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Abstract. 

This paper discuss the impact of dispersion and non-linear terms combinations the surface wave equation particularly on the 

peaking phenomena of the wave water that initially in the form of a bichromatic wave. The study for both of these terms are 

focused on the position where the bichromatic wave experience its highest peaking and its related bichromatic amplitude 

amplification. In the previous study, the position where the bichromatic wave experience its highest peaking is of order  

 and its bichromatic amplitude amplification is of order , where  and  are the amplitude and 

frequency of the bichromatic wave envelope, respectively. This result is based on the fifth order Korteweg de Vries (KdV) 

equation and the quantity that obtained is called Maximal Temporal Amplitude (MTA). However, despite the the position 

where the bichromatic wave experience its highest peaking suits the result  of Stansberg experiment and the result of 

numerical calculation using HUBRIS, its related bichromatic wave amplitude amplification is not close enough. The source 

of this discrepancy is suspected from the dispersion and non-linear terms of the KdV equation used. This study shows that 

the existence of the dispersion and non-linear terms influences the position of  Maximal Temporal Amplitude (MTA) and its 

bichromatic wave amplitude amplification.  For the coefficient of dispersion term of 1.0065 and  nonlinear term of , the 

position of MTA and bichromatic wave amplitude amplification suits the result of Stansberg experiment and the result of 

numerical calculation using HUBRIS. 
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Introduction 

This paper focuses on phenomena highest peaking of bi-chromatic waves during their propagation in 

hydrodynamics laboratory. The phenomena are very likely to occur because characteristic of bichromatic waves 

tend to unstable during their propagation, as mentioned by Zakharov [1]. The research that produces this paper 

was motivated by the needs of hydrodynamic laboratory aims to generate extreme waves in the wave tank at the 

desired position. Generated extreme waves will be used to test the floating objects, such as ships and other 

offshore construction, before the actual operating conditions. In [2,3], an extreme wave, which is also known as 

the giant wave, defined as the wave that has a height more than 2.2 times the average height of the waves around 

it. It is known that the extreme wave is unique waves. Besides it rare occurs, it also cannot be predicted. 

However, impact of these waves can cause significant damage to the objects around them, as described by Earle 

[4], Mori et al [5], Divinsky and Levin [6], Truslen and Dysthe [6], Smith [8], and Toffoli and Bitner [9]). 

Because it, researchers have done a lot of research on extreme wave, especially to understand the propagation 

and phenomena of appearance of the wave.  

 

In general, properties of water waves are influenced by dispersion behavior and nonlinearity of water medium 

[10-13], during their propagation. Both of these properties lead to a shape changing of water wave as space and 

time function [12,13]. Splitting and peaking of waves during its propagation mark this shape change. Much of 

researches on waves, especially bichromatic waves, either by experimental, analytical or numerical have been 

done. Based on experimental results, Stansberg [14] and Westhuis [15,16] conducted a numerical study of the 

bichromatic wave. It is obtained that the highest splitting and peaking occur of bichromatic wave depends on 

two wave parameters, namely amplitude and frequency. Related to this, Marwan and Andonowati [13], by using 
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a third-order approximation of KdV equation and a quantity called as MTA, founded that the position where 

bichromatic wave reaches highest peaking of order . It is seen that that position also depends on two 

wave parameters mentioned. Obtained results with that approximation in accordance with the results of 

Stansberg’s experiment [14] and Westhuis’ numerical study [15,16], as described in Marwan [17]. However, 

although it can predict the position, a third-order approximation of KdV equation did not to be able to predict an 

increase of, either bichromatic or Benjamin-Feir, wave amplitude (see Marwan [17,18] and Ramli [19]). In the 

other word, obtained results do not appropriate with the Stansberg’s experimental results [14] and Westhuis’ 

numerical study [16] to predict an increase of bichromatic wave amplitude. In the beginning, this 

incompatibility is expected because calculation is done to third-order only. Therefore, Ramli, et al [20] did a 

study about bichromatic wave propagation with fifth-order of KdV equation and MTA. Obtained results show 

that there is an increase of the related bichromatic wave amplitude as a high order influence. Nevertheless, the 

increasing is still not suitable with Stansberg’s experimental result [14] and Westhuis’ numerical study [16]. It 

should be stated that the KdV equation used in conducted study is KdV equation with exact dispersion relation 

found by Groesen [21]. 

 

This paper discuss an influence of the existence of the dispersion and the non linear terms toward an increase of 

bichromatic wave amplitude. Here bichromatic waves are superposition of two monochromatic waves that have 

same amplitude but slightly different of frequencies. Model used is KdV equation found by Cahyono [22] and a 

quantity called Maximal Temporal Amplitude (MTA), as mentioned in Marwan [13]. With this model is 

expected to able to be found dispersion and non linear terms of KdV equation, so that calculation results can be 

suitable with, either experimental or numerical results that have done before.       

 

This paper was organized as the following. In section 2 will be presented mathematical model used and solution 

model up to third order. Deriving a period of maximum amplitude will be expressed in section 3. Some 

ilustrations for bi-chromatic case with various value of dispersion and nonlinear term will be described in this 

section. Finally this paper ends with conclusion. 

Mathematical Model 

Long wave model gratification with small amplitude that propagates in one direction at the surface can be 

represented by the KdV equation. In normalized variable, KdV equation can be written in the form [22] 
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 denotes wave elevation,  and  are, spatial and time variables, respectively. In this paper, it was assummed  

that equation (1) can be expressed as  

,                  (2) 

called modified KdV (mKdV). In Groesen [21], values of  and  are  and , respectively. Dispersion relation 

which is relate frequency and wave number is denoted by = . That relation is 

called as exact dispersion relation. Relation laboratory variables , ,  and normalized variables can be 

obtained through transformation , , and  with h is depth and g is gravity 

accelaration. Spatial variable x denotes horizontal direction and t is time variable. 

 

As the research that has been conducted before [13,17,18], in this paper, an approximation for the solution 

equation (2) was determined by using asymtotic ekspantion in the power series form up to third-order toward 

elevation amplitude, which is written 

                (3) 

with  adalah a positive number, until first order represents amplitude of wave elevation. Form  and 

 , respectively, are linear solution, non-linear second order and non-linear third-order side band for wave 
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elevation. It has been known that this method will produce resonance part in third-order. To avoid them, 

corecction is needed to conduct to wave number through development technique of Linstead-Poincare [23] 

.              (4) 

Because this paper focuses on bichromatic wave, first order solution was selected bi-chromatic wave that is 

written in the following form 

              (5) 

with , ,  where c.c denotes complex conjugate. 

 

Furthermore, substitution (4) and (5) into (2) and equating coefficients  that have the same power are obtained 

 like in (4). At second order  it is obtained  and  

             (6) 

where  

 

 

 
 

Resonance part at third-order produce a definition about non-linear dispertion relation  

 

where  

              (7) 

here  is group velocity. Besides that, the thrid-order non-linear resonance part has a 

form called third-order side band with frequency is almost same with first-order frequency. Third-order side 

band is expressed in the form, 

              (8) 

where 

 
 

This paper focuses on a solution that satisfies the initial conditions at wave maker, , 

, as mentioned in [13,17,18]. Therefore, here the problem is boundary value 

problem 

               

With boundary conditions 

              (9) 

here . To satifies the initial conditions at wave maker, the existence of the second and third-order 

part at that position tersebut has to be compensated with a part that called as free waves. Free waves, either 

second order or third-order satifiy linear dispersion relation. The secod order and third-order side band of 

freewaves are written  

 (10) 

and 

              (11) 

with . 
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Maximal Temporal Amplitude and Its Maximum Position 

As mentioned in Groesen, et al [10], Westhuis, et al [15,16], Stansberg [14] and Zakharov [1], as effect of 

nonlinearity, the surface water waves experience the phenomena of peaking and splitting during their 

propagation in hydrodynamics laboratory. This phenomena, especially in peaking, can be observed using a 

quantity called the MTA as reported in [12,13]. The scale used to measure the height of the wave at each 

position, which is defined as 

 
 

L specifies the length of the wave tank [20]. Then, the comparison of MTA at extreme position and the initial 

position called the amplitude amplification factor ( ), which is defined as 

 
with  represent the position where MTA reach maximum [20].  

 

Using the same procedure as in [13,17,18], it can be shown that the modulated length of the carrier wave is  

 
with  and . Consequently, the position where bishromatic waves 

experience the highest peaking can be written as  

             (12) 

  

with  [21].  

 

The following is presented some results of calculation and graphics by using the third order approximation of 

the mKdV equation as expressed in equation (2). Values assigned use MKS system (m,kg,s). Comparisons with 

some previous approximations that have been studied are presented also. 

 

As an example case, it was used a bi-chromatic waves generated in the laboratory hydrodynamics with the depth 

and length of, respectively, 5 m and 250 m. Table 2 shows the calculation result of maximum position and 

amplitude amplification of bichromatic waves using mKdV equation for several values of   and . It shows 

that the combination of both  and  influence the maximum position and the amplitude amplification of 

bichromatic waves. It gives justification that the existences of dispersion term and non linear term influence the 

calculation of maximum position and the amplitude amplification of bichromatic waves. Furthermore, Figure 1 

shows MTA graph calculated using third order mKdV equation in (2) for several values of   and based on 

Table 2. It shows that MTA having the value   and  (red) has the largest MTA compare to the 

MTA for the values of  and  (black) as well as  (blue). If consider from its maximum 

position, the MTA calculated using third order mKdV equation (2) using  ,  (red),  

(black),  (blue) all show almost similar position, as shown in Table 2. 

 

 

Table 1. Bichromatic wave parameters in laboratory scale and parameter in the normalized scale. 

Parameter Laboratory Scale Normalized Scale 

   

   

   

   

   

 

 

 

 

 



Proceedings of The 4th Annual International Conference Syiah Kuala University (AIC Unsyiah) 2014 

In conjunction with The 9th Annual International Workshop and Expo on Sumatran Tsunami Disaster and Recovery – AIWEST-DR 2014 

October 22-24, 2014, Banda Aceh, Indonesia 

51 

 

Table 2. The maximum position of the MTA and amplification factor for some values of c0 and c1 with , , and  

Case 
  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1. Plots of Maximal Temporal Amplitude for several values of c1 with , , , 

and . c1=0.0065 (red), c1=0.005 (black) and c1=0 (blue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plots of Maximal Temporal Amplitude for , , , and  were 

calculated by using some approximations. HUBRIS (red), third-order mKdV with   (purple), fifth-

order KdV (green) and third-order KdV (blue). 

 

Figure 2 shows MTA graph for , , , and  calculated using four methods : 

HUBRIS (red), third order mKdV with   (violet), fifth order KdV (green) and third order KdV 

(blue). It shows that the maximum position of MTA calculated using all four methods produces almost the same 

results. However, the maximum value of MTA calculated usning all four methods produces result that 

significantly different. Based on the result shows in Table 2, the maximum value of MTA for , 

, , and  calculated using thir order mKdV with  suits the result of 
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numerical calculation in HUBRIS as well as the result of Stansberg experiment. This indicate the needs for 

further study regarding the dispersion term and non linear term of KdV equation that was found by Groesen [21] 

. 

Concluding Remarks 

This study has investigated the influence of dipsersion term and non linear term on the surface waves equation 

over the peaking phenomena of bichromatic waves. The study is conducted using KdV equation having pseudo 

differential operator and a quantiry called MTA. It found that there is influence of dispersion term and non 

linear term over the maximum position and the amplitude amplification of the bichromatic waves. For the 

dispersion term coefficient of 1.0065 and tne nonlinear term coefficient of   of the mKdV used, it found that the 

maximum position and amplitude amplification of bichromatic waves calculated using third order mKdV and its 

MTA suits the result of of numerical calculation in HUBRIS as well as the result of Stansberg experiment. 

Therefor, it needs further study to investigate the dispersion term and non linear term of KdV eqaution that was 

found in the previous studies. 
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