PENGELOLAAN LRB SEBAGAI UPAYA MENINGKATKAN DAYA RESAP AIR PADA TANAH
Maria Ulfah, Endah Rita Sulistya Dewi, Praptining Rahayu, Lussana Rossita Dewi
Universitas PGRI Semarang
ulfahartono@gmail.com

Abstract

Lubang Resapan Biopori (LRB) is an alternative technology of water infiltration, which is appropriate, more economical and eco-friendly. Community service activities were carried out by having lecturing, discussion, and practice. The program was designed as a training by having 30% theory and 70 % practice. It was carried out in Wonosari, Ngalian, Semarang. The Ibm activities that was done, concerned with a training of preparing and managing “biopori” as a solution to environmental problems, especially the problem of soil water absorption to control flood and soil water crisis which have occurred in many areas. In general, this training equips the society with knowledge about the functions, how to prepare, and management of “biopori”.

Keywords: Lubang Resapan Biopori, water absorption, land, flood

Abstrak


Kata Kunci: Lubang Resapan Biopori, daya resap air, tanah, anjir
A. PENDAHULUAN

Permasalahan air yang sedang terjadi diwilayah Semarang telah mendorong kesadaran dan kepedulian masyarakat di wilayah Semarang. Seluruh masyarakat diharapkan dapat memanfaatkan dan melestarikan Sumber Daya Alam (SDA) dengan baik dan bijaksana. Pengelolaan SDA dengan menggunakan metode lama sudah tidak efektif dalam mengatasi permasalahan air pada saat ini. Pengelolaan SDA tidak dapat diselesaikan oleh pemerintah saja, melainkan juga diperlukan peran aktif dari masyarakat.


Menurut Aziz (2012), air hujan yang jatuh ke bumi seharusnya meresap ke dalam tanah menjadi air tanah dan sebagian diikat oleh akar-akar tanaman. Air tanah tersebut dapat digunakan oleh manusia melalui sumur untuk memenuhi kebutuhan sehari-hari serta untuk melakukan aktivitas lainnya. Sedangkan air hujan sebagian akan mengalir ke sungai. Namun seiring dengan semakin padatnya penduduk di suatu daerah, menyebabkan semakin luasnya tanah yang tertutup beton serta hutan yang gundul.
Penanaman pepohonan, tanaman hias, dan rerumputan di lahan tersebut diharapkan dapat memperbaiki struktur tanah sehingga laju peresapan air hujan dapat dipertahankan. Pada dasarnya, upaya peresapan air hujan ke dalam tanah bertujuan untuk memelihara kelembaban tanah di bawah bangunan.

Dampak pemanasan global sudah mulai terasa, salah satunya adalah banjir dan kekeringan yang datang silih berganti. Banjir selalu terjadi di beberapa daerah rawan banjir ketika musim penghujan tiba. Jika curah hujan kecil, mungkin air dapat meresap ke dalam tanah dan bermanfaat untuk memelihara kelembaban tanah. Namun, ketika curah hujan yang turun begitu besar, air yang tidak meresap melimpas di permukaan tanah dan jalan terbukti melalui saluran drainase (Budi, 2013).

Yulia et al (2014), mengingat kebutuhan air terus meningkat dan sumber air utama berasal dari curah hujan, diperlukan adanya upaya untuk meresapkan air hujan yang efektif ke dalam tanah. Beberapa teknologi peresapan air ke dalam tanah seperti kolam resapan (infiltration basin), parit resapan (infiltration trench), dan sumur resapan (french drain) telah lama diperkenalkan kepada masyarakat. Namun teknologi peresapan air tersebut belum dapat diterapkan secara meluas karena berbagai alasan, antara lain memerlukan tempat yang relatif luas, waktu yang relatif lama, dan biaya yang tidak ekonomis. Dengan demikian, masih perlu dikembangkan lagi alternatif teknologi peresapan air yang lebih tepat guna, dipelihara dengan biaya lebih ekonomis, dan ramah lingkungan yaitu dengan menggunakan lubang biopori.

Lubang Biopori adalah lubang resapan air yang ditujukan untuk mengatasi genangan air dengan cara meningkatkan daya resap air pada tanah. Lubang Resapan Biopori (LRB) adalah lubang silindris yang dibuat secara vertikal ke dalam tanah dengan diameter 10-cm dan kedalaman sekitar 100 cm atau dalam kasus tanah dengan permukaan air tanah dangkal, tidak sampai melebihi kedalaman muka air tanah. Lubang diisi dengan sampah organik. Sampa berfungsi menghidupkan mikro-organisme tanah, seperti cacing tanah. Cacing ini nantinya bertugas membentuk pori-pori atau terowongan dalam tanah (biopori).

Biopori secara harfiah merupakan lubang-lubang (pori-pori makro) di dalam tanah yang dibuat oleh jasad biologi tanah.
Lubang cacing tanah, lubang tikus, lubang marmut, lubang anjing prairi, lubang semut, rayap, dan lain-lain, termasuk lubang bekas akar yang mati dan membusuk, merupakan contoh-contoh dari biopori di dalam tanah. Biopori dalam tanah ini sangat optimal keberadaannya di daerah yang tidak terganggu seperti pada lahan hutan dan kebun campuran. Pada lahan pertanian intensif dan di kawasan pemukiman, biopori sangat sedikit dijumpai, karena kehidupan jasad biologi tanah tersebut terganggu oleh berbagai aktivitas manusia, juga oleh pengaruh limbah dan aplikasi pestisida, sehingga tanah menjadi sangat padat. Keberadaan biopori yang banyak, akan mempertinggi daya serap tanah terhadap air, karena air akan lebih mudah masuk ke dalam tubuh (profil) tanah.


Salah satu aspek kinerja lubang resap biopori adalah aspek kemanfaatannya
di dalam menjamin adanya imbuhan buatan terhadap air tanah (groundwater). Sebab salah satu dampak dari berubahnya tataguna lahan dari lahan terbuka menjadi lahan yang terbangun dengan menutup permukaan tanah tersebut adalah terhentinya proses suplai terhadap air tanah melalui proses infiltrasi dan perkolasi. Dalam hal ini, jika proses imbuhan air tanah secara alami terhenti, maka proses imbuhan air tanah secara buatan (artificial recharge) adalah penggantinya. Biopori adalah salah satu metode peresapan buatan. Indikasi bahwa biopori mampu melakukan peresapan air hujan ke dalam lapisan tanah adalah adanya kenaikan muka air tanah (water table) pada air tanah dibawah lokasi yang dipasang biopori. Seberapa signifikan kecepatan imbuhan buatan oleh biopori terhadap keberadaan air tanah, dapat ditinjau perbedaan level muka air tanah pada kondisi yang bersamaan antara kawasan yang diberi lubang resap biopori dan kawasan yang tidak dipasang lubang resap biopori (Pungut dan Widyastuti, 2013).

Cara Pembuatan Lubang Biopori Resapan Air:

1. Membuat lubang silindris di tanah dengan diameter 10-30 cm dan kedalaman 80-100 cm serta jarak antar lubang 50-100 cm.

2. Mulut lubang dapat dikuatkan dengan semen setebal 2 cm dan lebar 2-3 cm serta diberikan pengaman agar tidak ada anak kecil atau orang yang terperosok

3. Lubang diisi dengan sampah organik seperti daun, sampah dapur, ranting pohon, sampah makanan dapur non kimia, dan sebagainya. Sampah dalam lubang akan menyusut sehingga perlu diisi kembali dan diakhir musim kemarau dapat dikuras sebagai pupuk kompos alami.

4. Jumlah lubang biopori yang ada sebaiknya dihitung berdasarkan besar kecil hujan, laju resapan air dan wilayah yang tidak meresap air dengan rumus = intensitas hujan (mm/jam) x luas bidang kedap air (m²)/ laju resapan perlubang (liter/jam).
Gambar 1. Lubang Resapan Biopori

Konservasi air tanah menurut Danaryanto et al. (dalam Riastika, 2011) adalah upaya melindungi dan memelihara keberadaan, kondisi dan lingkungan air tanah guna mempertahankan kelestarian atau ketersediaan dalam kuantitas dan kualitas yang memadai, demi kelangsungan fungsi dan kemanfaatannya untuk memenuhi kebutuhan makhluk hidup, baik waktu sekarang maupun pada generasi yang akan datang. Pada dasarnya konservasi air tanah tidak hanya ditujukan untuk meningkatkan volume air tanah, tetapi juga meningkatkan konservasi air permukaan. Efisiensi penggunaannya sekaligus mengurangi run off air permukaan yang diharapkan dapat meresap ke tanah dan mengisi akuifer menjadi air tanah.

Konservasi air pada prinsipnya adalah penggunaan air yang jatuh ke tanah seefisien mungkin dan pengaturan waktu aliran yang tepat, sehingga tidak terjadi banjir yang merusak pada musim hujan dan terdapat cukup air pada musim kemarau. Konservasi air dapat dilakukan dengan (a) meningkatkan pemanfaatan dua komponen hidrologi, yaitu air permukaan, dan air tanah dan (b) meningkatkan efisiensi pemanfaatan air irigasi. Pengelolaan air permukaan (surface water management) meliputi (a) pengendalian aliran permukaan; (b) pemanenan air (water harvesting); (c) meningkatkan kapasitas infiltrasi tanah; (d) pengolahan tanah; (e) penggunaan bahan
penyumbat tanah dan penolak air; dan (f) melapisi saluran air. Pengelolaan air bawah permukaan tanah \emph{(sub-surface water management)} dapat dilakukan dengan (a) perbaikan drainase; (b) pengendalian perkolasi \emph{(deep percolation)} dan aliran bawah permukaan \emph{(sub-surface flow)}; dan (c) perubahan struktur tanah lapisan bawah. Perbaikan drainase akan meningkatkan efisiensi pemakaian air oleh tanaman, karena hilangnya air yang berlebih \emph{(excess water)} akan memungkinkan akar tanaman berkembang lebih luas ke lapisan tanah yang lebih dalam daripada hanya terbatas di lapisan atas yang dangkal yang akan cepat kering jika permukaan air tanah menurun \cite{Subagyo}.  

\section*{C. HASIL DAN PEMBAHASAN}

Kegiatan IbM di kelurahan Wonosari dilaksanakan sebanyak dua kali pertemuan, meliputi penyampaian materi dan praktek pembuatan biopori masing-masing sebanyak satu kali pertemuan. Penyampaian materi tentang pencemaran tanah, permasalahan dan perlindungan air tanah bertujuan untuk memberikan pemahaman kepada masyarakat tentang kondisi tanah dan air tanah di Semarang serta membangkitkan kepedulian masyarakat terhadap kondisi lingkungan khususnya penyerapan air tanah. Materi tentang biopori beserta praktek pembuatannya memberikan solusi kepada masyarakat tentang cara untuk menyelamatkan air tanah. Praktek pembuatan biopori menghasilkan 100 biopori yang dibuat oleh warga bersama dengan tim IbM di lingkungan sekitar perumahan warga. Biopori yang telah dibuat tersebut perlu untuk dikelola agar dapat berfungsi dengan baik sebagai sarana peresapan air. Pengelolaan dilakukan rutin setiap 2 bulan sekali dengan cara mengambil sampah daun yang telah menjadi kompos di dalam lubang biopori kemudian menggantinya dengan sampah daun yang baru.

\section*{B. PELAKSANAAN DAN METODE}

Pelaksanaan kegiatan IbM dilakukan secara kolaboratif antara tim IbM dengan Kelurahan Wonosari Kecamatan Ngalian Semarang dengan beberapa tahap.

1. Survei Awal

Survei awal dilakukan dengan tujuan untuk mengetahui kondisi lingkungan Kelurahan Wonosari Kecamatan Ngalian Semarang.

2. Perencanaan

Bekerjasama dengan warga Kelurahan Wonosari Kecamatan Ngalian Semarang untuk menyusun perencanaan pelaksanaan pelatihan meliputi penentuan jadwal pertemuan, tempat pertemuan, agenda, dan kepanitiaan.

3. Perijinan

Melakukan perijinan kepada pihak-pihak terkait untuk memberikan pelatihan pembuatan biopori.

4. Penentuan Peserta Pelatihan

Peserta pelatihan adalah warga Kelurahan Biopori Kecamatan Ngalian Semarang.

5. Pelaksanaan


<table>
<thead>
<tr>
<th>No.</th>
<th>Materi</th>
<th>Metode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pencemaran tanah</td>
<td>Ceramah, tanya jawab</td>
</tr>
<tr>
<td>2</td>
<td>Permasalahan air tanah</td>
<td>Ceramah, tanya jawab</td>
</tr>
<tr>
<td>3</td>
<td>Perlindungan air tanah</td>
<td>Ceramah, tanya jawab</td>
</tr>
<tr>
<td>4</td>
<td>Biopori</td>
<td>Ceramah, tanya jawab</td>
</tr>
<tr>
<td>5</td>
<td>Pembuatan biopori</td>
<td>Praktek</td>
</tr>
</tbody>
</table>

Tabel 1. Materi Pelatihan Pengelolaan Lubang Resapan Biopori
PENGELOLAAN LRB SEBAGAI UPAYA MENINGKATKAN
DAYA RESAP AIR PADA TANAH
Maria Ulfah, Endah Rita Sulistywa Dewi, Praptining Rahayu, Lussana Rossita Dewi

Uraian kegiatan dan hasil kegiatan Kelurahan Wonosari Ngalian disajikan
Pengabdian Kepada Masyarakat tentang dalam tabel 2.
pengelolaan Lubang Resapan Biopori di

Tabel 2. Hasil Kegiatan IbM Pengelolaan Lubang Resapan Biopori

<table>
<thead>
<tr>
<th>No</th>
<th>Kegiatan</th>
<th>Uraian</th>
<th>Hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Persiapan</td>
<td>Pada tahap ini dilakukan studi lapangan, dan persiapan perijinan</td>
<td>Kondisi lingkungan di Kelurahan Wonosari sangat minim dengan tempat peresapan air.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warga kelurahan Wonosari belum mengenal biopori dan belum bisa membuat biopori.</td>
</tr>
<tr>
<td>2</td>
<td>Perencanaan</td>
<td>Dilakukan perencanaan bersama warga kelurahan Wonosari untuk waktu dan tempat pelatihan.</td>
<td>Dihasilkan kesepakatan waktu dan tempat untuk pelatihan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedangkan tim IbM membuat perencanaan tentang bentuk kegiatan, materi pelatihan, serta pembagian tugas anggota tim.</td>
<td>Tim IbM merencanakan kegiatan pelatihan berupa teori 30% dan praktek 70%.</td>
</tr>
<tr>
<td>3</td>
<td>Pelaksanaan</td>
<td>Pelatihan dilakukan terdiri dari: pelatihan</td>
<td>Materi yang disampaikan yaitu pencemaran tanah, permasalahan air tanah, perlindungan air tanah dan biopori.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Penyampaian materi.</td>
<td>Sedangkan untuk kegiatan praktek pembuatan biopori, semua anggota tim terlibat dalam mengkoordinir dan mengarahkan warga.</td>
</tr>
</tbody>
</table>
<pre><code> |               | • Warga mengetahui pentingnya membuat resapan air, |
</code></pre>

35
mengetahui fungsi biopori sebagai resapan air.

- Pelaksanaan pembuatan biopori praktik
- Mengetahui cara pembuatan biopori, mampu membuat biopori, dan mengetahui cara mengelola lubang biopori. Biopori yang berhasil dibuat berjumlah 100 lubang.

Secara umum kegiatan IbM berlangsung dengan lancar sesuai dengan perencanaan yang telah dibuat, akan tetapi belum seluruh warga terlibat dalam pelatihan ini. Biopori yang berhasil dibuat dalam pelatihan ini baru mencapai 100 lubang sehingga masih perlu dibuat lebih banyak lagi.

D. PENUTUP

Dapat disimpulkan bahwa kegiatan IbM pelatihan pembuatan dan pengelolaan biopori yang telah dilakukan kepada masyarakat di Kelurahan Wonosari Kecamatan Ngalian merupakan salah satu solusi terhadap masalah lingkungan khususnya masalah penyerapan air tanah untuk menanggulangi banjir maupun krisis air tanah yang banyak terjadi di berbagai daerah. Secara umum pelatihan ini dapat memberikan pengetahuan kepada masyarakat tentang fungsi biopori, cara membuat biopori dan pengelolaannya.

E. DAFTAR PUSTAKA


Budi BS. 2013. Model Peresapan Air Hujan dengan Menggunakan Metode Lubang Resapan Biopori dalam Upaya Pencegahan Banjir. Wahana Teknik Sipil Vol. 18 No. 1

Indriatmoko RH. 2010. Penerapan Prinsip
Kebijakan Zero Delta $Q$ dalam Pembangunan Wilayah. JAI Vol. 6 No. 1.


Widyastuti S. 2013. Perbandingan Jenis Sampah terhadap Lama Waktu Pengomposan dalam Lubang Resapan Biopori. Jurnal Teknik WAKTU Vol. 11 No. 1