
21Complexitor: An Educational Tool (Elvina; Oscar Karnalim)

COMPLEXITOR: AN EDUCATIONAL TOOL FOR LEARNING ALGORITHM

TIME COMPLEXITY IN PRACTICAL MANNER

Elvina1 and Oscar Karnalim2

1, 2, Faculty of Information Technology, Maranatha Christian University
Jln. Prof. Drg. Surya Sumantri No. 65, Bandung, Jawa Barat, 40164, Indonesia

1elvinazhang@gmail.com; 2oscar.karnalim@it.maranatha.edu

Received: 6th December 2016/ Revised: 9th February 2017/ Accepted: 10th February 2017

Abstract - Based on the informal survey, learning
algorithm time complexity in a theoretical manner can
be rather difficult to understand. Therefore, this research
proposed Complexitor, an educational tool for learning
algorithm time complexity in a practical manner. Students
could learn how to determine algorithm time complexity
through the actual execution of algorithm implementation.
They were only required to provide algorithm
implementation (i.e. source code written on a particular
programming language) and test cases to learn time
complexity. After input was given, Complexitor generated
execution sequence based on test cases and determine its
time complexity through Pearson correlation. An algorithm
time complexity with the highest correlation value toward
execution sequence was assigned as its result. Based on
the evaluation, it can be concluded this mechanism is quite
effective for determining time complexity as long as the
distribution of given input set is balanced.

Keywords: Complexitor, educational tool, learning
algorithm, time complexity

I. INTRODUCTION

The algorithm is the core topic of Computer Science
(CS) field. However, since not all undergraduate CS students
can understand it properly, several CS educational tools are
developed. These tools target various level of algorithm
understanding. It starts from technical implementation
(e.g. program creation) to abstractive form (i.e. algorithmic
steps).

To help students in technical implementation,
various educational tools are used to encourage students
to implement their user-defined algorithm into source code
(Guo, 2013; Laakso, Kaila, & Salakoski, 2008; Cisar, Pinter,
Radosav, & Cisar, 2010). However, these tools have several
unique features which distinguish them from standard
Integrated Development Environments (IDEs). Guo (2013)
proposed Python Tutor, an embeddable Web-based program
visualization which aid ed students by providing reversible
source code tracking. Students can see how their algorithm
works in sequential order and verify variable contents
during the process. Similar with Python Tutor, Jeliot 3
(Cisar, Pinter, Radosav, & Cisar, 2010) and Ville (Laakso,
Kaila, & Salakoski, 2008) also incorporate program code
tracking. However, there searches are featured with several
additional features such as pop-up question and program
comprehension.

To avoid syntactic difficulties, several researches
incorporate unique yet effective mechanisms. Radosevic,
Orehovacki, and Lovrencic (2009) incorporated a ”traffic-
light” system which limited the number of source code
modification before compiling. Students are forced to

compile their code every N modification, and they can only
continue to write code if their code is successfully compiled.
In such manner, the numbers of syntactic errors handled by
students for each code compilation are limited. Students will
never face over whelming errors caused by writing large
source code at once without compiling. On the other hand,
Carlisle, Wilson, Humphries, and Hadfield (2005) and Watts
(2004) used flowchart-like representation for constructing
algorithm. Students are not encouraged to write source
code directly. Instead, they construct algorithm flowchart
converted into source code. This mechanism may avoid
syntactic errors which are majorly caused by permitting
students to write code syntaxes directly. Areias and Mendes
(2007) also applied flowchart-like representation for
constructing algorithm, but they focused on teaching weak
students by incorporating problem-specific questions. These
questions were statically defined for each problem and
utilized to guide students to solve particular problem.

Even though learning algorithm implementation is
important, it can only be conducted when students have
already understood its algorithmic steps. Thus, several
researches are focused on teaching algorithmic steps
instead of technical implementation. CeeBot4 (http://
www.ceebot.com/ceebot/4/4-e.php), Karel Robot (Buck &
Stucki, 2001), and Alice (Cooper, Dann, & Pausch, 2000)
are several examples in this category. These researches
teach students to solve problem algorithmically through
interactive environments (e.g. 3D visualization and real-
world object). Then,students can arrange their algorithm
based on provided instructions and see how their composed
algorithm researches.

Meanwhile, there are researches focused on teaching
how standard algorithms work instead of aiding students to
construct their algorithm like VisuAlgo which incorporates
animation and visualization to teach standard algorithms
(Halim, 2011; Ling, 2014; Halim, Koh, Loh, & Halim,
2012). Students can learn how an algorithm works based
on a particular input and see variable state for each given
instructions through visualization. Similar to VisuAlgo,
AP-ASD1 (Christiawan & Karnalim, 2016) also adds
animation and visualization. However, it is more focused
on covering course materials. It is fully-synchronized with
Basic Algorithm and Data Structure course on Faculty of
Information Technology in Maranatha Christian University,
Indonesia.

To enhance students’ understanding further, several
researches do not only focus on teaching how standard
algorithms work. Instead, they also focus on why a particular
algorithm is better than others. Velázquez-Iturbide and
Pérez-Carrasco (2009) developed GreedEx, an educational
tool focused on learning greedy algorithm. Using GreedEx,
students can explore how several greedy algorithms work
like comparing their respective output, and determine
which greedy algorithm is the best approach to solving the

22 ComTech, Vol. 8 No. 1 March 2017: 21-27

given problem. In addition, their research is also extended
by incorporating Computer-Supportive Collaborative
System (CSCL) and named GreedExCol (Debdi, Paredes-
Velasco, & Velázquez-Iturbide, 2015). On the contrary,
Jonathan, Karnalim, and Ayub (2016) developed AP-SA, an
educational tool to learn algorithm strategy (i.e. brute force,
greedy, back tracking, and dynamic programming). Their
research incorporated case-based performance comparison
so that students could determine which algorithm was the
best solution to the given problem. There are five aspects
that are considered on case-based performance comparison.
These aspects are optimality, completeness, time complexity,
execution time, and output. All of them are expected to
represent algorithm characteristic for a particular problem.

Nevertheless, to the researchers’ knowledge, there is
no educational tool focused on teaching how to calculate
time complexity. Thus, this research proposes Complexitor,
an educational tool focused on teaching algorithm time
complexity through algorithm implementation. This
tool is named based on its function and stands for “Time
Complexity Calculator”. For the initial step, Complexitor is
only focused on teaching how to measure time complexity
in a practical manner. Students could learn how to
calculate time complexity based on actual execution of
algorithm implementation. In addition, because algorithm
implementation must rely on the particular programming
language, Complexitor is also added with a programming
language setting mechanism so students could incorporate
new programming languages dynamically.

II. METHODS

In general, students can learn algorithm time
complexity through Complexitor by the following flowchart
in Figure 1. For each target of the algorithm, students must
provide algorithm implementation or source code in a
particular programming language, and input set. Afterward,
two kinds of number sequences are generated which are
execution and complexity-defined sequence. The execution
sequence is generated based on the number of processed
instruction or execution time through actual execution.
This step requires programming language setting defined
before hand since programming language instruction may
be different per programming language. On the other hand,
complexity-defined sequences are set by executing standard
complexity functions to input size. After both sequences
are generated, time complexity for the target algorithm is
assigned with the most correlated complexity to execution
sequence.

The learning flowchart in Figure 1 is inspired from
the second author’s teaching method about algorithm time
complexity for weaker students. Before learning algorithm
complexity in a theoretical manner, students are encouraged
to see directly how algorithm time complexity is determined
through actual execution. The time required for executing a
particular algorithm is calculated manually based on input
sets, and its complexity is determined based on its sequence
similarity toward a particular complexity function. Based on
the informal survey in the academic year of 2014/2015 on
Faculty of Information Technology in Maranatha Christian
University, Indonesia, this method is quite effective to
enhance students’ further understanding of time complexity
of the algorithm.

To learn how to determine time complexity toward
a particular algorithm, students must prepare algorithm
implementation and input set. Algorithm implementation
must be represented as a single file and should have a main
method. It can be written in any programming language
as long as its setting has been registered in Complexitor.
Meanwhile, input set is seen as multiple test case files which
each file should be named with input size (N), and its content
should represent input details. The example of testcase files
for linear search algorithm can be seen in Table 1. In this
example, the researchers assume that implementation of
linear search has accepted three lines as its input. The first
line represents input size, the second line is input sequence,
and the last line shows searched value. All testcases provided
in Table 1 are intended to represent the worst case scenario
like the searched value is not found.

Table 1 The Sample of Test Case Files
of Linear Search Algorithms

Filename (N) File Content

1 1
1
-1

3 3
1 2 3
-1

5 5
1 2 3 4 5
-1

10 10
1 2 3 4 5 6 7 8 9 10
-1

Figure 1 Learning Flowchart of Complexitor

23Complexitor: An Educational Tool (Elvina; Oscar Karnalim)

From the learning perspective, students are asked to
provide algorithm implementation and input set based on the
following reasons. First, most of the students miscalculate
time complexity since they do not know how to implement
it as a program. They naively assume that each algorithm
instruction has its one-to-one correlation with program
instruction. Thus, by providing algorithm implementation,
students are expected to understand more about their target
algorithm in detail. Second, in most cases, determining time
complexity is split into three domains which are best, worst,
and average cases. By providing input set, students can
determine which time complexity they want to calculate.
For example, if students want to calculate the worst case for
linear search algorithm, they should provide input set where
each searched value is not found.

To design Complexitor as language-independent as
possible, the researchers separate all language-dependent
instructions and store them in programming language
setting. Hence, Complexitor can incorporate various
programming languages as long as their settings are
provided. Language-dependent instructions are utilized
to perform several tasks to generate execution sequence.
These tasks include compiling source code, running
executable file, and calculating the number of processed
instructions. The first two tasks are for performing the
actual execution. Both of them require students to arrange
command prompt instructions for performing the tasks
using a particular programming language like java and
javac instruction in Java programming language. On the
contrary, the latter one is to generate execution sequence
based on standard counter mechanism. Students must
describe how to initialize, increment, and print the counter
in a particular programming language. Then, Complexitor
will embed these instructions in the loaded source code,
execute, and extracts its result by overriding command
prompt instructions. Moreover, by default, Complexitor
provides three programming language settings which cover
C++, Java, and Python. These languages are selected due
to their popularity in undergraduate students in Faculty of
Information Technology in Maranatha Christian University,
Indonesia.

For a broader view of programming language
setting, the setting of C++ programming language in
Complexitor can be seen in Table 2. It is compiled by using
GNU Compiler (g++) and its counter mechanism relies
on long long int type. In addition, because compiling and
running instructions require file name and path to perform
their respective tasks, Complexitor provides three variables
for the convenience of access. These variables are a file
name with extension, file name without extension, and
file path. They are named as @filenamewithextension, @
filenamewithoutextension, and @filepath respectively.

Table 2 C++ Programming Language Setting

Instruction Type Value

Compile g++ @filepath\@filenamewithextention
-o @filepath\@filenamewithoutextention

Run @filepath\@filenamewithoutextention.
exe

Initialize counter long long int count = 0;
Increment counter count++;
Print counter cout<<"\n"<<count;

The execution sequence is based on actual execution
of algorithm implementation toward the given input set.
It is represented as an array with length K which K is the
number of test case files on input set. For test case file of i
on input set, its execution result will be stored in the array
at index i. By default, the execution result is determined
according to the time required for a particular program to
process a particular input. It is measured in nanoseconds to
keep its sensitivity toward short execution time. However,
the time execution is quite unreliable due to hardware and
operating system dependency. Thus, the researchers’ tool
also adds the number of processed instructions to generate
execution sequence. Students can select the time execution
or the number of processed instructions as the baseline for
execution sequence.

The number of processed instructions is calculated
by embedding standard counter mechanism on algorithm
implementation. A counter is initialized at the beginning
of the process, incremented each time by involving
processed instructions, and printed as a result at the end
of the process. Instead of embedding counter mechanism
automatically, Complexitor suggests the students embed
them semi-manually. Students must determine where to
initialize, increment, and print the counter in algorithm
implementation. Therefore, students are encouraged to learn
where to start and end calculating time complexity. As been
known, not all of the instructions are counted to determine
time complexity. Most input and output instructions are
frequently excluded. In addition, they are also encouraged
to determine which instructions are involved by embedding
counter increment after each instruction. Based on the fact
that interaction may strengthen students’ understanding
(Naps et al., 2003). This supplementary interaction is
expected to enhance students’ further understanding.

The example of embedded algorithm implementation
can be seen in Figure 2. The researchers translate the
source code into the algorithmic form, so it only displays
necessary information for clarity. This algorithm represents
linear search algorithm where italic lines represent
embedded instructions. The red-marked line shows counter
initialization. The green -marked line is a counter increment,
and blue-marked line means counter print instruction.
In this example, the researchers intend to calculate time
complexity only based on loop iteration, so they only
increment the counter each time when the loop iteration is
executed. In fact, counter increment can be embedded more
than once in algorithm implementation. It relies heavily
on students’ assumption about the instructions in the given
implementation of the algorithm.

Figure 2 Implementation of Embedded
Linear Search Algorithm

24 ComTech, Vol. 8 No. 1 March 2017: 21-27

Furthermore, Complexity-defined sequences are
generated based on standard complexity functions that take
input size (N) from each test case as its argument. With an
assumption that standard progressive complexity functions
are limited to T(log N), T(N), T(N log N), T(N2), T(N3), T(2N),
T(3N), and T(N!), this phase will generate 8 complexity-
defined sequences or one sequence for each function. The
representation of Complexity-defined sequence is quite
similar to the execution sequence except it is generated by
using complexity function instead of actual execution. For
each test case file of i on the input set with N as its input
size, the result of complexity function f(N) will be stored
in the array at index i. For example, if it is i = 4, f(N) = 2N,
and N=3, its function result will be 23 = 8 and be placed at
index 4 in array.

Then, time complexity is determined by selecting
the most correlated complexity toward execution sequence.
For each complexity-defined sequence of i, its correlation
toward execution sequence of e will be measured based on
Pearson correlation (Pearson, 1895). Pearson correlation
is to measure linear dependence between two sequences
(i and e) and yields -1 to 1 inclusively. -1 is the total of
negative linear correlation whereas 1 shows the total of
positive linear correlation. After all complexity correlations
are calculated, time complexity with the highest correlation
score is selected as a result.

However, this approach can only be applied on
progressive time complexity due to Pearson correlation
characteristic. Thus, constant time complexity is predicted
before hand based on Mean Average Deviation (MAD)
threshold. An execution sequence is considered to result
in constant time complexity (iff) which the MAD is
lower than K times its mean. Otherwise, the complexity
will be determined according to Pearson correlation.
The researchers do not incorporate gradient mechanism
because not all points on both sequences yield a linear form,
especially on time execution sequence. K is a parameter
which may be changed, and the value is purely based on
manual observation about data distribution. This MAD
threshold rule is applied with an assumption that constant
time complexity should generate small variance among the
data.

III. RESULTS AND DISCUSSIONS

Based on the fact that the proposed approach for
detecting time complexity is rather unique, the researchers
intend to evaluate its effectiveness toward various time
complexities and programming languages. To do that, the
researchers generate a dataset which represents various time
complexity functions implemented in various programming
languages. In this dataset, nine standard time complexity
functions are incorporated into nine algorithms which
details can be seen in Table 3. Each algorithm is featured
with 10 test cases where each of them is schemed to perform
their respective complexity.

Each algorithm in Table 3 is implemented in three
programming languages which differ in runtime execution
due to their compiler design. These programming languages
are C++, Java, and Python. C++ takes the fastest runtime
execution since the executable file is represented as the native
codes. Meanwhile, Java takes longer runtime execution than
C++ since the executable file must be converted to native
codes by using runtime environment. Then, Python takes
the longest runtime execution because the source code is

translated directly into native codes at the runtime. In short,
the dataset consists of 27 cases which are from 9-time
complexity functions times 3 programming languages.
These cases are expected to represent time complexity and
programming language variance.

The evaluation is split into three folds which are:
(1) evaluating the effectiveness of sequence correlation
for determining time complexity; (2) evaluating the
effectiveness of the approach toward various programming
languages; and 3) comparing the effectiveness of the two
baselines for detecting time complexity. All evaluation
is conducted in accordance with several conditions. First,
the constant time complexity threshold is assigned as 0,3.
In the other word, a sequence is considered to has constant
time complexity (iff) as its MAD is lower than 130% of
its mean. Second, the calculating time complexity based
on the number of processed instructions, input and output
instructions are automatically ignored.

When evaluating the effectiveness of sequence
correlation toward various time complexities, the researchers
do not incorporate all cases in the dataset. Instead, they only
incorporate cases from a particular programming language
like C++ in this evaluation and calculate the time complexity
based on the number of processed instructions. It can
evaluate the effectiveness of sequence correlation proposed
in the approach since it is the only factor affecting the result.
They only incorporate one programming language since
the number of processed instructions for each algorithm
is always similar to various programming languages. In
addition, the number of processed instructions is preferred
to time execution as the baseline for this evaluation since
the result is not affected by hardware and operating system.

The correlation distribution generated based on this
evaluation can be seen in Figure 3. Horizontal axis illustrates
algorithms provided in Table 3 whereas the vertical axis
represents Pearson correlation between execution and
complexity-defined sequence. In Figure 3, an algorithm is
considered as highly correlated to constant time complexity
with correlation = 1 (iff) and the execution sequence is
considered as constant. Otherwise, it will be assigned as -1.
In general, the time complexity of each case in the dataset
is detected correctly since its designated time complexity
function always yields the highest correlation value. In
other the word, the sequence correlation is quite effective
to determine time complexity due to the high accuracy.
Despite its high accuracy, the designated correlation value
is only slightly higher than other correlation values. This
finding is natural since the evaluation only incorporates 10
test cases per algorithm. The limited test cases mean limited
points to determine time complexity. It is rather difficult to
differentiate complexities with similar sequence pattern. In
fact, it may produce more significant difference when the
numbers of incorporated test cases are larger.

When evaluating the effectiveness of the approach
toward various programming languages, the researchers
incorporate two schemes which are generated based on
the detection baseline. There are the number of processed
instructions and time execution. For convenience, the
scheme that relies on the number of processed instructions
will be referred as NI-GES where as scheme based on time
execution will be referred as TI-GES.

To generate the more precise result, the evaluation
uses approximate matching instead of the strict one.
Matching score for each case is not only limited to Boolean
values (match = 1 or mismatch = 0). Alternatively, its
matching score is weighted based on misclassification

25Complexitor: An Educational Tool (Elvina; Oscar Karnalim)

Table 3 Standard Time Complexity Algorithm Dataset

ID Time Complexity Algorithm Actual Time Complexity Input Set (N)

A T(1) Converting Currency 1 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000

B T(log N) Binary Search 3 log N + 2 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000
C T(N) Sequential Search N + 1 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000
D T(N log N) Quick Sort 2(N log N) + 8 log N + 1 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000
E T(N2) Insertion Sort N2 + 3N + 3 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000

F T(N3) Matrix Multiplication N3 + N2 + 1 1, 2, 5, 10, 20, 30, 50, 60, 80, 100

G T(2N) Recursive Fibonacci 2N + 1 1, 2, 3, 5, 8, 10, 12, 20, 25, 30

H T(3N) 3 Digit Combination 3N + 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

I T(N!) Permutation Sort N! + 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Figure 3 The Correlation Distribution based on Evaluation Dataset

distance. The detail of misclassification-weighted matching
score involved in this research can be seen as r represents
the result of the approach, e shows expected result, and
distance (r,e) is misclassified distance between r and e
toward 9 complexity functions described in Table 3. For
example, if it is r = T(log N) and e = T(N2), then the results
will be distance (r,e) = 2. The more adjacent both r and e are,
the higher the misclassification-weighted matching score is.

 (1)

NI-GES accuracy toward the dataset is 100%
according to the result of the first evaluation in Figure 3.
Each case per time complexity is detected correctly where
as the result is always similar regardless the programming
language. On the contrary, TI-GES accuracy is lower and
relies heavily on the programming language. The detail of
TI-GES accuracy to the evaluation dataset can be seen in
Figure 4. Horizontal axis means algorithms provided in
Table 3, while the vertical axis is TI-GES accuracy by using
misclassified-weighted matching score, and percentage
in legend shows the average accuracy per programming
language.

Based on Figure 4, Python yields the highest
accuracy (73,519%), Java is the intermediate one
(62,963%), and C++ has the lowest one (52,778%). When

it is associated with time execution, it can be stated that the
longer execution time is, the better accuracy it has. Python
yields the highest accuracy while taking the longest time
execution whereas C++ yields the lowest one while having
the shortest execution time. This finding is natural since the
program of time execution is heavily depended on hardware
and operating system, and taking longer execution time may
reduce its drawbacks.

Figure 4 TI-GES Accuracy based on Evaluation Dataset

From the case perspective, all programming
languages show the faulty result in the low-progressive time

26 ComTech, Vol. 8 No. 1 March 2017: 21-27

complexity algorithms (case B to D) and yield the better
result in high-progressive ones (case E to I). Case B to D
gives faulty result since their generated execution sequences
are not patterned correctly due to hardware and operating
system dependency. This dependency affects greatly on
low-progressive time complexity algorithms since these
algorithms only require a short time for executing their
program. On the contrary, case E to I has better result since
they require a longer time to execute their program. Thus,
the impact of hardware and operating system dependency
are minimalized. Case A is always detected correctly
regardless of programming language since constant time
complexity is always checked before hand in the approach.

In general, the number of processed instructions
(NI-GES) is more effective to determine time complexity
compared to time execution (TI-GES). This finding is
based on the respective accuracy in handling the dataset
where NI-GES has 100% accuracy, and TI-GES only shows
63,086% in average. When it is discovered further, TI-GES
gives lower accuracy due to the dependency on hardware
and operating system. It may have the faulty result when
time execution required for running an algorithm is low. It
means TI-GES cannot determine time complexity correctly
when the given algorithm has low time complexity or
is implemented in programming languages with the fast
running mechanism.

Both NI-GES and TI-GES rely on actual execution.
Thus, determining proper test cases for generating execution
sequence is important. Test cases should be created carefully,
and all of its input should aim for similar time complexity
(best, average, or worst case). If the test cases are selected
randomly, it may reduce the accuracy since the sequence
pattern on generated execution sequence may not show a
particular algorithm time complexity.

IV. CONCLUSIONS

In this research, the researchers have proposed
Complexitor, an educational tool for learning algorithm
time complexity in a practical manner. To determine time
complexity, Complexitor requires algorithm implementation
and test cases. Algorithm implementation is shown as
a single source code whereas test cases are represented
as the file text. Time complexity is determined based on
Pearson correlation which compares complexity sequence
with execution sequence. Complexity sequence is based
on the standard complexity functions where the execution
sequence is generated with either one of two baselines:
the number of processed instructions (NI-GES) and time
execution (TI-GES).

According to the evaluation, NI-GES is more
effective than TI-GES. It is because TI-GES is heavily
affected by hardware and operating system. However,
NI-GES requires a considerable amount of time when
the algorithm is implemented in a new programming
language. Students should provide several programming-
related instructions such as counter initialization, counter
increment, and counter print.

For further research, the researchers will evaluate
the impact of Complexitor qualitatively based on students’
necessity. They will conduct a controlled experiment on
algorithmic strategy course in their university and evaluate
its impact through questionnaire and students’ marks. In
addition, they also intend to find an optimal threshold to
determine the constant time complexity on mathematical
manner. As they know, this threshold may be varied

regarding the dataset pattern. From the feature perspective,
they intend to extend Complexitor with theoretical learning
approach so students can learn how to calculate time
complexity from both practical and theoretical manner.

REFERENCES

Areias, C., & Mendes, A. (2007). A tool to help students
to develop programming skills. In Proceedings of

the 2007 International Conference On Computer

Systems and Technologies (p. 89). ACM.
Buck, D., & Stucki, D. J. (2001). JKarel Robot: A case study

in supporting levels of cognitive development in the
computer science curriculum. In The Thirty-Second

SIGCSE Technical Symposium on Computer Science

Education. Charlotte.
Carlisle, M. C., Wilson, T. A., Humphries, J. W., & Hadfield,

S. M. (2005). RAPTOR: A visual programming
environment for teaching algorithmic problem
solving. In The 36th SIGCSE Technical Symposium

on Computer science education. St. Louis.
CeeBot4. (2008). Learn programming with CeeBot4.

Retrieved November 5th, 2016, from http://www.
ceebot.com/ceebot/4/4-e.php

Christiawan, L., & Karnalim, O. (2016). AP-ASD1: An
Indonesian desktop-based educational tool for basic
data structures. Jurnal Teknik Informatika dan Sistem

Informasi (JuTISI), 2(1), 21-30.
Cisar, S. M., Pinter, R., Radosav, D., & Čisar, P. (2010).

Software visualization: The educational tool
to enhance student learning. In MIPRO, 2010

Proceedings of the 33rd International Convention

(pp. 990-994). IEEE.
Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D

tool for introductory programming concepts. Journal

of Computing in Small Colleges, 15(5), 107-116.
Debdi, O., Paredes-Velasco, M., & Velázquez-Iturbide, J. Á.

(2015). GreedExCol, A CSCL tool for experimenting
with greedy algorithms. Computer Applications in

Engineering Education, 23(5), 790-804.
Guo, P. J. (2013). Online Python tutor: Embeddable web-

based program visualization for CS education. In
Proceeding of the 44th ACM technical symposium on

Computer science education (pp. 579-584). ACM.
Halim, S. (2011). VisuAlgo. Retrieved May 12th, 2015 from

http://visualgo.net/
Halim, S., Koh, Z. C., Loh, V. B., & Halim, F. (2012).

Learning algorithms with unified and interactive
web-based visualization. Olympiads in Informatics,

6, 53-68.
Jonathan, F. C., Karnalim, O., & Ayub, M. (2016). Extending

The Effectiveness of Algorithm Visualization with
Performance Comparison through Evaluation-
integrated Development. In Seminar Nasional

Aplikasi Teknologi Informasi (SNATI). Yogyakarta
Laakso, T. R. M. J., Kaila, E., & Salakoski, T. (2008).

Effectiveness of program visualization: A case
study with the ViLLE tool. Journal of Information

Technology Education, 7, 15-32.
Ling, E. (2014). Teaching algorithms with web-based

27Complexitor: An Educational Tool (Elvina; Oscar Karnalim)

technologies. Singapore: National University of
Singapore.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer,
R., Hundhausen, C., . . .Velázquez-Iturbide, J. A.
(2003). Exploring the role of visualization and
engagement in computer science education. In
ITiCSE-WGR ‘02 Working group reports from

ITiCSE on Innovation and technology in computer

science education. New York.
Pearson, K. (1895). Note on regression and inheritance in

the case of two parents. Proceedings of the Royal

Society of London, 58, 240-242.

Radosevic, D., Orehovacki, T., & Lovrencic, A. (2009).
Verificator: Educational tool for learning
programming. Informatics in Education, 8(2), 261-
280.

Velázquez-Iturbide, J., & Pérez-Carrasco, A. (2009). Active
learning of greedy algorithms by means of interactive
experimentation. In ITiCSE ‘09 Proceedings of the

14th annual ACM SIGCSE conference on Innovation

and technology in computer science education. New
York.

Watts, T. (2004). The SFC editor: A graphical tool for
algorithm development. Journal of Computing

Sciences in Colleges, 20(2), 73-85.

