
CommIT (Communication & Information Technology) Journal 9(2), 59–65, 2015

IMPLEMENTATION AND

RECONFIGURATION OF ROBOT

OPERATING SYSTEM ON HUMAN

FOLLOWER TRANSPORTER ROBOT

Addythia Saphala

Department of Mechatronics

Faculty of Engineering

Swiss German University

Tangerang 15339, Indonesia

Email: addythia@gmail.com

Prianggada I Tanaya

Department of Industrial Engineering

Faculty of Engineering

Swiss German University

Tangerang 15339, Indonesia

Email: prianggada.itanaya@sgu.ac.id

Abstract—Robotic Operation System (ROS) is an im-
portant platform to develop robot applications. One area
of applications is for development of a Human Follower
Transporter Robot (HFTR), which can be considered
as a custom mobile robot utilizing differential driver
steering method and equipped with Kinect sensor. This
study discusses the development of the robot navigation
system by implementing Simultaneous Localization and
Mapping (SLAM).

Keywords: Robot Operating System (ROS); Human
Follower Transporter Robot; Simultaneous Localization
and Mapping; Robot Navigation.

I. INTRODUCTION

Robotic Operation System (ROS) is important to

provide a flexible framework for developing robot

related applications [1]. ROS should be flexible and

capable to provide distributed computations, software

reuse, and rapid testing [2]. The modular nature of ROS

framework enables every aspect of the system to work

separately and efficiently in regards to communications

between nodes. By using ROS, community can develop

algorithms for various purposes that are easily inte-

grated to the framework and preserve the works for

public. The flexible nature of ROS enables for cou-

pling and message passing between existing processes

and facilitates rapid testing even for applications that

require advanced and stable data stream.

One of such systems has been developed previously

for Human Follower Transporter Robot (HFTR) [3, 4]

(see Fig. 1). The references have developed the robot

Received: June 10, 2015; received in revised form: July 25, 2015;
accepted: July 28, 2015; available online: July 28, 2015.

to be able to track and follow object based on the

object color. However, the existing planning, execution,

and monitoring (PEM) architecture is not sufficient

to evade dynamic obstacles. In addition, developing a

completely new algorithm requires significant amount

of time. The existing program is not easily integrated

to the next development phase for various reasons.

A number of studies related to ROS and HFTR

has been previously conducted. Reference [5] studied

the dynamic characteristics of bipedal robots. Ref-

erence [6] studied Segway robotic platform. Refer-

Fig. 1. An example of the Human Follower Transporter Robot
(HFTR).



Cite this article as: A. Saphala and P. I. Tanaya, “Implementation and Reconfiguration of Robot Operating

System on Human Follower Transporter Robot,” CommIT (Communication & Information Technology)

Journal 9(2), 59–65, 2015.

ence [7] studied navigation of wheel-legged hydraulic

robot. [8] proposed systems and methods for robotic

transport. Reference [9] discussed a near-term auton-

omy of follower robots.

This study intends to develop an improvement of

HFTR navigation system. The system requires sev-

eral inputs to function correctly such as the robot

odometry, sensor, map, and data transformation. By

utilizing ROS, the existing sensor system (Kinect) can

be adapted for appropriate input for mapping and

navigation (laser scan). It would enable implementation

of simultaneous localization and mapping (SLAM),

which is required to generate maps. HFTR would also

be reconfigured to use the existing ROS framework and

to transform data from encoder. Reconfiguration HFTR

is often unavoidable because most of the existing driver

is hard to be encapsulated to the ROS framework.

Sometimes, using a compatible driver is preferable

instead of adapting the old one.

II. RESEARCH METHODS

To implement and reconfigure the navigation stack

of ROS for HFTR, Fig. 2 shows the dependency of

the stack to the other modules. The stack depends on

sensor sources, map, data transform, odometry, and

base controller.

Firstly, the requirements for navigation stack are

sensor data, odometry data, and map. The sensor data

format follows the laser scan format to conserve the

computing power. The HFTR is already equipped with

Navigation Sensor 
Data Laser Scan

Kinect
Odometry

Transform

ROS Serial

Map

SLAM Differential 
Driver

URDF Arduino IDE

Fig. 2. The connection between modules in the robot operating
system. The directed line denotes dependency, for example, module
Navigation requires module Map.

Kinect camera; thus, a converter is required from

a depth image to laser scan. Consequently, Kinect

camera driver is also required, which in turn, requiring

data transformation where the data stream from their

origin to the rest of HFTR.

Secondly, the navigation stack requires odometry

that supplying information of the robot movement and

it is handled by the Differential Driver stack in the

ROS. The Differential Driver stack requires: PWM

adapters, which send a velocity command for robot

motors, in this case, is to Arduino board through a

serial port, and robot definition for virtual simulations.

The Odometry also requires Data Transform to record

the robot pose.

III. RESULTS AND DISCUSSION

In this section, we present the results of the im-

plementation and reconfiguration of the HFTR operat-

ing system. Firstly, in order to utilize the navigation

stack [2], the robot has to be configured in a specific

manner.

Figure 3 shows the overview of the required con-

figuration. The components in white boxed are those

that have already been implemented. Those in gray

are optional components and have also been imple-

mented. Those in blue should be created for each robot

platform. The navigation stack requires a transform

configuration, which is unique for each robot, sensor

information in a laser scan data type, odometry infor-

mation, base controller, and map [10].

The above navigation stack requires a static map,

which is created by Simultaneous Localization and

Mapping (SLAM) module. A gmapping package is a

ROS wrapper for OpenSlam’s gmapping. This pack-

age provides ROS a node called slam_gmapping,

which is a laser-based SLAM. Using this stack, a

two-dimension occupancy grid map can be created.

To utilize this package, the robot need to be able to

steam a laser scan data, as well as provides a relatively

accurate odometry data and transforms [11].

move_base

recovery_behaviors

local_planner Local_costmap

global_planner global_costmap

“move_base_simple/goal”

geometry_msgs/PoseStamped

Base controller

“cmd_vel” geometry_msgs/Twist

Odometry source

Sensor transforms

amcl

map_server

Sensor sources

Fig. 3. The navigation stack overview [4]. Those components in
white blocks have been developed, in gray are optional, and in blue
are those created for each robot platform.

60



Cite this article as: A. Saphala and P. I. Tanaya, “Implementation and Reconfiguration of Robot Operating

System on Human Follower Transporter Robot,” CommIT (Communication & Information Technology)

Journal 9(2), 59–65, 2015.

In addition, the navigation stack also requires dif-

ferential driver. The differential_drive stack

provides basic tools to interface with differential drive

robots with the ROS navigation stack. This stack can

take twist message from navigation stack or other

nodes, and publish messages for left wheel and right

wheel of a differential drive robot. It also receives

feedback from wheels encoder and generates trans-

form messages as required by the ROS navigation

stack [6]. This package provides four nodes [7]:

diff_tf that provides transform for the robot base,

pid_velocity that is a basic PID controller for mo-

tor speed, twist_to_motors that translates twist

messages to a two-motor velocity target for the differ-

ential drive robots, and virtual_joystick that is

a GUI controller with twist output (see Fig. 4).

Figure 5 shows active nodes and topics from

rqt_graph for navigation stack. Figures 6–9 show

the enlarged portions of Fig. 5, and the figures respec-

tively are the left, center, upper right, and lower right

sections.

The active nodes include driver sections, sensor

hardware
pid_velocity

pid_velocity

twist_to_motors

diff_tf

Navigation Stack

virtual_joystick

rwheel

rmotor
lwheel

lmotor

lwheel_vtarget

rwheel_vtarget

twist

tf

Fig. 4. The differential drive package [12].

Fig. 5. The navigation nodes from rqt_graph.

sections, navigation sections, localization nodes, and

map server. The navigation section is centered on the

topic move_base which governing where the robot

should go through twist topic. The localization node,

amcl, functions as pose matcher for the robot. The

map_server node simply publishes a static map for

the navigation section.

The launch file for the nodes in Fig. 5 is shown in

Fig. 10. To execute map_server and amcl nodes,

the code needed in launch file is displayed in Fig. 10.

It also displays the launch code for move_base node

which retrieve parameters from:

• costmap_common_params.yaml,

• local_costmap_params.yaml,

• global_costmap_params.yaml, and

Fig. 6. The navigation nodes from rqt_graph: Section 1.

Fig. 7. The navigation nodes from rqt_graph: Section 2.

Fig. 8. The navigation nodes from rqt_graph: Section 3.

61



Cite this article as: A. Saphala and P. I. Tanaya, “Implementation and Reconfiguration of Robot Operating

System on Human Follower Transporter Robot,” CommIT (Communication & Information Technology)

Journal 9(2), 59–65, 2015.

• base_local_planner_params.yaml.

In Fig. 11, the costmap common parameters is

presented. These parameters are used by both global

costmap and local costmap. In this file, the ob-

stacle range and ray trace range is defined, which

means at which range the obstacle is detected and at

which range the robot would attempt to seek a clear

path. The footprint is the shape of the robot on two

dimension, which have to be defined since the HFTR

cannot represented by a circle but by a polygon. The

observation source is the sensor input, which in this

case is laser scan sensor.

Figure 12 shows the local costmap parameters. It

simply defines the publish rate and update rate of the

map, and local costmap’s properties. It also defines the

odometry topic and robot base.

Figure 13 shows the global costmap parameters,

which define map topic, update frequency and robot

base. Figure 14 displays the base local planner pa-

rameters, in this file, the maximum and minimum

velocity and acceleration both translation and rotation

of the robot is defined. Figure 15 shows a virtual

representation of the HFTR with a static map inside

rviz. The map used is that of FB311. In Fig. 16 the

global costmap is shown on top of static map. In

Fig. 17 the local costmap is shown on top of the static

map. Finally, in Fig. 18 both map are shown on top of

the static map. In Fig. 19, sending a navigational goal

is shown, and in Figure 20, the virtual representation

of HFTR can be moved inside rviz by sending two-

dimension position estimation data [13].

We identified a few limitations on the current de-

velopment and they may become topics for future

Fig. 9. The navigation nodes from rqt_graph: Section 4.

<launch>

<node pkg="rosserial_python" type="serial_node.py" name="serial_node">

<rosparam>

port: /dev/ttyACM0

</rosparam>

</node>

<param name="robot_description" textfile=˜$(find teegut)/

urdf/teegut.urdf"/>

<rosparam param="ticks_meter">694,5</rosparam>

<node pkg="differential_drive" type="pid_velocity.py"

name="lpid_velocity">

<remap from="wheel" to="lwheel"/>

<remap from="motor_cmd" to="lmotor_cmd"/>

<remap from="wheel_vtarget" to="lwheel_vtarget"/>

<remap from="wheel_vel" to="lwheel_vel"/>

<rosparam param="Kp">276</rosparam>

<rosparam param="Kt">2160</rosparam>

<rosparam param="Kd">8.5</rosparam>

<rosparam param="out_min">255</rosparam>

<rosparam param="out_max">255</rosparam>

<rosparam param="rate">30</rosparam>

</node>

<node pkg="differential_drive" type="pid_velocity.py"

name="rpid_velocity">

<remap from="wheel" to="rwheel"/>

<remap from="motor_cmd" to="rmotor_cmd"/>

<remap from="wheel_vtarget" to="rwheel_vtarget"/>

<remap from="wheel_vel" to="rwheel_vel"/>

<rosparam param="Kp">276</rosparam>

<rosparam param="Kt">2160</rosparam>

<rosparam param="Kd">8.5</rosparam>

<rosparam param="out_min">255</rosparam>

<rosparam param="out_max">255</rosparam>

<rosparam param="rate">30</rosparam>

</node>

<node pkg="differential_drive" type="virtual_joystick.py"

name="virtual_joystick" output="screen"/>

<node name="robot_state_publisher" pkg="robot_state_publisher"

type="state_publisher"/>

<node name="tf_setup" pkg="transformf_setup" type="transform" />

<include file="$(find freenect_launch)/launch/examples/

freenect-xyz.launch"/>

<node pkg="depthimage_to_laserscan" type=depthimage_to_laserscane"

name"depthimage_to_laserscane">

<remap from="image" to="camera/depth/image_rect" />

<remap from="camera_info" to="camera/depth/camera_info" />

</node>

<!--- Run the map server -->

<node name="map_server" pkg="map_server" type="map_server"

args="$(find maps)/map.pgm 0.05"/>

<!--- Run AMCL -->

<include file="$(find amcl)/examples/amcs_diff.launch"/>

<node pkg="move_base" type="move_base" respawn="false"

name="move_base" output="screen">

<rosparam file="$(find teegut)/costmap_commom_params.yaml"

command="load" ns="global_costmap"/>

<rosparam file="$(find teegut)/costmap_common_params.yaml"

command="load" ns="local_costmap"/>

<rosparam file="$(find teegut)/local_costmap_params.yaml"

command="load"/>

<rosparam file="$(find teegut)/global_costmap_params.yaml"

command="load"/>

<rosparam file="$(find teegut)/base_local_planner_params.yaml"

command="load"/>

<remap from="cmd_vel" to="twist"\>

</node>

<node pkg="rvtz" type="rviz" output="screen"/>

</launch>

Fig. 10. The navigation launch file.

obstacle_range: 1.5

raytrace_range: 2.0

footprint: [[-0.19,0.24],[-0.19,-0.24],[0.19,-0.24],[0.328564,-0.32],

[0.553564,-0.19],[0.553564,0.19], [0.328564,0.32], [0.19,0.24]]

#robot_radius: ir_of_robot

inflation_radius: 0.25

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: camera_link, data_type: LaserScan,

topic: scan, marking: true, clearing: true}

point_cloud_sensor: {sensor_frame: frame_name, data_type: PointCloud,

topic: topic_name, marking: true, clearing: true

Fig. 11. costmap_common_params.yaml

62



Cite this article as: A. Saphala and P. I. Tanaya, “Implementation and Reconfiguration of Robot Operating

System on Human Follower Transporter Robot,” CommIT (Communication & Information Technology)

Journal 9(2), 59–65, 2015.

developments. The first is regarding the processing

power. The current processor is unable to process three

dimensions data at an acceptable rate. Thus, a better

processor can be used, or once ROS is able to run

across network, the computer can be used to host nodes

with high processing power requirement. In PEM ar-

chitecture, the processing parts, which require high

processing powers, can be placed in an appropriate

computer, while the execution and monitoring can be

handled in on-board mini-PC.

The second is regarding the mapping. The ideal

way to create a map is to start with searching the

most optimum parameters from a set of records and

local_costmap:

global_frame: odom

robot_base_frame: base_link

update_frequency: 5.0

publish_frequency: 2.0

static_map: false

rolling_window: true

width: 6.0

height: 6.0

resolution: 0.05

Fig. 12. local_costmap_params.yaml

global_costmap:

global_frame: /map

robot_base_frame: base_link

update_frequency: 5.0

static_map: true

Fig. 13. global_costmap_params.yaml

TrajectoryPlannerROS:

max_vel_x: 0.2

min_vel_x: 0.05

max_rotational_vel: 0.2

min_in_place_rotational_vel: 0.05

acc_lim_th: 0.05

acc_lim_x: 0.05

acc_lim_y: 0.05

holonomic_robot: false

Fig. 14. base_local_planner_params.yaml

Fig. 15. Virtual Representation of HFTR with Static map

then use the parameters in real-time mapping. The

mapping process should be done indoors within Kinect

sensor range and with sufficient lighting. The mapping

process may be affected by surrounding noise, this

should be further studied.

Fig. 16. Virtual Representation of HFTR with Global Costmap

Fig. 17. Virtual Representation of HFTR with Local Costmap

Fig. 18. Virtual Representation of HFTR with Global and Local
Costmap

63



Cite this article as: A. Saphala and P. I. Tanaya, “Implementation and Reconfiguration of Robot Operating

System on Human Follower Transporter Robot,” CommIT (Communication & Information Technology)

Journal 9(2), 59–65, 2015.

Fig. 19. Sending Navigation Goals through rviz

Fig. 20. Moving Virtual Representation of HFTR in rviz

The last is regarding the navigation. It is impor-

tant to perform experiments with static and dynamic

obstacle avoidance using navigation stack. Currently,

only holonomic and differential drive mobile robots is

supported by navigation stack. A system or package

should be developed for other types of robots with

same or similar function of navigation stack.

IV. CONCLUSIONS

The Robot Operating System software has been

implemented and reconfigured to work with Hu-

man Follower Transporter Robot. The following are

the related packages. The ROS serial package is

required to enable communication through serial

port with Arduino, which controls DC motors. The

differential_drive package can act as a motors

driver for the HFTR, as well as providing odometry

and transform data. Kinect sensor can be utilized with

ROS software; there are drivers for Kinect available

within ROS framework, freenect_launch pack-

age, which include with coordinate frame transform

program associated with Kinect’s shape. ROS frame-

work structure lends a flexibility to change the sensor

data input, it enable streaming two dimension laser

scan data from Kinect sensor. The slam_gmapping

node works well with HFTR, the generated map can be

used directly for navigation purpose without external

changes. Navigation stack is able to be implemented

and reconfigured for HFTR. It can control the move-

ment of the HFTR reasonably well. Despite the unique

mechanical design of the HFTR, ROS is able to

function well with it. Thus it can be concluded that:

ROS framework is generic, which means it can work

with a lot of robot types. The absence of HFTR from

ROS database and library means that the developed

programs can be made into new package for HFTR

in ROS library. Robot model which can be used to

virtually represent the HFTR can be used in rviz. The

models evolution also can be seen as implementation

process of ROS. With better implementation of ROS,

various parameters and data can be included in URDF

file for more complete description, which results in

more detailed model. From the navigation experiments,

it can be concluded that: the navigation stack can be

implemented and reconfigured in HFTR; the navigation

stack can register static map and obstacle; the occu-

pational value in grid map can be seen from global

costmap (wall) and local costmap (obstacle) which

depends on distance from the object (inflation); and,

the navigation pose and goal can be sent through rviz.

REFERENCES

[1] J. M. O’Kane. (2014) A gentle introduction

to ros. Retrieved on January 2015. [Online].

Available: http://www.cse.sc.edu/∼jokane/agitr/

[2] E. M. Eppstein. (2014) Navigation. Retrieved

on January 2015. [Online]. Available: http:

//wiki.ros.org/navigation.

[3] F. K. Mista, “Development of trajectory plan-

ner based on lagrange polynomial and b-spline

equations for an autonomous human follower

transporter robot,” Master’s thesis, Department

of Mechatronics, Faculty of Engineering, Swiss

German University, 2013.

[4] W. Tjiu, “Development of execution and monitor-

ing architecture modules for an autonomous hu-

man follower transporter robot,” Bachelor Thesis,

Department of Mechatronic, Faculty of Engineer-

ing and Information Technology, Swiss German

University, Tangerang, Indonesia, 2013.

[5] Nirmala, P. I. Tanaya, and M. Sinaga, “A study

on bipedal and mobile robot behavior through

modeling and simulation,” International journal

64



Cite this article as: A. Saphala and P. I. Tanaya, “Implementation and Reconfiguration of Robot Operating

System on Human Follower Transporter Robot,” CommIT (Communication & Information Technology)

Journal 9(2), 59–65, 2015.

of communication and information technology,

vol. 9, pp. 1–10, 2015.

[6] H. G. Nguyen, J. Morrell, K. D. Mullens, A. B.

Burmeister, S. Miles, N. Farrington, K. M.

Thomas, and D. W. Gage, “Segway robotic mo-

bility platform,” in Optics East. International

Society for Optics and Photonics, 2004, pp. 207–

220.

[7] C. Y. Wong, K. Turker, I. Sharf, and B. Beckman,

“Posture reconfiguration and navigation maneu-

vers on a wheel-legged hydraulic robot,” in Field

and Service Robotics. Springer, 2015, pp. 215–

228.

[8] J. Zhang, A. Salerno, N. Simaan, Y. L. Yao,

G. Randers-Pehrson, G. Garty, A. Dutta, and D. J.

Brenner, “Systems and methods for robotic trans-

port,” Patent, Aug. 31, 2010, uS Patent 7,787,681.

[9] B. E. Brendle Jr and J. J. Jaczkowski, “Robotic

follower: near-term autonomy for future combat

systems,” in AeroSense 2002. International

Society for Optics and Photonics, 2002, pp. 112–

117.

[10] Wiki. (2014) Navigation/tutorials/robotsetup.

Retrieved on January 2015. [On-

line]. Available: http://wiki.ros.org/navigation/

Tutorials/RobotSetup

[11] B. Gerkey. (2014) gmapping. Retrieved on

January 2015. [Online]. Available: http://wiki.

ros.org/gmapping

[12] J. Stephan. (2014) differential drive. [Online].

Available: http://wiki.ros.org/differential drive

[13] A. Saphala, “Reconfiguration and implementa-

tion of robot operating system for mapping and

navigation on human follower transporter robot,”

Master Thesis, Department of Mechatronic, Fac-

ulty of Engineering and Information Technology,

Swiss German University, Tangerang, Indonesia,

2014.

65


	INTRODUCTION
	RESEARCH METHODS
	RESULTS AND DISCUSSION
	CONCLUSIONS

