is the number of components

(clusters) and N is the length of the data sample x). We

take the mean for each column (each column containing the

possibility distribution for data point xt) lying in all clusters.

Then we obtain a second matrix πN
1 and finally we use Eq.

(39) to derive the threshold πnormal :

πnormal = max(πN
1 ) (39)

A. Model Validation

1) Experimental data: Abilene and SWITCH networks:

In this work, we used a collection of data coming from the

Abilene network. The Abilene backbone has 11 Points of

Presence(PoP) and spans the continental US. The data from

this network was collected from every PoP at the granularity

of IP level flows. The Abilene backbone is composed of

Juniper routers whose traffic sampling feature was enabled.

Of all the packets entering a router, 1% are sampled at
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random. Sampled packets are aggregated at the 5-tuple IP-

flow level and aggregated into intervals of 10 minute bins.

The raw IP flow level data is converted into a PoP-to-PoP

level matrix using the procedure described in [8]. Since the

Abilene backbone has 11 PoPs, this yields a traffic matrix with

121 OD flows. Each traffic matrix element corresponds to a

single OD flow, however, for each OD flow we have a seven

week long time series depicting the evolution (in 10 minute

bin increments) of that flow over the measurement period. All

the OD flows have traversed 41 links. Synthetic anomalies are

injected into the OD flows by the methods described in [8],

and this resulted in 97 detected anomalies in the OD flows.

The anomalies injected in the Abilene data are small and high

synthetic volume anomalies. We used exactly the same Abilene

data as in [9]. So for a full understanding on how the ground-

truth is obtained (based on EWMA and Fourier algorithms),

we refer the reader to [9].

2) Results and comparison: The first result of our study

is devoted to entropy reduction. The approach shows the

ability of the EKF and UKF to estimate the state of the

system under noisy measurements. We implemented these

filters in Matlab to the linear dynamical system described

in our previous work [14], [15] which is our reference to

compare the Linear Kalman Filter to the EKF and the UKF.

This means that the functions f and h are respectively set to

Ctxt and Atxt. We suppose that system state and measurement

are time invariant. To calibrate the EKF, we first need to

find the unknown parameters C, A, Q and R and also the

different Jacobian matrices. Since we consider a linear system,

the matrices C, Q and R can be obtained with the same

method we deal with in our paper referenced in [15] based

on the expectation-maximization algorithm. We run the filters

for each column timeseries and for the Abilene and Switch

networks, we use the same constant quantities Q = 10.92
and R = Q × 15 and the estimation is quite perfect. These

same values are used to run the EKF and UKF for the sake

of comparison. Additional matrices (i.e Jacobians) are needed

for EKF, that’s why it is often difficult to build a suitable

model based on this framework. But, for our study we just

specify these quantities as the values of C and A since the

data observations themselves are very simple timeseries. They

are set to F = 9.1, H = 5. By inspection of the graphs

in figure Fig. 1, it seems that EKF and UKF performs with

the same level of performance when they are calibrated with

the same parameters. The goodness of an algorithm can be

evaluated with the root mean square RMS) error defined as:
√

√

√

√
1
N

N
∑

k=1

| xk − E(xk − y1:k) |2. Table I shows the RMS error

for the EKF and UKF algorithms and it makes clear that

the UKF performs better than the EKF. This filtering results

give quite the same performance as when we used the linear

Kalman filter [14].

After filtering for the purpose of entropy reduction, our aim

is to analyze residuals for the scope of anomaly detection. We

suppose that anomalies might be rare and might happen on

a few number of clusters. We deal with the partition problem

where we want to find the appropriate number of clusters built

0
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Fig. 1: Real and estimated links obtained using EKF and UKF.

Abilene network.

TABLE I: Root Mean Square Error after running the EKF and

UKF filter.

Switch TCP

Link i 1 2 3 4 5

EKF 0.4021 0.4023 0.3317 0.3479 0.3107

UKF 0.3349 0.3194 0.2498 0.2655 0.2292

from the innovation process. During this optimization task,

parameters were fixed to the following values: m = 3, ǫ =
0.001, ρ = 1 for each cluster, c ∈ [2, 9] (interval in which we

would find the suitable number of clusters). The values of the

validity measures, depending on c, are plotted in figures Fig. 2

and 3 for the K-means, K-medoid, FCM and GK algorithms.

The results are shown for the Switch network. Globally, in

figure Fig. 3, the validity measures PC and CE from the FCM

algorithm does not give us reliable information to obtain the

best number of clusters. They are typically increasing (CE) and

decreasing (PC) without break (local minimum or maximum).

With the K-means, the different graphs show clearly that the

number of clusters can be set to c = 3 (maximum of the

Dunn Index). The K-medoid and more precisely the robust GK

algorithm, via the values of XB and DI, obviously confirm that

c = 3. The same analysis show that, when using the Abilene

trafic, the best number of cluster is c = 4. The analysis shows

that, one must use different clustering algorithms and validity

measures to ensure that the selection of the best number of

cluster is rigorous.

After having the optimum number of clusters, we progress

in a next step where we search for which clusters are normal

and which ones are abnormal. To this end, we affect to

each cluster a degree a possibility, as explained in section

III. The results are depicted in table Table II. And finally,

when applying our decision scheme for cluster normalcy

identification, we decide to put the label No if a cluster in

abnormal and Yes otherwise. To decide if a cluster is normal

or not, we have just to find the degree of possibility which

acts as a threshold. This threshold in calculated by using the

results in table Table III and proceed equations Eq. (38) and

Eq. (39). These results show that, in all cases, the clusters

labeled as abnormal have always a few number of data, that
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Fig. 2: Validity measures in order to find the best number

of clusters. The left 4 graphs using K-means and the right 3

graphs using K-medoid. Switch network.
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Fig. 3: Validity measures in order to find the best number of

clusters. The left 2 graphs using FCM and the right 6 graphs

with GK. Switch network.

is what we expected. After finding the abnormal clusters, we

TABLE II: Interval-valued probabilities, possibility distribu-

tions, and length of each cluster. We apply Eq. (38) and show

if a cluster is normal or not.

Abilene

cluster i 1 2 3 4

p
−

i
0.1741 0.2799 0.2518 0.2114

p+
i

0.2122 0.3242 0.2949 0.2521

πS
i

0.4244 1.0000 1.0000 0.7165

πnormal (Eq. 39) 0.4393

Eq. (38) false true true true
cluster Normalcy No Yes Yes Yes
Length cluster i 194 304 275 233

UDP trafic

cluster i 1 2 3

p
−

i
0.1795 0.4101 0.3674

p
+

i
0.2039 0.4406 0.3974

πS
i

0.2039 1.0000 0.5899

πnormal (Eq. 39) 0.5429

Eq. (38) false true true
cluster Normalcy No Yes Yes
Length cluster i 383 851 765

just use a basic test of variance to detect anomalies. The results

are shown in the ROC curves depicted in figure Fig. 4. The

ROC curve is a convenient tool to learn about the tradeoff

between the percentage of anomalies detected (detection rate-

DR) and the false positive rate (false alarms-FPR). The results

demonstrate in our study that the UKF performs better than

the EKF, perhaps due to the fact that it is ore simple and easy

to calibrate the UKF filter than the EKF. For example, for the

TABLE III: Memberships of the data points and corresponding

possibility distributions, (α = 0.05).

TCP trafic

time t 1 2 3 . . . 2000 2001

memberships

cluster 1 0.9985 0.9985 0.2597 . . . 0.9318 0.2612
cluster 2 0.0010 0.0010 0.2303 . . . 0.0403 0.6769
cluster 3 0.0005 0.0005 0.5100 . . . 0.0279 0.0619

corresponding possibility distributions

cluster 1 1.0000 0.0015 0.0005 . . . 1.0000 0.3231
cluster 2 1.0000 0.0015 0.0005 . . . 0.0682 1.0000
cluster 3 0.4900 0.2303 0.0279 . . . 0.0.0279 0.0619

UDP trafic we gain about 80% of DR with 0% of FPR for

the UKF while the EKF produces 0.05% of FPR for the same

DR. We obtain the same interpretation for the other trafic.
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Fig. 4: ROC curve illustrating the tradeoff between the de-

tection rate and the false positive rate. The results are drown

using EKF and UKF. Left graph Switch TCP and UDP trafic

and right graph for Abilene.

IV. CONCLUSION

In this work, we have shown that the EKF and UKF can be

used to build convenient models for the purpose of anomaly

detection in communication networks. The calibration of the

UKF is more easy and the difficulty to build the Jacobian

matrices is the possible reason that EKF produces a mean

square error more important than for UKF. Based on pos-

sibility distributions, we have developed a new scheme that

allows us to build the normal and abnormal spaces. We then

analyze, by means of ROC curve, the tradeoff between the

detection rate and the false positive rate. A difficult task in

the final procedure of tracking the true anomalies is related to

the choice of the test (here test of variance) in order to reduce

considerably the false positive. All our experiences to training

the possibility theory framework use a confidence level set to

95% (corresponding to alpha = 0.05). We have runs multiple

other scenarii with confidences lying between 90% and 99%

and the results are the same.
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