PENERAPAN METODE EARNED VALUE MANAGEMENT (EVM) DALAM PENGENDALIAN BIAYA PROYEK

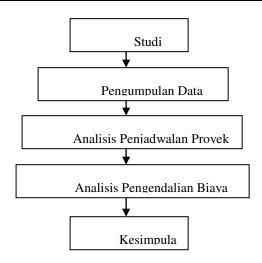
Sufa'atin

Program Studi Teknik Informatika, Fakultas Teknik, UNIKOM Bandung Jl.Dipati Ukur No.112-116, Bandung 40132 Email: sufaatin@email.unikom.ac.id

Abstrak

Earned Value Management (EVM) adalah salah satu metode yang dapat digunakan untuk mengendalikan biaya dan waktu proyek pada saat pelaksanaan pengerjaan proyek. Selain itu metode ini dapat mengintegrasikan waktu dan biaya sehingga bisa mengetahui kemajuan suatu proyek lebih cepat atau lebih lambat dari jadwal proyek yang seharusnya dan untuk mengetahui lebih besar atau lebih kecil dari anggaran yang seharusnya. EVM menambahkan langkah-langkah yang harus dimasukkan kedalam proses manajemen yaitu pada proses pengendalian, dan proses yang berhubungan dengan tujuan untuk melakukan perhitungan, analisa, peramalan, pelaporan biaya dan performansi jadwal untuk evaluasi dan tindakan stakeholder proyek. Diharapkan dengan menggunakan metode EVM biaya dan waktu pengerjaan proyek dapat dikendalikan dan proyek dapat diselesaikan tepat waktu dan biaya yang dikeluarkan sesuai dengan anggaran proyek.

Kata Kunci: Biaya, EVM, Jadwal, Proyek, Waktu


1. PENDAHULUAN

Proyek adalah suatu usaha/aktifitas yang komplek, tidak rutin, dibatasi oleh waktu, anggaran, resource, dan spesifikasi performansi yang dirancang untuk memenuhi kebutuhan konsumen. Atau dapat diartikan sebagai upaya atau aktifitas yang diorganisasikan untuk mencapai tujuan, sasaran dan harapan-harapan penting dengan menggunakan anggaran dana serta sumber daya yang tersedia yang harus diselesaikan dalam jangka waktu tertentu (Nurhayati, 2010). Manajemen proyek adalah semua perencanaan, pelaksanaan, pengendalian dan koordinasi suatu proyek dari awal (gagasan) hingga berakhirnya proyek untuk menjamin pelaksanaan secara tepat waktu, tepat biaya dan tepat mutu (Ervianto, 2005). Namun pada pelaksanaannya di dalam pengerjaan proyek masih banyak mengalami permasalahan diantaranya adalah terjadinya kesalahan dalam perhitungan waktu pengerjaan proyek dan estimasi biaya proyek yang dikarenakan perhitungan waktu dan biaya proyek berdasrkan perkiraan. Keterlambatan dalam pengerjaan pekerjaan-pekerjaan proyek mengakibatkan proyek tidak dapat selesai sesuai dengan waktu yang dijadwalakan sehingga berakibat biaya proyek akan bertambah yang dikarenakan penambahan waktu pengerjaan proyek.

Salah satu cara untuk menangani jadwal perencanaan proyek, pengendalian waktu dan biaya proyek adalah dengan mengguanakn metode EVM. EVM adalah sebuah metode yang digunakan untuk mengetahui kemajuan suatu proyek lebih besar atau lebih kecil dari anggaran yang dianggarkan atau lebih cepat atau lebih lambat dari jadwal yang sudah ditentukan (Sarno, 2012). Selain itu EVM juga dapat memberikan informasi mengenai posisi kemajuan proyek dalam jangka waktu tertentu serta dapat memperkirakan progres proyek pada periode selanjutnya baik dalam hal biaya maupun waktu penyelesaian proyek (Abrar, 2011). Diharapkan dengan menggunakan EVM proyek dapat selesai tepat waktu dan sesuai dengan anggaran yang dianggarkan.

2. METODOLOGI

Metodologi penelitian yang digunakan dalam penelitian ini adalah metodologi penelitian deskriptif yaitu suatu metode penelitian yang bertujuan untuk membuat deskripsi, gambaran atau lukisan dari fakta-fakta dan informasi dalam situasi atau kejadian yang diselidiki secara sistematis, faktual dan akurat. Adapun metodologi penelitian ini dapat dilihat pada gambar 1 berikut:

Gambar 1. Metodologi Penelitian

3. HASIL DAN PEMBAHASAN

Data yang dijadikan bahan penelitian adalah data proyek pembangunan dan rehabilitasi jalan Dengan biaya keseluruhan proyek Rp. 195.882.200,00 dengan lama proyek 19 hari. Struktur uraian pekerjaan dan estimasi biaya proyek pembangunan dan rehabilitasi jalan dapat dilihat pada tabel 1 berikut:

Tabel 1 Struktur Uraian Pekerjaan dan Estimasi Biaya

0.	Uraian Pekerjaan	atuai	S	Per kiraan Kuantitas	Harg a Satuan (Rp)	Jumlah Harga-harga (Rp)
.0	Persiapan				· ·	F /
.1	Pengadaan Direksikeet	s	L	1	1.580 .000,00	1.580.00 0,00
.2	Papan Reklame Nama proyek	h	В	1	180.0 00,00	180.000, 00
.3	Rambu Lalu Lintas	h	В	2	180.0 00,00	360.000, 00
.4	Manajemen Lalu Lintas	s	L	1	1.200 .000,00	1.200.00 0,00
	Jumlah Harga Pekerjaan 1.0					3.320.00 0,00
.0	Galian Dasar	3	M	42	36.20 0,00	1.520.40 0,00
	Jumlah Harga Pekerjaan 2.0					1.520.40 0,00
.0	Lapisan Pondasi Agregat					,
.1	Karyawan / Pekerja	am	J	4	7.000 ,00	28.000,0 0
.2	Pengawas / Mandor	am	J	0,5	9.800 ,00	4.900,00
.3	Material Agregat	3	M	1,5	300.0 00,00	450.000, 00
.4	Stoom Walss	am	J	0,02	145.0 00,00	2.900,00

.5	Alat-alat Bantu	S	L	1	23.00 0,00	23.000,0 0
	Jumlah Harga Satuan	M3	/			508.800
	Jumlah Harga Pekerjaan 3.0	3	M	100	509.0 00,00	50.900.0 00,00
.0	Lapis Resap Pengikat – Aspal Cair	3	M	100 0	12.50 0,00	12.500.0 00,00
	Jumlah Harga Pekerjaan 4.0					12.500.0 00,00
.0	Lapis Permukaan Penetrasi Macadam tbl=5cm					
.1	Karyawan / Pekerja	am	J	0,9	7.000 ,00	6.300,00
.2	Pengawas / Mandor	am	J	0,1	9.800 ,00	980,00
.3	Agregat Kasar	3	M	1,92	270.0 00,00	518.400, 00
.4	Agregat Halus	3	M	0,25	290.0 00,00	72.500,0 0
.5	Aspal	g	K	83	12.00 0,00	996.000, 00
.6	Dump Truck	am	J	0,03	140.0 00,00	4.200,00
.7	Mesin Gilas	am	J	0,00 3	140.0 00,00	420,00
.8	Alat Bantu Peleburan	s	L	2	8.700 ,00	17.400,0 0
	Jumlah Harga Satuan	M3	/			1.616.20 0,00
	Jumlah Harga Pekerjaan 5.0	3	M	73,2 0	1.616 .500,00	118.327. 800,00
.0	Lapis Pondasi Bawah (Telford) Untuk Pekerja Minor	3	M	38,2 0	270.0 00,00	10.314.0 00,00
	Jumlah Harga Pekerjaan 6.0					10.314.0 00,00
(A)	Jumlah Harga Pekerjaan (Termasuk biaya		m da	n keuntungan)	1	195.882. 200,00
(B)	Pajak Pertambahan Nilai (PPn) = 10% x					19.588.2 20
(C)	Jumlah Total Harga Pekerjaan = $(A) + (B)$	3)				215.470. 420,00
(D)	PEMBULATAN					215.470. 000,00

Waktu pengerjaan proyek dapat dilihat pada tabel 2 berikut

Tabel 2 Waktu Pengerjaan Proyek

0.	omor Pekerj	Jenis Pekerjaan	W aktu Pelak	Mu lai	Sele sai	ode Keg
	.0	Persiapan	1 Hari	2017	1/1/ 2017	1
	.0	Galian Dasar	3 Hari	2/1/2017	4/1/ 2017	1
	.0	Lapis Pondasi Agregat	6 Hari	8/1/ 2017	13/ 1/2017	(
	.0	Lapis Resap Pengikat – Aspal Cair	5 Hari	14/ 1/2017	18/ 1/2017	1
	.0	Lapis Permukaan Penetrasi Macadam tbl=5cm	6 Hari	14/ 1/2017	19/ 1/2017	1
	.0	Lapis Pondasi bawah (Telford) Untuk Pekerja Minor	3 Hari	5/1/ 2017	7/1/ 2017	

Sedangkan upah karyawan, harga sewa alat dan satuan dasar bahan yang digunakan dapat dilihta pada tabel 3

Tabel 3 Upah Karyawan

î 0.	Uraian	Satuan	Harga (Rupiah)
1	Karyawan / Pekerja	/ Jam	7.000,00
2	Tukang	/ Jam	8.400,00
3	Pengawas / Mandor	/ Jam	9.800,00

Tabel 4 Harga Sewa Alat

N 0.	Uraian	Satuan	Harga (Rupiah)
1	Dump Truck	/ Jam	140.000,0
2	Concrete Mixer	/ Jam	70.000,00
3	Mesin Gilas	/ Jam	140.000,00
4	Asphalt Sprayer	/ Jam	50.000,00
5	Wheel Loader	/ Jam	140.000,00

Tabel 5 Satuan Dasar Bahan

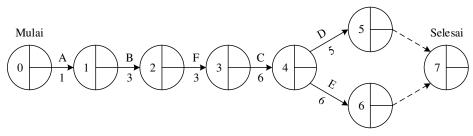
0.]	Bahan/Material	Sat uan	Harga (Rupiah)	Loka si Asal Bahan	Ja rak (Km)
	1	Pasir Pasang	M3	170.000,00	Garut	5- 90
	2	Pasir Beton	M3	180.000,00	Tasik	5- 150
	1	Batu Belah	M3	120.000,00	Carin gin	5- 15
	Tanal	Material (Timbunan h)	M3	60.000,00	Carin gin	5- 15

	4	Baja Tulangan		Kg		14.000,00	gin	Carin	15	5-
	(Kawat Beton		Kg		13.500,00	gin	Carin	15	5-
	7	Kayu Perancah		M3		650.000,00	gin	Carin	15	5-
	{	Paku		Kg		13.500,00	gin	Carin	15	5-
	į	Semen		Zak		70.000,00	gin	Carin	15	5-
				Kg		1.400,00	gin	Carin	15	5-
0	1	Agregat		M3		300.000,00		Tasik	150	5-
1	1	Agregat Kasar		M3		270.000,00		Tasik	150	5-
2	1	Agregat Halus		M3		290.000,00		Tasik	150	5-
3	1	Asphalt	m	Dru	00	1.825.000,		Tasik	150	5-
				Kg		11.800,00		Tasik	150	5-

3.1 Analisis Penjadwalan Proyek

Analisis penjadwalan proyek merupakan salah satu elemen perencanaan yang memberikan informasi tentang jadwal rencana serta durasi untu menyelesaikan proyek. Metode yang digunakan untuk analisis penjadwalan adalah metode *Critical Path Method* (CPM).

3.1.1 Analisis Critical Path Method (CPM)


CPM atau jalur kritis adalah salah satu nmetode jaringan kerja yang memiliki rangkaian komponen-komponen kegiatan dengan total jumlah waktu terlama dan menunjukkan kurun waktu penyelesaian proyek (Widiastuti, 2013). Data kegiatan proyek pembangunan dan rehabilitasi jalan dapat dilihat pada tabel 6 berikut

Tabel 6 Kegiatan Proyek Pembangunan dan Rehabilitasi Jalan

Kegiatan 0.	Kode Kegiatan	Kegiatan Pendahulu	D urasi
Mulai	Mulai	-	0 hari
Persiapan	Α	Mulai	1 hari
Galian Dasar	В	A	3 hari
Lapis Pondasi Bawah Telford	F	В	3 hari
Lapis Pondasi Agregat	С	F	6 hari
Lapis Resep Pengikat – Aspal Cair	D	С	5 hari
Lapis Permukaan Penetrasi Macadam	E	С	6 hari
Selesai	Selesa	D,E	-

i

Berdasarkan rangkaian kegiatan dapat digambarkan kedalam bentuk diagram jaringan proyek seperti berikut:

Gambar 2. Diagram Jaringan Pengerjaan Proyek

Untuk menentukan waktu penyelesaian proyek dalam CPM terdiri dari dua tahap yaitu perhitungan maju dan perhitungan mundur dan juga memperhatikan *Float*. Perhitungan maju digunakan untuk menghitung waktu mulai paling awal (ES) dan waktu selesai paling awal (EF) (Widiastuti, 2013), dimana rumus perhitungannya sebagai berikut:

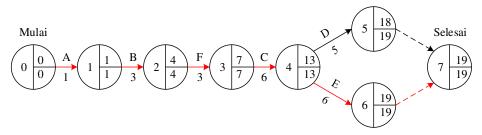
$$EF = ES + D \text{ atau } EF(i-j) = ES(i,j) + D(i-j)$$
(1)

Perhitungan Mundur digunakan untuk menghitung waktu mulai paling lambat (LS) dan waktu selesai paling lambat (LF), dimana rumus perhitungannya sebagai berikut:

$$LS = LF - D \tag{2}$$

Float adalah sejumlah waktu yang digunakan untuk penundaan yang terdapat pada suatu kegiatan dimana kegiatan tersebut dapat diperlambat pelaksanaannya tanpa mempengaruhi selesainya proyek secara keseluruhan (Widiastuti, 2013). Adapun rumus untuk menghitung Total float (TF) sebagai berikut:

$$TF = LF - EF = LS - ES \text{ atau } TF = L(j) - E(j) - D(I-J)$$
(3)


3.1.2 Hasil Analisis Metode CPM

Berdasarkan hasil perhitungan ES, EF, LS, LF dan TF maka didapatkan hasil sebagai berikut:

Tabel 7 Rekapitulasi Hasil Analisis Metode CPM

	171 .	Kegiatan		Durasi	Paling	Awal	Paling	Akhir	Total
o	Kode Kegiatan	i-node	j-node	(dalam hari)	Mulai (ES)	Akhir (EF)	Mulai (LS)	Akhir (LF)	Float (TF)
	A	0	1	1	0	1	0	1	0
	В	1	2	3	1	4	1	4	0
	F	2	3	3	4	7	4	7	0
	C	3	4	6	7	3	7	3	0
	D	4	5	5	3	8	3	9	1
	Е	4	6	6	3	9	3	1 9	0

Dari hasil rekapitulasi maka didapatkan jalur dagram jaringan dengan jalur kritisnya yaitu jalur ABFCE dengan lama pengerjaan 19 hari. Adapun gambar diagramnya dapat dilihat pada gambar 3 berikut:

Gambar 3. Diagram Jaringan Jalur Kritis

3.2 Analisis Pengendalian Proyek

Analisis pengendalian proyek digunakan untuk mengendalian biaya dan waktu proyek yang dikerjakan. Dalam penelitian ini metode yang digunakan adalah EVM. EVM merupakan sebuah metode untuk mengetahui kemajuan sutu proyek lebih besar atau lebih kecil dari anggaran yang seharusnya dan lebih cepat atau lebih lambat dari jadwal yang seharusnya (Sarno, 2012).

3.2.1 Analisis Earned Value Management (EVM)

Progres rencana pengerjaan proyek dapat dilihat pada tabel 8 dan progres aktual pengerjaan proyek dapat dilihat pada tabel 9 berikut:

Tabel 8 Rencana Pengerjaan Proyek

Tuber o Res	В	n (%)		
Nama Kegiatan	obot (%)	Mi nggu 1	Mi nggu 2	Minggu 3
Persiapan	2 %	2 %	2 %	2 %
Galian Dasar	1 %	1 %	1 %	1 %
Lapis Pondasi Agregat	2 0,30%	-	20, 30%	20,30%
Lapis Resap Pengikat - Aspal Cair	6 ,50%	-	-	6,50 %
Lapis Permukaan Penetrasi Macadam	6 3 %	-	-	63 %
Lapis Pondasi Bawah Telford	7 ,2 %	7,2 %	7,2 %	7,2 %
Total Bobot	1 00%	10, 2 %	30, 5 %	100,00%

Tabel 9 Progres Pengerjaan Proyek

	B_		Pengerjaan (%))
Nama Kegiatan	obot (%)	Mingg u 1 (Rp)	Minggu 2 (Rp)	Minggu 3 (Rp)
Persiapan	2 %	2 %	2 %	2 %
Galian Dasar	1 %	1 %	1 %	1 %
Lapis Pondasi Agregat	2 0,30%	-	20,30%	20,30%
Lapis Resap Pengikat - Aspal Cair	6 ,50 %	-	-	5,5 %
Lapis Permukaan Penetrasi Macadam	63 %	-	-	57 %
Lapis Pondasi Bawah Telford	,2 %	5,5 %	5,5%	5,7 %
Total Bobot	$\begin{matrix} 1\\00\%\end{matrix}$	8,5 %	28,8 %	91,5%
Actual Cost (AC)		16.649. 987,00	56.414.0 73,6	179.232 .213,00
Original Time Estimate		19 hari	19 hari	19 hari

Bobot aktual yang ada pada tabel progres pengerjaan proyek didapat dari laporan pengerjaan kegiatan setiap hari oleh mandor kepada pelaksanan teknis dan kemudian dilaporkan kepada penanggung jawab teknis.

3.2.2 Analisis Varian

Untuk menghitung EVM dibutuhkan beberapa elemen yaitu *Planned Value* (PV), *Earned Value* (EV), *Actual Cost* (AC), *Cost Variance* (CV) dan *Schedule Variance* (SV) (Sarno, 2012). PV adalah biaya yang dianggarkan untuk pekerjaan yang dijadwalkan dalam suatu periode tertentu dengan rumus sebagai berikut:

$$PV = (\% \text{ Progres rencana}) \times Budget \text{ at Completion (BAC)}$$
 (4)

EV adalah biaya yang dianggarkan untuk pekerjaan yang telah selesai dikerjakan, dimana rumusnya:

$$EV = (\% \text{ progres aktual}) \times Budget \text{ at Completion (BAC)}$$
 (5)

AC adalah indikator dari tingkatan sumber daya yang telah dihabiskan untuk mencapai pencapaian kerja yang sebenarnya sampai pada titik waktu tertentu.

CV menunjukkan apakah proyek menghabiskan lebih kecil atau lebih besar anggaran daripada yang seharusnya. Dimana rumusnya :

$$CV = EV - AC$$
 (6)

Sedangkan SV menunjukkan apakah proyek lebih cepat atau lebih lambat dari jadwal. Dimana rumusnya :

$$SV = EV - PV \tag{7}$$

Dari rumus 4, 5, 6 dan 7 maka didapat nilai PV, EV, AC, CV dan SV sebagai berikut :

Tabel 10 Nilai PV,EV,AC,CV dan SV

A nalisis Varian	Minggu 1 (Pekej Hari ke 1 sd 7) (Rp)	Minggu 2 (Pekej Hari ke 8 sd 14) (Rp)	Minggu 3 (Pekej Hari ke 15 sd 21) (Rp)
P V	19.979.984,4	59.744.071	195.882.200
V E	16.649.987	55.826.427	179.232.213
C V	0	587.646,66	0
S V	-3.329.997,4	-3.917.644	-16.649.987

Berdasarkan tabel 10 didapatkan kesimpulan bahwa: Pada minggu ke 1 CV 0 artinya pekerjaan yang diselsaikan pada minggu ke 1 sama dengan biaya yang dikeluarkan, namun SV Rp.-3.329.997,4 artinya kinerja buruk karena pekerjaan yang terlaksana lebih sedikit dibandingan dengan yang dijadwalkan. Sementara pada minggu ke 2 CV menghasilkan Rp.-587.646,66 artinya pekerjaan yang diselesaikan pada minggu ke 2 lebih rendah dibandingkan dengan biaya yang dikeluarkan, SV Rp.-3.917.644 artinya kinerja buruk karena pekerjaan yang terlaksana lebih sedikit dibandingan dengan yang dijadwalkan. Sedangkan pada minggu ke 3 CV 0 artinya pekerjaan yang diselsaikan pada minggu ke 3 sama dengan biaya yang dikeluarkan, namun SV Rp.-16.649.987 artinya kinerja buruk karena pekerjaan yang terlaksana lebih sedikit dibandingan dengan yang dijadwalkan

3.2.3 Analisis Indek Kerja

Analisis indeks kerja terdiri dari dua elemen yaitu *Schedule Performance Index* (SPI) dan *Cost Performance Index* (CPI) (Sarno, 2012). Dimana SPI mengidentifikasikan seberapa efisien tim proyek dalam memanfaatkan waktu. Dimana rumusnya sebagai berikut:

$$SPI = EV/PV$$
 (8)

Sedangkan CPI merupakan Indikator efisiensi biaya proyek dengan rumus:

$$CPI = EV/AC (9)$$

Dari rumus 8 dan 9 maka didapat nilai SPI dan CPI sebagai berikut :

Tabel 11 Nilai SPI dan CPI

I ndeks Kerja	Minggu 1 (Pekej Hari ke 1 sd 7)	Minggu 2 (Pekej Hari ke 8 sd 14)	Minggu 3 (Pekej Hari ke 15 sd 21)
C PI	1	0,99	1
S PI	0,83	0,93	0,92

Dari tabel 11 dapat diambil kesimpulan bahwa pada CPI minggu ke 1 dan ke 3 menghasilkan nilai 1 artinya kinerja biaya sama dengan yang dianggarkan sedangkan pada minggu ke 2 CPI menghasilkan nilai 0,99 kurang dari 1 artinya biaya yang dikeluarkan melebihi anggaran. Namun SPI pada minggu 1,2 dan 3 menghasilkan nilai 0,83, 0,93 dan 0,92 kurang dari 1 artinya proyek yang dikerjakan melebihi estimasi waktu yang dijadwalkan.

3.2.4 Analisis Estimasi Biaya dan Waktu Penyelesaian Proyek

Analisis estimasi penyelesaian proyek terdiri dari 2 estimasi yaitu estimasi biaya proyek *Estimate at Completion* (EAC) dan *Estimate Time to Complete* (ETC) (Sarno, 2012). EAC berguna untuk mengetahui biaya akhir jika tren yang sama berlanjut, dimana rumus EAC sebagai berikut:

$$EAC = BAC / CPI$$
 (10)

Sedangkan ETC menunjukkan berapa waktu penyelesaian pekerjaan, dimana rumusnya sebagai berikut:

Dari rumus 10 dan 11 maka didapat nilai EAC dan ETC sebagai berikut :

Tabel 12 Nilai EAC dan ETC

In deks Kerja	Minggu 1 (Pekej Hari ke 1 sd 7)	Minggu 2 (Pekej Hari ke 8 sd 14)	Minggu 3 (Pekej Hari ke 15 sd 21)
E AC	195.882.200	197.860.808,1	195.882.200
E TC	22,89 = 23 Hari	20,43 = 21 Hari	20,65 = 21 Hari

Dari tabel 12 dapat diambil kesimpulan bahwa pada EAC minggu ke 1 dan ke 3 menghasilkan nilai Rp.195.882.200 artinya proyek sesuai dengan estimasi biaya untuk waktu ke depan, sedangkan pada minggu ke 2 dihasilkan nilai 197.860.808,1 artinya proyek melebihi anggaran untuk waktu ke depan. Sedangkan nilai ETC untuk minggu ke 1, 2 dan 3 menghasilkan nilai 23, 21 dan 21 artinya proyek akan mengalami keterlambatan penyelesaiannya.

3.2.5 Hasil Analisis Metode EVM

Berdasarkan hasil analisa varian, indeks kerja dan estimasi, maka didapatkan rekapitulasi hasil analisa metode EVM seperti pada tabel 13 berikut:

Tabel 13 Rekapitulasi Hasil Analisis Metode EVM

	Analisa Varian		Analisa Indeks Kerja		Ana	Analisa Estimasi	
M — inggu ke-	Waktu	Biay a	W aktu	Bi aya	Wakt u	Biaya	
KC-	SV (Rp)	CV (Rp)	S PI (Rp)	C PI (Rp)	ETC (Hari)	EAC (Rp)	
1	3.329.997,4	0	0 ,83	1	23	195.882. 200	
2	3.917.644	587.646,66	0 ,93	0,9 9	21	197.860. 808,1	
3	- 16.649.987	0	0 ,92	1	21	195.882. 200	

Dari Tabel 13 dapat diambil kesimpulan bahwa proyek diperkirakan mengalami keterlambatan dari jadwal yang direncanakan dilihat pada minggu ke 3 nilai ETC adalah 21 hari sedangkan estimasi penyelesainnya adalah 19 hari. Sedangkan biaya proyek yang dikel;uarkan sesuai dengan biaya yang dianggarkan dilihat pada minggu ke 3 nilai EAC Rp.195.882.200.

ISBN: 978-602-1180-50-1

4. KESIMPULAN

Dari hasil pengujian maka didapatkan kesimpulan sebagai berikur:

kesalahan dalam perhitungan waktu pengerjaan proyek dan estimasi biaya proyek yang dikarenakan perhitungan waktu dan biaya proyek berdasrkan perkiraan. Keterlambatan dalam pengerjaan pekerjaan-pekerjaan proyek mengakibatkan proyek tidak dapat selesai sesuai dengan waktu yang dijadwalakan sehingga berakibat biaya proyek akan bertambah yang dikarenakan penambahan waktu pengerjaan proyek

- 1. Dengan menggunakan metode EVM dapat mengurangi kesalahan dalam mengestimasikan biaya dan jadwal proyek.
- 2. Dengan menggunakan metode EVM dapat mengendalikan biaya dan waktu proyek agar biaya dan waktu pengerjaan proyek sesuai dengan yang direncanakan.

UCAPAN TERIMA KASIH

Puji syukur kehadirat Allah SWT, atas berkat taufik serta hidayah-Nya saya dapat menyelesaikan penelitian dan makalah yang berjudul Penerapan Metode Earned Value Management (EVM) Dalam Pengendalian Biaya Proyek. Terima kasih juka kepada suami, anakanak saya jan juga orang tua yang selalu mendoakan dan memberikan dukungan.Dan terima kasih juga kepada teman-teman di Prodi Teknik Informatika Unikom atas saran dan kritiknya.

DAFTAR PUSTAKA

Abrar. Husen, 2011, Manajemen Proyek, Yogyakarta: Andi

Ervianto, W, I. 2005, Manajemen Proyek Konstruksi, Yogyakarta: Andi

Nurhayati. 2010, Manajemen Proyek, Yogyakarta: Graha Ilmu

Sarno, R. 2013, Analisis dan Desain Berorientasi Servis Untuk Aplikasi Manajemen Proyek,

Yogyakarta: Andi

Widiastuti, I. 2013, Manajemen Konstruksi, Bandung: Rosda.