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Abstract. This paper presents the results obtained from the application of both computational fluid dynamics 
(CFD) Fluent 6.3 and Design Expert codes to modelling and optimizing a gas-solid cyclone separator based upon 
its geometrical parameters. A pre-processor software GAMBIT was employed to set up the configuration, 
discretisation, and boundary conditions of the cyclone.  A commercial CFD code FLUENT 6.3 was employed to 
simulate the flow field and particle dynamics in the cyclone. The optimization study was performed under either a 
constant gas inlet flow rate of 0.075 m3/s or a constant inlet gas velocity of 18 m/s. A response surface 
methodology with three levels (-1, 0, and +1) was employed as the experimental design. Independent variables to 
be optimized include the ratio of inlet gas width to diameter of the cyclone, W/D, the ratio of conical length to 
diameter, Lc/D and the ratio outlet diameter to cyclone diameter De/D. The response variables of collection 
efficiency and pressure drop were correlated in the forms of quadratic polynomial equations. The simultaneous 
optimization of the response variables has been implemented using a desirability function (DF) approach, 
computed with the aid of Design Expert software.  The results of investigation showed that at constant flow rate, 
the following optimum ratios of W/D =0,28, Lc/D =1,5,  and De/D =0,52 were obtained to give a collection 
efficiency of 90% and a pressure drop of 155 Pa. At the constant inlet gas velocity, the following optimum ratios of 
W/D =0,25, Lc/D =1,5,  and De/D =0,57 were obtained to give a collection efficiency of 90% and a pressure drop 
of 190 Pa. This findings indicate that gas inlet treatment at either constant flow rate or constant inlet gas velocity 
does not produce significant difference on the collection efficiency, but does give significant influence on the 
pressure drop. 
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Introduction 

Cyclones are one of the most common equipment used for controlling dust emissions of 

gaseous flow in industrial processes. Although current engineering developments have 

enabled to employ cyclone for example as dryers and reactors, their main application 

remains in the area of air pollution control where high efficiencies are required to meet the 

stringent regulations.  In comparison with other equipment used for air pollution control, 

cyclones are more preferable due to their simplicity in the design, inexpensiveness to 

manufacture, low maintenance costs, and adaptability to a wide range of operating 

conditions such as high temperature and pressure.  Despite they are frequently used as 

final collectors where large particles to be removed, it has been also a common practice to 

employ cyclones as pre-cleaners for a more efficient collector such as an electrostatic 

precipitator, scrubber or fabric filter (Swamee, 2009). 

The main performance of a cyclone is primarily judged from its collection efficiency 

and pressure drop. In order to describe the cyclone performance (pressure drop and 

collection efficiency) there are three approaches, mathematical models, experimental 

Investigation, and computational fluid dynamics (CFD). The cyclone performance is affected 

by several parameters, viz.: cyclone geometry (dimensions, shape of inlet section, number 

of inlets and vortex finder shape), inlet velocity (volume flow rate), dust mass loading, 

surface roughness.   
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In recent years, the response surface methodology (RSM) has become one of the 

most popular optimization methods used for optimizing a process when the independent 

variables have an interaction effects on the desired response (Tang et al.., 2010). The RSM 

is a collection of mathematical and statistical technique that has been widely used in 

optimization studies of biomass densification (Yunardi et al., 2011), cyclone performance 

(Leith, 1993), and cyclone performance with respect to its pressure drop (Elsayed and 

Lacor, 2010). The present study was aimed at optimizing the cyclone efficiency from the 

geometry point of view. A number of simulation and experimental studies have shown that 

the efficiency of a cyclone is much affected by the ratios of inlet width to cyclone diameter, 

length of conical section to the cyclone diameter, and the outlet diameter to the cyclone 

diameter (Elsayed dan Lacor, 2010). 

 

Methodology 

Experimental Procedure and Design 

The independent variables being studied were ratio of inlet width to cyclone diameter, X1 = 

W/, ratio of length of conical section to the cyclone diameter, X2= Lc/D and ratio of the 

outlet diameter to the cyclone diameter, X3= De/D. The dependent variables analyzed were 

collection efficiency and pressure drop of the cyclone. However, due to limitation space, 

pressure drop in the cyclone is excluded from discussion in this paper. The simulation 

experiment was carried out using a commercial CFD code Fluent 6.3 keeping the flow rate 

of gas coming to the cyclone constant, with a dust loading of less than 10%.  The level and 

code investigated in this study is presented in Table 1. 

 

Table 1.  Experimental range and levels of independent variables 

 

Independent variable 

Coded level and range 

-1 0 +1 

ratio of inlet width to 

cyclone diameter, X1  

0.2 0.25 0.3 

ratio of length of conical 

section to the cyclone 

diameter, X2 (mesh) 

1.5 2.0 2.5 

ratio of the outlet 

diameter to the cyclone 

diameter, X3 (%) 

0.4 0.5 0.6 

 

A number of 17 runs were randomly performed to optimize the process variable, as 

shown in Table 2 together with the simulated experimental and predicted results of the 

dependent variable, the collection efficiency. The experimental data were analyzed by RSM 

with the aid of Design Expert software (Version 6.06, State-Ease Inc, Minneapolis, USA) to 

fit the following second order polynomial equation: 
3 3
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where Y is the predicted response and  X1, X2, and X3  are coded independent variables 

corresponding to the ratio of inlet width to cyclone diameter, ratio of length of conical 

section to the cyclone diameter and ratio of the outlet diameter to the cyclone diameter, 

respectively.  The constants βo, βi, and βij are linear term, quadratic term and cross product 

term coefficients, respectively. The coded values are related to the real values through 

Equation 2 presented below. 
o

X XZ
X

−=
∆

                 [2] 

where Z is the coded value (-1, 0, or +1) and X is the corresponding original un-coded 

value, while Xo the mid value of the domain.  ∆X represents as the increment of X for every 

unit of Z.   
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For the purpose of optimizing multiple response variables, it is necessary to establish the 

optimum criteria in accordance to the desirability function (DF) approach, as proposed by 

Derringer dan Suich [3]. The maximum or minimum value of the variable response is 

determined on the basis of technical and/or economical considerations.  The general 

approach is to first convert each response Yi, into an individual desirability function di , that 

may vary over the range 0≤ di ≤1, where if the response yi meets the goal or target value, 

then di = 1, and if the response falls beyond the acceptable limit, then di = 0. 

 

Table 2.  Box-Behnken design matrix along with experimental data and predicted efficiency 

Run 

W/D, 

X1 
 

Lc/D, 

 X2 
 

De/D 

X3 
 

Collection efficiency,% 

Simulation 

Experiment 

Model 

Prediction 

Error, % 

1 +1 +1  0 78,36 78,72 0,455 

2 +1 -1  0 94,77 88,93 -6,158 

3 -1 -1  0 78,36 78,72 0,455 

4  0  0  0 78,36 78,72 0,455 

5 +1  0 +1 75,50 74,02 -1,958 

6  0 +1 +1 53,70 58,25 8,471 

7 -1  0 -1 70,74 69,19 -2,197 

8  0  0  0 78,36 78,72 0,455 

9  0  0  0 82,87 85,14 2,735 

10  0 -1 -1 51,28 54,08 5,468 

11  0 -1 +1 78,36 78,72 0,455 

12 +1  0 -1 61,92 57,78 -6,687 

13  0  0  0 64,46 62,37 -3,244 

14 -1  0 +1 76,28 78,47 2,872 

15 -1 +1  0 66,00 70,50 6,817 

16  0  0  0 65,66 70,51 7,391 

17  0 +1 -1 50,05 46,26 -7,566 

 

 

Results and Discussion 

Model for Response Variable 

Table 2 presented the design matrix in the coded units in conjunction with the results of 

simulation experimental data and the predicted values of response variable using the model 

(cyclone collection efficiency).  The predicted values of the response were calculated from 

quadratic model fitting techniques utilizing Design Expert software.  The simulation 

experimental data, the cyclone collection efficiency were utilized to develop the statistical 

model using multiple regression analysis method.  The resulted relationship between the 

response variable of collection efficiency and independent variables of ratio of inlet width to 

cyclone diameter, ratio of length of conical section to the cyclone diameter and ratio of the 

outlet diameter to the cyclone diameter is shown in Equation 3. 

 

      [3] 

 

The statistical significance of the statistical model of Equation 3 was evaluated by 

the F-test analysis of variance (ANOVA) presented in Table 3.  In Table 3, the value of “ 

Prob>F” less than 0.0500 revealed that the quadratic model of the response variable is 

statistically significant at 95% confidence level.  The model showed a significantly high 

determination coefficient (R2=0.9239) and low the coefficient of variation (CV=7.10%). The 

closer the determination coefficient to unity, the better agreement of the model suits the 

experimental data, showing less the difference between the calculated and measured 
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values.  Inspection of the value of R2 indicates that around 7.6% variation is not explained 

by the model. Myers and Montgomery (2002) also suggested that the model adequacy can 

be evaluated not only from R2, but also from adjusted R2, predicted R2, and prediction error 

sum of squares (PRESS).  A good model is indicated by a large R2 and a low PRESS.  In this 

case, R2=0.9239; adjusted-R2=0.8260; predicted-R2=-0.2182; and adeq precision=11.068. 

A negative "Pred R-Squared" implies that the overall mean is a better predictor of the 

response than the current model. "Adeq Precision" measures the signal to noise ratio. A 

ratio greater than 4 is desirable. The current study showed a value of 11.068 which is 

greater than 4.0, indicating an adequate signal, confirming this model can be used to 

navigate the design space.  

The coefficient of the model, its significance and its standard error can be verified by 

Prob>F-value, also shown in Table 3. Observation of Table 3 showed that most of terms 

including their interactions are significant.  Values of “Prob>F” greater than 0.1 indicate the 

model terms are not significant.  

 

Table 3. Analysis of variance (ANOVA) for the quadratic polynomial model 

Source Sum  of 

squares 

DF Mean 

squares 

F Value Prob>F Remarks 

Model 2153,1 9 239,23 9,44 0,0037 significant 

X1-W/D 683,39 1 683,39 27 0,0013 significant 

X2-Lc/D 208,08 1 208,08 8,21 0,0242 significant 

X3-De/D 69,384 1 69,384 2,74 0,1420 Not significant 

X1X2 267,81 1 267,81 10,6 0,0140 significant 

X1X3 33,235 1 33,235 1,31 0,2898 Not significant 

X2X3 0,8372 1 0,8372 0,03 0,8609 Not significant 

X1
2 810,45 1 810,45 32 0,0008 significant 

X2
2 10,329 1 10,329 0,41 0,5436 Not significant 

X3
2 53,926 1 53,926 2,13 0,1881 not. ignificant 

Residual 177,44 7 25,349    

Lackof 

Fit 177,44 3 59,147   

 

Pure 

Error 0 4 0   

 

R2=0,9239; adj R2 = 0,8260; pred. R2=-0.2182; C.V = 7.10%; Adeq Precision=11,068 

 

 
 

       Figure 1. Comparison of predicted and experimental values of collection 

efficiency (symbol – simulated experimental data; line – predicted model) 
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Figure 1 presented comparison of predictions of cyclone collection efficiency 

compared to the simulated experimental measurements using Fluent 6.3. The solid line 

represents the calculation based on the statistical model shown in Equation 3, while the 

symbol depicts the simulated experimental values.  It is clearly seen that most of the 

experimental data are falling on or having in contact with the prediction line, confirming an 

excellent agreement between the predictions and experimental data.  All the above 

discussions indicate outstanding adequacy of the proposed quadratic model to represent the 

relationship between the response variable, collection efficiency and independent variables 

of ratio of inlet width to cyclone diameter, ratio of length of conical section to the cyclone 

diameter and ratio of the outlet diameter to the cyclone diameter. 

Optimization of the response variable 

The determination of optimum operating conditions for the independent variable is 

aimed at obtaining highest collection efficiency of solid particles in the cyclone.  A 

parameter desirability function, DF is used to judge the optimum operating condition. As 

mentioned earlier that if DF is closer to unity, the response of the target is the best. Table 4 

presented alternative solution with different DF values. The highest DF value is 90 per cent 

obtained at a condition of W/D=0.25, Lc/D=1.5 and De/D=0.57.  The lowest DF value of 

0.59 is obtained at a condition of W/D=0.26, Lc/D=1.5 and De/D=0.59.  Both conditions 

produce a similar efficiency of 90 per cent.  Applying the desirability function (DF) method, 

the Design Expert software produced a number of 8 solutions, as shown in Table 4.   On the 

consideration of DF value, the solution number 1 is selected to represent the optimum 

reponse variable. 

 

Table 4.  Alternative solutions for optimization of process parameters 

Solution 

number 

W/D, X1 
 

Lc/D, 

 X2 
 

De/D 

X3 
 

Desirability 

function, 

DF                        

Collection Efficiency 

1 0,25 1,5 0,57 0,90 90 

2 0,27 1,51 0,56 0,89 90 

3 0,27 1,52 0,56 0,88 90 

4 0,27 1,52 0,55 0,87 90 

5 0,26 1,5 0,51 0,83 90 

6 0,27 1,53 0,51 0,79 90 

7 0,26 1,5 0,49 0,78 90 

8 0,26 1,5 0,44 0,59 90 

 

Conclusions 

A desirability function approach has been utilized to optimize the process variables of ratio 

of inlet width to cyclone diameter, ratio of length of conical section to the cyclone diameter 

and ratio of the outlet diameter to the cyclone diameter on the collection of solid particles in 

a cyclone.  The optimum conditions to produce high collection efficiency of a cyclone were 

obtained at a ratio of inlet width to cyclone diameter of 0.25, ratio of length of conical 

section to the cyclone diameter of 1.5 and ratio of the outlet diameter to the cyclone 

diameter of 0.57.  With a minimum number of experimental runs, this technique is an 

efficient one for the solution of cyclone optimization problems. 
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