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Abstract. Fatty acids with double bonds beyond the ninth carbon from the carboxyl end are classified as essential
for human health, including omega-3 fatty acids: eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). The
main sources of omega-3 fatty acids are fatty fish species such as herring, mackerel, sardine and salmon. Oils
from the marine algae Cryptecondium conchii are mainly rich in DHA only, while fish oil contains both EPA & DHA.
Why is it important to microencapsulate EPA & DHA? Because these fatty acids cannot be synthesized by the
human body but have to be obtained through nutrition uptake. The beneficial effects of these fatty acids including
lowering cholesterol, decreasing the risk of arrhythmia, lowering the blood pressure, preventing diabetes in
pregnancy, and positive effects on joints (relief of arthritis). EPA and DHA also play an important role in early
infant nutrition and the imbalance of these fatty acids is believed to cause a variety of diseases. Because of their
sensitivity to oxidation, these fatty acids need to be stabilized to protect them from oxidation. In food application,
their interaction with other food ingredients needs to be prevented. Attempts to prevent oxidation to allow omega-
3 fatty acids to fulfill their functions are not trouble-free. Fish oils in their natural state have a taste and smell that
make them less attractive to consumers. Processing technology for masking the smell and taste of fish oil in food
faces great challenges. Therefore, to address the problems concerning the susceptibility of fish oil to oxidation and
its unpleasant smell, microencapsulation, where the oil is packaged within coating materials, may be used to
replace bulk oils. This paper discusses great challenges faced by the scientists to microencapsulate omega 3 fatty
acids from fish oil after introducing concise information related to microencapsulation and its advance techniques.
As the demand of functional food containing omega-3 is continuously growing, overcoming those challenges mean
solving one problem in providing healthy food for the world.
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What is Microencapsulation?

Microencapsulation is defined as “the technology of packaging solid, liquid, and gaseous
materials in matrices or small capsules that release their contents at controlled rates over
prolonged periods of time” (Champagne and Fustier, 2007;Thies, 1987). The substance to
be encapsulated is called “core”, while the microencapsulating agent surrounding the core is
defined as “wall”. The core is also known as “active agent”, and the term “wall” is also
referred to “matrix, coating material, or shell”. Microcapsules often have a diameter
between 3 and 800 microns and contain 10 to 90 wt % core. The shell is designed to
prevent diffusion of material from a microcapsule or into a microcapsule (Thies, 2004), to
protect the core from deterioration, and to release it under the desired conditions (Young et
al., 1993).

The first commercial application of microencapsulation technology began in the late
1930s and 1940s with the development of “carbonless paper” by the National Cash Register
(Deasy, 1984). Nowadays, the encapsulation technology has been applied broadly in the
food industry to microencapsulate sensitive food ingredients such as flavors, spices,
vitamins, carotenoids, and omega-3 oils. The technology is aimed to protect sensitive
ingredients from chemical degradation by blocking the direct influence of oxygen, pressure,
heat, pH, heavy metals and other influences that may cause or accelerate degradation. In
the case of vitamins, the protection is essential to maintain vitamin levels, while flavor
encapsulation is important to avoid unwanted off-taste. Microencapsulation of pigments
such as B-carotene is necessary to achieve special physical effects such as high colour
strength and special colour hue (Runge, 2004).

What are Omega-3 PUFAs and Their Nutritional Benefits

Polyunsaturated fatty acids (PUFAs) are composed of 18 or more carbon atoms and a
terminal carboxylate group having two or more double carbon bonds. Classification of these
fatty acids is determined by the position of the first double bond, as counted from the
methyl terminus. The one with its first double bond at position 3 as counted from the
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methyl terminus is called omega-3 PUFA, while the one located at position 6 is omega 6.
These fatty acids are also known as omega-3 (linolenic) and omega 6 (linoleic) (O Brien,
2004).

The symbol omega (w) and its synonym n is often used to classify PUFAs (Sijtsma
and de Swaaf, 2004). Alpha-linolenic acids (18:3 A9, 12, 15), eicosapentaenoic acid (EPA,
20:5 A5, 8, 11, 14, 17), and docosahexanoic acid (DHA, 22:6 A4,7,10,13,16,19) are the
most studied PUFAs within this group (Table 1).

Table 1. w-3 PUFAs, adapted from (Sijtsma and de Swaaf, 2004)

Systematic name (with all double bonds in cis-

Common name . ) Short name
configuration)

a-Linolenic acid A9, A12, A15-Octadecatrienoic acid w-3 18:3
A6, A9, A12, A15-Octadecatetraenoic acid w-318:4
A8, Al1, A14, Al7-Eicosatetraenoic acid w-3 20:4

E'Ccigsape”taeno'c A5, A8, A11, Al4, A17-Eicosapentaenoic acid w-3 20:5
A7, A10, A13, A16, A19-Docosapentaenoic acid w-3 22:5

aDggosahexaenmc A4, A7, A10, A13, A16, A19-Docosahexaenoic acid w-3 22:6
A5, A8, A11, A14, A17, A20- Tetracosahexaenoic acid w-3 24:6

The main sources of omega-3 PUFAs are fatty fish species such as herring, mackerel,
sardine and salmon (Keogh et al., 2001). Marine oils, including fish oil, are the complex
mixture of fatty acids with varying lengths and degrees of unsaturation (Shahidi and
Wanasundara, 1998). A high intake of PUFA is associated with a low incidence of coronary
heart disease (CHD) and reduced risk of cancer (Wallace et al., 2000). Docosahexaenoic
acid (DHA) is an essential component of the cell membranes of human tissues and accounts
for over 60% of the total fatty acids in the rod outer segment in the retina (Giusto et al.,
2000). It is also regarded essential for the proper visual and neurological development of
infants because of its role as a structural lipid component.

PUFAs have also been claimed to have a broad range of beneficial effects including
lowering cholesterol, decreasing the risk of arrhythmia, lowering the blood pressure,
preventing diabetes in pregnancy, and beneficial effects on joints (relief of arthritis)
(McMurray, 2007). Both omega-3 and omega-6 PUFA are precursors of hormone-like
compounds, which are involved in many important biological processes in human body
(Trautwein, 2001).

Why do Omega-3 Fatty Acids Need to be Encapsulated?

Fatty acids with double bonds beyond the ninth carbon from the carboxyl end of the
compound are classified as essential for human health. These fatty acids are important
nutrients, which cannot be synthesized by the human body but have to be obtained through
nutrition uptake.

In functional food development, incorporation of PUFAs into food products is
dominated by omega-3 fatty acids (a-linolenic acid (ALA) C18:3n-3, eicosapentaenoic acid
(EPA) C20:5n-3, docosahexaenoic acid (DHA) C22:6n-3) and omega-6 fatty acids (y-
linolenic acid (GLA) C18:3n-6 and arachidonic acid (AA) C20:4n-6) (Augustin and
Sanguansri, 2003). Soybean, canola, flaxseed, hemp, and perilla oils are the major sources
of ALA, while GLA is mostly found in evening primrose, blackcurrant and borage oils. Oils
from the marine algae Cryptecondium conchii are mainly rich in DHA only, while fish oil
contains both EPA & DHA (Trautwein, 2001). Although the nutritional values of fish oil are
recognized, adequate daily intake is difficult to achieve. Fish consumption is relatively low
in many countries, especially consumption of oily fish with high levels of omega-3 PUFAs
(Kelly and Keogh, 2000). Because of their sensitivity to oxidation, fish oils need to be
stabilized to protect them from oxidation.
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Attempts to prevent fish oil oxidation to allow omega-3 fatty acids to fulfill their
functions are not trouble-free. In addition, fish oils in their natural state have a taste and
smell that make them less attractive to consumers (McMurray, 2007). Processing
technology for masking the smell and taste in food systems faces great challenges.
Therefore, to address the problems concerning the susceptibility of fish oil to oxidation and
its unpleasant smell, microencapsulation, where the oil is packaged within carrier materials,
may be used in place of bulk oils.

How to Microencapsulate Food Ingredients?

Thies (2004) classified the encapsulation process as chemical (A) or mechanical (B)
processes (Table 2). A chemical process may rely only on the physical phenomena, while in
a mechanical process a chemical reaction may actually be involved. Some typical processes
used for producing microcapsules for food application are: (A) complex coacervation,
polymer-polymer incompatibility and submerged nozzle processes, and (B) spray drying,
spray chilling, fluidised bed coaters, liquid extraction, melt extrusion, suspended nozzles,
and spinning or rotating discs (Thies, 2004).

Table 2. Classification of encapsulation processes (Thies, 2004)

Type A (chemical) process Type B (mechanical) process

Complex coacervation Spray drying

Polymer/polymer incompatibility Spray chilling

Interfacial polymerization in liquid media Fluidised bed
Electrostatic deposition

In-situ polymerization Centrifugal extrusion

In-liquid drying Spinning disk or rotational suspension
separation

Thermal and ionic gelation in liquid media Polymerization at liquid/gas or solid/gas
interface

Desolvation in liquid media Pressure extrusion or spraying into solvent

extraction batch
Hot-melt extrusion

In type A process, microcapsules are produced entirely in a liquid-filled stirred tank
or tubular reactor. In type B process, microcapsules are formed by spraying droplets of
coating materials on a core material being encapsulated, where the liquid droplets are
solidified by spraying them into a gas phase. This process also allows the gelling droplets to
be sprayed into a liquid bath, or a polymerization reaction can be carried out at solid/gas or
liquid/gas interfaces of dispersed particles or droplets. There is no single encapsulation
process that is able to produce a full range of capsules needed by the users (Thies, 2004).

The selection of a method depends on economic reasons, sensitivity of the core, size
of microcapsule desired, physical and chemical properties of both core and coating,
application for the food ingredient and the release mechanism. Microencapsulation
processes involve both physical and chemical techniques (Jackson and Lee, 1991). In the
following, common methods used to microencapsulate food ingredients and essential oils
are described briefly, including: spray drying, freeze drying, fluid bed film coating process
and one advance method called spray granulation.

1. Spray drying

Spray drying is the most commonly used encapsulation method in the food industry
(Shahidi and Han, 1993). This method uses available equipment, has high production
capacities (up to 4,000 kg/h), low process cost (20% of that of freeze drying and 30% of
that of vacuum drying), applies a wide choices of carrier solids, and has low effective
process temperatures (Reineccius, 2004).

The spray drying process involves: 1) formation of an emulsion or suspension of
coating and core material, 2) atomization of the emulsion into a drying chamber containing
circulating hot dry air, and 3) evaporation of moisture from the emulsion droplets when in
contact with the hot air (Jackson and Lee, 1991). In the food industry, the core is generally
a water-immiscible flavour, vitamin, animal fat, fish oil or plant oil. The core is emulsified in
an aqueous solution of coating material (Thies, 2004).The carrier is usually hydrated until it
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reaches a chosen solids level. The upper limit of infeed solids is the viscosity at which the
infeed cannot be adequately atomised, or if the material is not to be dried in the chamber.
High infeed solids will produce large particles that may not dry, and thus impinge on the
dryer wall, stick to the wall and ultimately burn on (Reineccius, 2004).

To prepare a stable emulsion, the exact calculation of dissolved solid content in the
feed is crucial. High solid content in the prepared emulsion significantly increases the core
retention by: (1) decreasing the time needed to form a semi-permeable membrane at the
surface of the drying particle, (2) increasing emulsion viscosity which prevents the
circulation movement inside the droplets and leads to rapid skin formation (Re, 1998).

2. Freeze drying

Freeze drying or lyophilization is an attractive drying method for extending food shelf life
(Ma and Arsem, 1982) and was first developed to prevent the flavor and aroma losses that
occur when a conventional drying method is used (Dalgleish, 1990). It is the best method
for water removal using the lowest drying temperature than any other drying method to
obtain highest quality of final products (Ratti, 2008;Heldman and Hartel, 1997). Despite its
advantages, freeze drying is known as an expensive drying method, particularly because of
high operating and maintenance costs as well as long drying time under continuous
vacuum, which increases energy consumption (Ratti, 2008). The cost of freeze drying is
twice than that of vacuum belt drying and almost five times than that of spray drying.
However, the high cost of freeze drying can be compensated if the products are in high
demand (Heldman and Hartel, 1997).

Freeze drying process involves freezing, primary drying, and secondary drying.
Freezing is removal of heat that lowers the temperature of foods below 0 °C. At this
temperature, the ice crystals begin to form and the solutes present in intra- and extra-
cellular fluids become concentrated in the remaining liquid water (Fletcher, 2002). During
primary drying, the sublimation front is formed. This front is boundary between the frozen
and dried product. The heat must be transferred into the product to this front to accelerate
sublimation, and the water vapor must be removed by mass transfer through the dried
product (Heldman and Hartel, 1997). The water vapor produced in the sublimation interface
is removed through the outer porous layers of the product (Mellor, 1978).

The secondary drying begins when all the ice is sublimed out of the frozen product.
For the drying process, heat is added at a slower rate considering that the moisture loss
only takes place through diffusion of water molecules out of the freeze-dried matrix
(Heldman and Hartel, 1997). At this stage, the bound water, of which the main part is in an
unfrozen state, must be dried. In freeze drying, sublimation results from the replacement of
the ice layer by air, and therefore the droplets remain entrapped in the matrix. In a series
of studies, Heinzelmann et al. (1999; 2000a,b) explored fish oil microencapsulation by
freeze drying.

The first investigation reported that the addition of a mixture of antioxidants
(ascorbic acid, lecithin, and tocopherol) improved the product shelf life. The second
investigation examined several process parameters in the oxidative stability of fish oil
powder during storage at 25 °C. The variables were microencapsulation matrices (sodium
caseinate, lactose and maltodextrin), homogenization pressures (1 pass at 10 MPa and 3
passes at 40 MPa), and freezing rates (slow, medium and fast). In the slow freezing
process, 50 ml emulsion was frozen in a petri dish at -20 °C for 10 h. The medium freezing
process involved pumping the emulsion into a self-conveying scrape cooler (freezing
extruder) where the twin screws were covered by a jacket cooled with a refrigerant (-40
°C). In the fast freezing process, the emulsion was dropped into stirred liquid nitrogen
using a burette (Heinzelmann et al., 2000).

Although the authors found that low homogenization pressure resulted in larger oil
droplet size, lower total oil content, higher free oil content and lowest ME, they concluded a
negative correlation between oil globule size or microencapsulation efficiency with the
storage stability. The ME increment was inversely related to the freezing rate. The highest
ME corresponded to slow freezing rate, followed by medium and fast freezing. The overall
results indicate that high ME did not necessarily correlate with high storage stability.
Microcapsules prepared from fast freezing exhibited the longest shelf life (12 weeks)
(Heinzelmann et al., 2000).
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3. Fluid bed film coating

The term film coating refers to the encapsulation technologies that utilise a spray process
to deliver film material to a core particle. The technique is based on the use of fluidising air
to provide a uniform circulation of particles past an atomizing nozzle. As the atomized
coating materials contact the particles, fluidising air evaporates solvent or solidifies coating
solids on the particles as part of a developing film. This process is continued until the
desired film thickness is achieved (Frey and Hall, 2004).

Two terms have been identified in this field: fluidized bed spray granulation and
fluidized bed film coating. The difference is the size of the particles to be coated. In the first
process, a solid containing liquid is transformed into granules by atomizing it into seed
particles that have the same composition as the dissolved component. The liquid can be a
solution, suspension or melt and dried continuously in one step in which the solvent is
evaporated thus solid is deposited on the surface of seed particles. Particle growth can take
place by two ways: agglomeration or surface layering. The latter is also known as the
‘onion skin’ layered structure (Link and Schlunder, 1997;Zank et al., 2001).

The main objective of the second process (film coating process) is to form individual
particles in which each of the particle is well distributed and uniformly coated (Turton et al.,
1999). An existing core has a larger particle size compared to the seed particle in the
granulation process. Although the particle size differs from that of the starting particles, the
principle steps in granulation and coating process are identical.

In each case, the particle growth is determined by the successful collision between a
droplet of the liquid and the seed or core particle. Loeffler (1988) divided particle deposition
into two steps: (1) droplet movement to the particle surface, and (2) droplet adhesion on
the surface of the particle.

4. Spray granulation

The spray granulation process uses the basic principle of fluidised bed equipment in which
the gas passes through the bed material and, at a certain velocity, the bed starts to
fluidise. Similar to this principle, a novel apparatus was developed, i.e. a ‘spouted bed’. It
was originally developed to fluidise larger particles with a high-velocity spout of gas that
penetrates to the bed and fluidise the particles upward (Jacob, 2009).

The spouted bed has three distinct regions: the spout, the annulus and the fountain.
The apparatus consists of a cylindrical column with a conical base. An orifice is fitted to the
conical base through which the spouting fluid is injected. The ascending flow particles inside
the chamber are developed by the high fluid flow rate which finally forms a fountain. These
fountain particles are directed toward the outer part of the spout and fall into the annular
region (Rocha and Taranto, 2009). The spout is the central channel in the system, and in
the spout region the particles move in the same direction as the gas flow. Due to the high
velocity of the gas, particles move as in a pneumatic conveyor. The peripheral region is the
dense region known as the annulus, where the particles move counter- current to the gas.
The term fountain is used to describe the mushroom form above the annulus, and in this
region the particles move in a decelerated regime subsequently falling into the annulus.
Glatt-ProCell spouted bed
A typical spouted bed manufactured by Glatt GmbH (Germany’s leading company producing
a wide range of machinery) called ProCell spouted bed. It has a rectangular shape with an
extended process chamber. The bottom-end part of the chamber has inclined side walls,
called the inside contour, which are supported by two cylinders of the gas throttle shaft
positioned on top of a base plate. The two cylinders are separated by a centre profile and
form two parallel gaps which functioned to divert the high-velocity fluidized gas entering
the chamber. The cylinders are adjustable by rotating them so that the free cross-section
area of the gas inlet can be varied. This condition allows control of the gas inlet velocity and
its distribution to prevent clogging and a dead zone. The adjustment can be made without
interrupting the process (Gryczka et al., 2009).

When the process has started, the fluidizing gas enters the equipment from the two
slits horizontally and is diverted upwards by the centre profile. After passing this profile, the
two flows are united and form a jet gas and pass the apparatus vertically from the bottom
part to the top. The jet gas flow fluidizes seed particles (which have been inserted before
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the process started) and bring up the particles. At this time, the liquid (in the form of
emulsion, suspension or high-viscosity liquid) can be sprayed in by a nozzle located above
the centre profile in the central region. The spraying direction is usually from the bottom to
the top (as in the Wirster fluid bed), but top spray is also possible. In the upper process
chamber, the particles are separated to the sides and transported back to the lower area
toward the gas entry zone due to the slope of the inner profile. At this point, the particles
fluidized by the core jet into the spout zone and re-circulated (Gryczka et al., 2008).

The regions inside the ProCell spouted bed can be divided into jet zone and back-
flow zone. The jet zone is the area above the middle profile where the fluidization gas flows
with a high velocity and streams up the particles. The back-flow zone consists of the two
zones adjacent to the jet zone.

Gryczka et al. (2009) underlined the advantages of the Glatt-ProCell spouted bed
over the conventional fluidized beds. The apparatus is designed to fluidize various forms of
particles, including fine, large, and irregular particles, and can be adapted to fluidize
particles with a wide range of size distribution. As ProCell characterizes by a low drying
temperature and possibility to reduce residence time in the drying chamber, therefore it is
suitable for drying heat-sensitive ingredients.

Challenges in Food Technology

Typical fish oil microencapsulation is usually based on the formation of ordinary emulsion in
which fish oil droplets are emulsified using combination of matrices and then spray dried or
freeze dried to produce microcapsules. The main problem with these microcapsules is that
the coating materials are not strong enough to withstand extreme processing conditions
such as expose to heat, shear, and acidic environment thus PUFAs are release ahead of
time. Moreover, the microcapsules are easily to dissolve during incorporation into food
products.

In their latest publications, Anwar et al. (2010) and Anwar and Kunz (2011)
underlined factors governing stabilization of fish oil by microencapsulation using four
different methods: spray granulation (SG), fluid bed film coating (FC), freeze drying (FD),
and spray drying (SD). They concluded that the powder stability against oxidation depends
on the total amount of PUFAs contained in the fish oil, and also on the type of fatty acids,
i.e., EPA or DHA. The microcapsules with the higher content of DHA oxidized more rapidly
and produced more hydroperoxides and propanal. Microcapsules stability containing a high
amount of omega-3 (620 mg/g) is governed by the best combination of matrices and type
of drying method. The mixture of soybean soluble polysaccharides (SSPS) and modified
waxy corn starch (OSA-starch) is found superior with respect to stabilization of the
microcapsules compared with the other matices.

Spray granulation (SG) is proved to be the best drying process to produce stable
microcapsules. Application of high drying temperature is found to be the most critical factor
determining product stability. Processing or drying time is less crucial than the exposure to
heat treatment. Though SG needs £ 60 min. to produce a desirable size of granules
compared to only a few seconds in SD, the results confirm that spray granulation at £ 70
°C means a lower chances of lipid degradation by autoxidation than spray drying at + 180
°C. High drying temperature induced initial development of primary oxidation products as
well as hastened rapid degradation of them to become stable secondary oxidation products
(Anwar et al., 2010).

The results based on Peroxide Values (PVs) and propanal verified that there is
another cause of oxidation other than types of coating material and heat. This factor is the
particle microstructure. Though freeze drying (FD) uses no heat or very low drying
temperature in its process, oxygen diffusivity onto matrices becomes a rate-limiting factor
toward lipid oxidation. The porous, irregular, and flake-like structure of the freeze dried
powder accelerates oxidation due to an easy oxygen access into matrices which thus reach
the non-encapsulated oil (Anwar and Kunz, 2011).

The superiority of spray granulation (SG) to produce stable microcapsules is to a
great extent affected by the particle microstructure i.e., *multiple encapsulations” obtained
by this method. Agglomeration of seed particles containing oil droplets in the first stage of
process, followed by the envelopment of the seed by the layers growth, and finally the
granule surface is coated by very fine particles have create a multi-protection system for
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the lipids embedded inside the matrices. In addition, exposure to low-medium heat
treatment in SG has maintained minimum formation of free radicals and unstable
peroxides. Lower accumulation of oxidation initiators may keep the microcapsules from
being affected by oxidation reactions (Anwar et al., 2010;Anwar and Kunz, 2009;Anwar and
Kunz, 2011).

Above mentioned results in fish oil microencapsulation are only few examples of
exploration in this fields that need to be continued. Since omega-2 fatty acids are fragile
and the microencapsulation technology itself is growing very fast, the challenges in this
area are enormous. One must take into account the history of how fish oil in liquid phase is
produced, transported, and stored. Next is selection of coating materials to be used for
microencapsulation. Afterward, formation of stable emulsion must be obtained with or
without antioxidants following by drying using appropriate selected-method. Finally storage
of dried microcapsules in the best container stored at low temperature with the absent of
light is recommended.

One important point that needs to be addressed is that the emulsions and their
stability are the basis for microencapsulation of food ingredients. Previous state of the arts
in fish oil microencapsulation mainly emphasize to create emulsion containing fish oil to be
used only in liquid foods, some are further spray dried or dried by other drying methods but
the final particles are easily to dissolve and oxidation of omega-3 fatty acids was detected
(Klinkesorn et al., 2005;Shaw et al., 2007). Others used existing dried microcapsules
available in the market for direct food enrichment without knowing how they are produced.

In order to produce superior microcapsules the emulsion technology must be
understood very well by food technologist. Recently, there have been a number of studies
to develop water-in-oil-in-water (W/O/W) emulsions. Nanotechnology is applied to modify
the interfacial barriers between water and oil. However the stability of this type of
emulsions is difficult to be maintained. Research in this particular field is mainly developing
emulsion-based food products which limit its application due to storage and transport cost
as well as further food enrichment.

Fish oil microcapsules that are claimed as successful products by researchers in this
field are believed to have limitation particularly when they are dissolved into liquid food
such as milk, yogurt, mayonnaise, and beverages. The cause of these problems is due to
less protection given by the coating materials such as food polymers which are highly
soluble in water. These problems have becoming the real challenges in food industries all
around the globe and significant investigations in this particular topic are currently
underway.
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