The Second International Conference
On Engineering And Technology Development

28 - 30 January 2013
Bandar Lampung University (UBL)
Lampung, Indonesia

PROCEEDINGS

Organized by:

Faculty of Computer Science and Faculty of Engineering
Bandar Lampung University (UBL)
Jl. Zainal Abidin Pagar Alam No.89 Labuhan Ratu, Bandar Lampung, Indonesia
Phone: +62 721 36 666 25, Fax: +62 721 701 467
website: www.ubl.ac.id
PREFACE

The Activities of the International Conference is in line and very appropriate with the vision and mission of Bandar Lampung University (UBL) to promote training and education as well as research in these areas.

On behalf of the Second International Conference on Engineering and Technology Development (2nd ICETD 2013) organizing committee, we are very pleased with the very good response especially from the keynote speaker and from the participants. It is noteworthy to point out that about 80 technical papers were received for this conference.

The participants of the conference come from many well known universities, among others: University Kebangsaan Malaysia – Malaysia, APTIKOM – Indonesia, Institut Teknologi sepuluh November – Indonesia, Surya Institute – Indonesia, International Islamic University – Malaysia, STMIK Mitra Lampung – lampung, Bandung Institut of Technology – Bandung, Lecture of The Malahayati University, B2TP – BPPT Researcher – lampung, Starch Technology Center – Lampung, Universitas Islam Indonesia – Indonesia, Politeknik Negeri Malang – Malang, University of Kitakyushu – Japan, Gadjah Mada University – Indonesia, Universitas Malahayati – Lampung, Lampung University – lampung, Starch Technology Center – Lampung, Universitas Riau – Riau, Hasanuddin University – Indonesia, Diponegoro University – Indonesia, King Abdulaziz University – Saudi Arabia, Parahyangan Catholic University – Indonesia, National Taiwan University – Taiwan, Surakarta Christian University – Indonesia, Sugijapranata Catholic University – Indonesia, Semarang University – Indonesia, University of Brawijaya – Indonesia, PPKIA Tarakanita Rahmawati – Indonesia, Kyushu University, Fukuoka – Japan, Science and Technology Beijing – China, Institut Teknologi Sepuluh Nopember – Surabaya, Researcher of Starch Technology Center, Universitas Muhammadiyah Metro – Metro, National University of Malaysia – Malaysia.

I would like to express my deepest gratitude to the International Advisory Board members, sponsor and also to all keynote speakers and all participants. I am also grateful to all organizing committee and all of the reviewers who contribute to the high standard of the conference. Also I would like to express my deepest gratitude to the Rector of Bandar Lampung University (UBL) who give us endless support to these activities, so that the conference can be administrated on time.

Bandar Lampung, 29 August 2013-08-26

Mustofa Usman, Ph.D
2nd ICETD Chairman
The Second International Conference
On Engineering And Technology Development

28 -30 January 2013

INTERNATIONAL ADVISORY BOARD

Y. M Barusman, Indonesia
Ahmad F. Ismail, Malaysia
Mustofa Usman, Indonesia
Moses L. Singgih, Indonesia
Andreas Dress, Germany
Faiz A.M Elfaki, Malaysia
Warsono, Indonesia
Raihan Othman, Malaysia
Zeng Bing Zen, China
Tjin Swee Chuan, Singapore
Khomsahrial R, Indonesia
Rony Purba, Indonesia
Alex Tribuana S, Indonesia
Hon Wei Leong, Singapore
Imad Khamis, USA
Rozlan Alias, Malaysia
Rudi Irawan, Indonesia
Gusri Ibrahim, Indonesia
Jamal I Daoud, Malaysia
Riza Muhida, Indonesia
Heri Riyanto, Indonesia
Agus Wahyudi, Indonesia
Lilies Widojoko, Indonesia
PROCEEDINGS

2nd ICETD 2013
The Second International Conference
On Engineering And Technology Development

28 - 30 January 2013

STEERING COMMITTEE

Executive Advisors
Dr. M. Yusuf S. Barusman
Andala R. P. Barusman, MA.Ec

Chairman
Mustofa Usman, Ph.D

Co-Chairman
Dr. Ir. Hery Riyanto, MT
Ahmad Cucus, S.Kom., M.Kom

Secretary
Marzuki, S.Kom., M.Kom
Maria Shusanti Febrianti, S.Kom., M.Kom

Technical Committee
Indyah Kumoro, ST. IAI
Ardiansyah, ST., MT
Sofiah Islamiah, ST. MT
Taqwan Thamrin, ST., MSc
Dina Ika Wahyuningsih, S.Kom
Agus Sukoco, M.Kom
Hj. Susilowati, ST. MT
Haris Murwadi, ST, MT
Robby Yuli Endra, S.Kom., M.Kom
Fenty Ariani, S.Kom., M.Kom

Treasure
Samsul Bahri, SE
Dian Agustina, SE
PROCEEDINGS

2nd ICETD 2013
The Second International Conference
On Engineering And Technology Development

28 -30 January 2013

ORGANIZING COMMITTEE

Chair Person
Dr. Ir. Hery Riyanto, MT

Vice Chair Person
Yuthsi Aprilinda, S.Kom., M.Kom

Treasure
Dian Agustina, S.E

Secretary
Aprizal, ST. MT
Ir. Tjejeng Sofyan, MM
Ir. Muhammad Zein, MT
Ir. Bambang Pratowo, MT

Special Events
Ir. Juniardi, MT
Ir. Indra Surya, MT
Ir. Sugito, MT
DR. Baginda Simaibang, M.Ed
Berry Salatar, S.Pd
Yanuar Dwi Prasetyo, S.Pd.I., M.A

Receptionist
Ir. Najamudin, MT
Kunarto, ST. MT
IB. Ilham Malik, ST. MT
Ir.A Ikhsan Karim, MT
Ir. Asikin, MT
Usman Rizal, ST., M.MSi

Transportation and Accommodation
Irawati, SE
Desi Puspita Sari, S.E
Tanto Lailam, S.H
Ilyas Sadad, S.T., M.T

Publication and Documentation
Ir. Indriati Agustina Gultom, M.M
Noning Verawati, S.Sos
Hesti, S.H
Rifandi Ritonga, SH
Violita, S.I.Kom

Consumption
Dra. Yulfiwini, M.T
Wiwin Susanty, S.Kom., M.Kom
Fenty Arianyi, S.Kom., M.Kom
Reni Nursyanti, S.Kom., M.Kom
Erlangga, S.Kom
Arnes Yuli Vandika, S.Kom

Facility and Decoration
Siti Rahma Wati, SE
Dina Ika Wahyuningisih, S.Kom
Zainal Abidin, SE
Ahyar Saleh, SE
Eko Suhardiyanto
Wagino
Sugimin
Table Of Content

Organizing Committee ... i
Table Of Content .. v

Keynote Speaker

1. Recent Advances in Biofuel Cell and Emerging Hybrid System
 Abdul Aziz Ahmad and Raihan Othman .. 1

2. Waste Utilization Study Tailing Gold Mine in Way Linggo-Lampung, as Fine Aggregate Materials for Producing Mortar Materials based on concept of Green Technology
 Lilies Widojoko & Susilawati ... 8

3. Infrastructure Health Monitoring System (SHM) Development, a Necessity for Maintance and Investigation
 Prof. Dr. Priyo Suprobo, Faimun, Arie Febry .. 17

4. Four Phases Quality Function Deployment (Qfd) By Considering Kano Concept, Time And Manufacturing Cost
 Prof. Dr. Moses L Singgih, Dyah L. Trenggonowati, Putu D. Karningsih 22
Speaker

1. Comparative Analysis for The Multi Period Degree Minimum Spanning Tree Problem
 Wamiliana, Amanto, and Mustofa Usman .. 39

2. Choosing The Right Software In Supporting The Successful of Enterprise ERP Implementation
 Yodhie Yuniarthe, Idris Asmuni .. 44

3. Climate Adaptive Technology In Maintaining Vernacularism Of Urban Kampong
 Case study: Kampung Adat (Indiginous) Mahmud, Bandung District, West Java
 Marcus Gartiwa ... 50

4. The Prospect Of Diesohol In Facing Fossil Fuel Crissis
 M.C. Tri Atmodjo ... 63

5. The Potential Of Agriculture And Forestry Biomass Wastes As Source Of Bioenergy
 Hardoyo .. 66

6. The Importance of Education Facility as Sustainable Urban Generation Tool
 Fritz Akhmad Nuzir, Haris Murwadi and Bart Julien Dewancker 71

7. The implementation of Secton Method for Solving Systems of Non Linear Equations
 Nur Rokhman .. 80

8. Quality Control Analysis Into Decrease The Level Defects On Coffee Product
 Heri Wibowo, Sulastri and Emy Khikmawati 85

9. Public Transportion Crisis In Bandar Lampung
 Ida Bagus Ilham Malik .. 89

10. Geospatial Analysis of Land Use Change in Way Kuripan Watershed, Bandar Lampung City
 Candra Hakim Van Rafi‘i1., Dyah Indriana Kusumastuti2., Dwi Jokowinarno
 ... 99

11. Material Utilization Technology Of Agriculture And Forestry Waste
 Hardoyo .. 105

12. The Supply Chain System Of Cassava On The Tapioca Industry
 Hardoyo .. 108

13. Glass Technology In Natural Light Glasses On Aperture Element In The Architecture World
 Muhammad Rija & MT Pedia Aldy .. 113
 Firdaus Chairuddin, Wihardi Tjaronge, Muhammad Ramli, Johannes Patanduk ... 117

15. Coordination Of Architectural Concepts And Construction Systems
 Eddy Hermanto. ... 129

16. Seismic Assessment of RC Building Using Pushover Analysis
 Riza Ainul Hakim.. 136

17. Viscosity and Liquidity Index Relation for Elucidating Mudflow Behavior
 Budijanto Widjaja and Shannon Hsien-Heng Lee... 143

18. The Use of Pozzolanic Material for Improving Quality of Strontium Liquid Waste Cementation in Saline Environment during Nuclear Waste Immobilization Process
 Muhammad Yusuf, HayuTyasUtami, Tri SulistiyoHariNugroho, SusetyoHarioPutero ... 148

19. Geospatial Analysis Of Land Use And Land Cover Changes For Discharge At Way Kualagaruntang Watershed In Bandar Lampung
 Fieni Yuniarti, Dyah Indriana K, Dwi Joko Winarno... 153

20. Wifi Network Design For High Performance
 Heru Nurwarsito, , KasyfulAmron, BektiWidyaningsih ... 161

 Yasser, Herman Parung , M. Wihardi Tjaronge, Rudy Djamaluddin....... 167

22. The Research Of Slow Release Nitrogen Fertilizer Applied In Sugarcane (Saccharum Officinarum) For Green Energy Bioethanol
 M.C. Tri Atmodjo, Agus Eko T. Nurul Rusdi, Sigit Setiadi, and Rina........ 179

23. Energy Utilization Technology Of Agriculture And Forestry Waste
 Hardoyo... 185

24. Implementation Of Fuzzy Inference System With Tsukamoto Method For Study Programme Selection
 Fenty Ariani and Robby Yuli Endra. ... 189

25. The Analysis of Video Conference With ITU Standarization (International Telecommunication Union) That Joining in Inherent At Bandar Lampung University
 Maria Shusanti F, Happy Reksa .. 201
26. The E-internal audit iso 9001:2008 based on accreditation form assessment matrix in study program for effectiveness of monitoring accreditation
 Marzuki, Maria Shusanti F. ... 207

27. The Developing Of e-Consultations For Effectiveness of Mentoring Academy
 Ahmad Cucus, Endang K ... 214

28. The Evaluation of information system performance in higher education case study with EUCS model at bandar lampung university
 Reni Nursyanti, Erlangga. ... 221

29. The Analysis of History Collection System Based On Android Smartphone With Qr Code Using Qr Code Case Study: Museum Lampung
 Usman Rizal, Wiwin Susanty, Sutrisno ... 230

30. Application of Complaint Handling by Approach Model of ISO 10002 : 2004 to Increase Complaint Services
 Agus Sukoco and Yuthsi Aprilinda .. 235

31. Towards Indonesian Cloud Campus
 Taqwan Thamrin, Ina Lukman, Dina Ika Wahyuningsih 252

32. Bridging Router to ADSL Modem for Stability Network Connection
 Arnes Yuli Vandika and Ruri Koesliandana 257

33. The Effect of Use Styrofoam for Flexural Characteristics of Reinforced Concrete Beams
 Yasser, Herman Parung, M. Wihardi Tjaronge, Rudy Djamaluddin 261

34. The Estimation Of Bioethanol Yield From Some Cassava Variety
 M.C. Tri Atmodjo .. 273

35. Effect of Superficial Velocity of Pressure Difference on The Separation of Oil And Water by Using The T-Pipe Junction
 Kms. Ridhuan and Indarto .. 277

36. The use of CRM for Customer Management at Cellular Telecommunications Industry
 Ayu Kartika Puspa .. 293

37. Indonesian Puslit (Centre Of IT Solution) Website Analysis Using Webqual For Measuring Website Quality
 Maria Shusanti Febranti and Nurhayati ... 297

38. The E-internal audit iso 9001:2008 based on accreditation form assessment matrix in study program for effectiveness of monitoring accreditation
 Marzuki, Maria Shusanti F. ... 307
 Agus Sukoco ... 320

40. Value Analysis Of Passenger Car Equivalent Motorcycle (Case Study Kartini Road Bandar Lampung)
 Juniardi, Aflah Efendi .. 337

41. Alternative Analysis Of Flood Control Downstream Of Way Sekampung River
 Sugito, Maulana Febramsyah. .. 347

42. Analysis Of Fitness Facilities And Effective Use Of Crossing Road
 Juniardi, Edi Haryanto. ... 353

43. Study On Regional Development Work Environment Panjang Port Lands In Support Bandar Lampung City As A Service And Trade
 Ir. A. Karim Iksan, MT, Yohn Ferry. ... 359

44. Analytical And Experimental Study Bamboo Beam Concrete
 Hery Riyanto, Sugito, Juli ... 370

45. Comparative Analysis Of Load Factor Method Static And Dynamic Method (Case Study Akdp Bus Route Rajabasa - Bakauheni)
 A. Ikhsan Karim, MT., Ahmad Zulkily. ... 378

46. Optimization Utilization Of Water Resources Dam Batutegi Using Method Of Linear Program
 Aprizal, HeryFitriyansyah.. 386

47. Characteristics Generation Traffic Patterns And Movement In Residential Area (Case Study Way Kandis Residential Bandar Lampung)
 Fery Hendi Jaya, Juniardi. .. 392

48. Use Study On Slight Beam Reinforced Concrete Floor Plate In Lieu Of Secondary Beam
 Hery Riyanto, Sugito, Lilies Widodjoko, Sjamsu Iskandar 399

49. Observation Of The Effect Of Static Magnetic Field 0.1 Mt On A-Amylase Activity In Legume Germination
 Rochmah Agustrina, Tundjung T. Handayani, and Sumardi. 405

50. Effectiveness Analysis Of Applications Netsupport School 10 Based Iso / Iec 9126-4 Metrics Effectiveness
 Ahmad Cucus, Nelcy Novelja ... 413

51. Comparative Performance Analysis Of Banking For Implementing Internet Banking
 Reza Kurniawan .. 418
COORDINATION of ARCHITECTURAL CONCEPTS and CONSTRUCTION SYSTEMS

Case Study:
The basic principles of building applications on Garuda II and sustainable development at the Dr. Kariadi hospital in Semarang.

Eddy Hermanto.
(S3 Engineering Student of Architecture and Urban)

Abstract: This paper reported the implementation of coordination between architectural concept and construction system in the area of Dr. Kariadi hospital, in Semarang central Java. In principle, the coordination in the design-construction process can achieve the benefits of development by improving the quality of technical design. The use of Tartan Grid concept closely related to the coordination module that integrates seamlessly blend with the application of the concept of green architecture and design quality indicator (dqi) in architectural design can improve the quality of technical design. Furthermore, the construction phase was green construction methods will improve the performance of related construction projects of sustainable keyword: minimizing waste and pollutants, and achieved self sufficient. Matters are very useful for the future utilization of the building through post-occupancy evaluation.

Keywords: system, tartan-grid, technology, sustainable development.

1. INTRODUCTION

The study was conducted at area hospitals Dr. Kariadi, in Semarang, which is being carried out and the construction of several tall buildings on the other side there is a protected historic building (conservation) which functioned for the general administration of the hospital.

Construction industry, in principle, is a project development activities are constrained execution time, different characteristics of each project, taking place once completed, which consists of its phase process: planning (master plan, feasibility study), design / drafting (basic / concept, preliminary, detail engineering), procurement (procurement), construction / physical implementation, acceptance, operation and maintenance. Development of the construction industry has now reached from Conventional, Rational until industry especially in the scope of the use of technologies that are industrializing, then the goal as described above to be
more of a challenge to be achieved so that the project which has one of the characteristics: large volume, high technology, high risk, using a multi-year contract sides need consideration: efficient, effective and accountable. In this context, one of the things that led to the success of construction projects is through the establishment of a construction project organization is partnering/alliance. Forms of partnering in principle follows the basic pattern and the shape of the relationship in Client-Designer-Contractor (CDC) (2,9).

The basic principle of the construction projects that have been put forward by: (1, 2), as the Iron Triangle consisting of the cost, time and quality, which is called the external triangle according to (9). The triangular relationship of the above to manage the three main components of project management: Time, Quality, Cost (TQC) as a success. Furthermore, the success of a construction project initially measured based TQC, but appropriate development is now an element of customer satisfaction including (6). The success of achieving quality of building construction projects are very closely related to the application of quality management worth and worth doing at all stages of the project (7). In a construction project there are stages where the design and construction phases of these two stages together have a major influence and contribute to determine the process to achieve the final product-quality especially on technical sides.

If the sequence is summarized in the development process, the things mentioned above will consist of: preparation includes green technology applications; site development and green or circumstances existing land / sites, green design and human-construction bionic. All of these items starting from the use of The Tartan-grid closely related to the coordination-module.

Now the green concept, in line with the global warming issue and the Millennium Development Goals (MDGs, especially the seventh point: ensure environmental sustainability, and eighth point: develop a global partnership for development) where the target based on the achievement of certain time-existence strengthens the role of architecture as science and art.

The concept of Tartan-column grid which is a blend of the interface and the distance of each column are the size dimensions of the corner column (20x20 CM2) and middle columns (10x10 CM2) are Necessary to support the roof providing a full freedom in moving the infill components. The Tartan-grid applications generate a regularity in the construction of buildings related to the architectural, structural, mechanical and electrical, outdoor space design, preparation of working space for the physical development of contractor activities, coordinating all of the modules in a system.

In the design process of the building needed a tool to define and evaluate the substance of the design (Design Quality Indicator / DQI). Operational applications based on side-by-side: the impact, build quality, and functionality. These three elements each have overlapping areas (as added value) and the third focal point is the overlapping area of excellence (3). Vitruvius on architecture principles in his book 'ten books in architecture', asserted his opinion that the basic principle should show as utility structure (the purpose and use), Firmitas (materials and construction) and Venustas (proportion and scale). Matters of the building has undergone significant changes that building designers are faced with a variety of quality improvement requirements and constraints that must be met, for example: buildings are designed in harmony environment (green building) and innovative (7).
In principle, the system at this stage of the design process of a building characterized as buildings that are generated through: definition of scope, analyzed and formed into three-dimensional and has a specific nature. So in the process of construction of the building there is a design process that determines the success of the quality of the building. In the design process should be sufficient to control the performance of the main section. It continues to the end of the construction process so that the project goal is reached (5). Caused by the project team's performance does not meet the quality of the result in reworking (reworks) are many times that lead to exceeding the project schedule. This is a fundamental weakness of the building because the building the appearance aspect of the system was not achieved (10).

It is therefore very important and essential for any development of land in an area, especially in urban areas to prepare for the construction of the building and its environment in an efficient, effective and accountable as long as possible, by the use of environmentally friendly technologies.

2. METHODOLOGY

Identify the problem in this study: how the coordination of architectural concepts and construction system can run smoothly? Respondents consisted of project owners, project technical team, consultant designers, construction management consultant, Public Works Department of Human Settlements central Java, all of which carried an interview. The necessary data is primary data, taken directly from the sampling unit with equipment / tool with a list of questions / questionnaires.

The objectives of the study are to determine design of the developed area; and to develop a model of system to achieve building performance.

3. RESULTS AND DISCUSSION
<table>
<thead>
<tr>
<th>Design Development</th>
<th>Site Development</th>
<th>Construction Site</th>
<th>Industry in Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANAGEMENT</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Partnering</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Monitoring and Evaluation</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Controlling</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Design Review</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Total Quality</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
<tr>
<td>Site Management</td>
<td>Site Development</td>
<td>Construction</td>
<td>Industry in Indonesia</td>
</tr>
</tbody>
</table>

Key Points of Scope

- **Design and Engineering**
 - Change in design and engineering
 - New ideas
 - Change in design and engineering
 - Revisions
 - New ideas

- **Construction**
 - Cost performance is not achieved
 - Construction failure

- **Building**
 - Performance is not achieved
 - Building failure

Key Points of Scope

- **Design and Engineering**
 - Change in design and engineering
 - New ideas
 - Change in design and engineering
 - Revisions
 - New ideas

- **Construction**
 - Cost performance is not achieved
 - Construction failure

- **Building**
 - Performance is not achieved
 - Building failure
The main characteristics of the coordination of architectural concepts in building design with construction system is a key to reduce the uncertainty of the final result as the performance of a building construction project. In this case the most important is the application of the system must be able to ensure coordination in the design and construction process so there is no conflict or disputes, rework, and even the failure of the construction. To achieve success, the coordination must be optimized in terms of the substance of design in sustainable construction management.

Based on the planning stage, Based on the planning stage, then it should be considered important aspects, such as the scope of work, the proper equipment, competent personnel, working methods and organizational culture to support the success of the design and construction process as a whole project. Similarly, post-construction phase depends on strategic decisions that have been made in the planning stage. Finally, at the time held the post occupation evaluation will achieve optimal building performance.

Figure 1. shows the basic framework mindset. Framework shows the process and substance of the most influential and interact within the system boundary. If in it there is a small effect due to the impact of design quality is achieved, then there is sustainable development.

Table 1. shows that Stage of the Design Process in which there are elements within each classification grouping interact internally activities affect the next stage of construction process in which an interaction of internal activity, finally there is the human bionomic stage of the process.

Table 2. shows that The Tartan Grid concept developed multi role function has a significant influence on the following aspects: 8-10 floor high building design, construction activity, and open space design. Occurred relative
similarity in coordination modules: 80-800-80cm. In this case, the various substances design object has a correlation with the size of the basis in coordination module.

4. CONCLUSION
This study, however, indicate that the importance of the role that design should be able to achieve an increase in the optimal design of technical quality in the process of building projects. Design coordination will reduce the impact of construction failures, reworks and change order of items in the contract work. Contrary to the above, the technical quality of design coordination produces a better design from different point of view. The Author will continue study in monitoring the performance of post-occupancy evaluation related to the health care activities in this building and development of other buildings.

5. ACKNOWLEDGEMENTS
The Author would like to thank to the Department of Architecture, Engineering Faculty, Diponegoro University; and the General Hospital Dr.Kariadi, Semarang.

6. REFERENCES