
Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 161

SHORTEST PATH WITH DYNAMIC WEIGHT IMPLEMENTATION

USING DIJKSTRA’S ALGORITHM

Elizabeth Nurmiyati Tamatjita
1
; Aditya Wikan Mahastama

2

1Department of Informatics, Sekolah Tinggi Teknologi Adisutjipto

 Jl. Janti Blok R Lanud Adisutjipto, Yogyakarta, 55198
2Depatment of Informatics, Faculty of Information Technology, Universitas Kristen Duta Wacana

Jl. Dr. Wahidin Sudirohusodo No. 5 – 25, Yogyakarta, 55224
1tamatjita@gmail.com; 2mahas@staff.ukdw.ac.id

ABSTRACT

Shortest path algorithms have been long applied to solve daily problems by selecting the most feasible

route with minimum cost or time. However, some of the problems are not simple. This study applied the case

using Dijkstra's algorithm on a graph representing street routes with two possible digraphs: one-way and two-

way. Each cost was able to be changed anytime, representing the change in traffic condition. Results show that

the usage of one way digraph in mapping the route does make the goal possible to reach, while the usage of two-

way digraph may cause confusion although it is probably the possible choice in the real world. Both experiments

showed that there are no additional computation stresses in re-calculating the shortest path while going halfway

to reach the goal.

Keywords: shortest path, dynamic weight, Dijkstra’s algorithm, graph, digraph

INTRODUCTION

A graph is a symbolic representation of a network and its interconnections. A graph shows an

implication of reality simplified as a set of connected nodes. Graph theory is a study of mathematics

which codes and measures the features of a network. Graph theory has been enriched in these last

decades with influences from social sciences (Rodrigue & Ducruet, 2015). An implementation of

graph theory is to find the shortest path connecting a start and end nodes through several other nodes.

This search takes into consideration a cost optimization regarding distance or other costs, so in the

end, there will be only one optimal path which has the most minimum cost.

Therefore, the usual case to which shortest path algorithms were implemented to solve is

transportation problems, where transport cost are the main compensation expendable to run a route

between two locations. These were a static case since a few decades ago there weren't many dynamic

factors affecting transport cost, and some established systems are still using the same measurement

such as freight forwarders, packet services, etc.

However, when computer games come to a rise, the case are expanded to solve transportation

problems in games, which in turn represents today’s real condition on a micro scale. Computer games’

transportation problems are more complex because it involves just-in-time decision to change the next

route when additional problems came up, such as unexpected monsters, disasters, and so on. These are

not too far away from today's traffic problems. Traffic congestion often came out of nowhere and is

not expected before. Gladly the automatic traffic control has the data which shows on what route the

congestion occurs and how bad the traffic is, so it is feasible to model the graph and cost using these

data in order to find the most possible new route.

162 ComTech Vol. 7 No. 3 September 2016: 161-171

Dijkstra (1959) created one of the earliest algorithms in finding the shortest path, based on

selecting the most minimum transportation cost (called weight) of an edge connecting two nodes

(basically a way connecting two locations), expand the weight measurement to the next possible

nodes, calculating the total weight and updated the route if a new total minimum weight is found. The

network is modeled as a directed graph consisting of nodes and directed edges, without any loop edges

coming from and pointing to a same node (Harju, 2011).

Dijkstra’s algorithm has been implemented mainly to solve static transportation problems such

as the shortest path between two cities in Central Java (Sunaryo, Siang & Chrismanto, 2012) and

South Sumatera (Fitria & Triansyah, 2013), to define the shortest path using multi-means of public

transportation (Arifianto, 2012), and to locate the nearest public facility like hospitals, hotels and bus

stations in a city (Sholichin, Yasindan, & Octoviana, 2012).

A nearly dynamic implementation was used to solve adaptive drinking water distribution

problem for housing (Prasetyo, 2013). However, the simulation does not include a real-time dynamic

change of water distribution capacity as its weights. A comparative study has also been conducted

regarding computational loads of Dijkstra’s algorithm against Floyd-Warshall algorithm for a same

certain case (Djojo & Karyono, 2013).

Although the algorithm does expand way too wide in search for the optimum weight resulting

in a rather inefficient time (Głabowski et al., 2013), it is quite simple to be implemented, so for a

limited or a selected number of alternative nodes, this algorithm should fit and gives a clear

impression of whether a dynamic change in edge weights between the start and end node is still

feasible to implement and how it will affect the computational load. The expected results may show

whether dynamic changes in weight is still feasible to be implemented and used for everyday traffic

problem solving, e.g. for a fire-fighter to reach the fire location, an ambulance en route to a hospital,

etc.

This study will focus to resolve several problems. First, to find out whether Dijkstra’s

algorithm is feasible to solve and find the shortest path of a directed graph with dynamic weights.

Second, to know whether or not the path offered as the final solution is the correct shortest path.

Finally, to find whether or not a performance problem occurs when the weights are changed

dynamically?

For this study, an experimental environment is limited to a maximum of 30 nodes, with one

start and one end nodes. The graph used for modelling are directed graph which doesn't contain any

direct loop. Weight changes are able to be done real-time through the on-screen interface, regardless

the current route calculation has been commenced or not. The result (final overall route selected) will

be displayed on the screen to aid manual study for the correct path.

There are some purposes to be achieved in this research. The first one is to create a model for

shortest path analysis with dynamic weight using Dijkstra’s algorithm. Next, to study whether certain

cases of dynamic weight change may render a solving failure which leads to wrongly selected route or

an unfinishable route. Third, observing whether a raise in performance load (measured in time needed

to calculate) will occur for certain cases of dynamic weights.

METHODS

A graph is a symbolic representation of a network and its interconnections. A graph shows an

implication of reality simplified as a set of connected nodes. Graph theory is a study of mathematics

Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 163

which codes and measures the features of a network. According to Astuti (2015), graph G (V, E) is a

collection of two sets: (1) set V which elements are the nodes or vertices and (2) set E which elements

are the edges.

The amount of members in set V determines the order of graph G, while the amount of

members in set E is the size of graph G. Examples of graphs are shown in Figure 1.

Figure 1 Graph Examples

The second graph from left in Figure 1 shows an occurrence of multiple edges or parallel

edges e3= (1, 3) and e4= (1, 3) which connects a same pair of nodes. The third graph from left shows

an occurrence of loop e8 which connected to and for a same node.

If the edges are having weight (cost needed to pass the edge), then the graph is called a

weighted graph. The weight is written near the edge as the name and placed in certain way to avoid

confusion.

According to the orientation of edges, graph falls into two categories; undirected graph or just

“graph” and directed graph or "digraph." Digraph has arrowheads on edges showing the direction in

which the edge is leading to, such as displayed in Figure 2.

Figure 2 Directed Graph

Ruohonen (2013) defined that Dijkstra’s algorithm is used to solve shortest path problem

(finding a path with the minimum length) from a start node to an end node in a weighted graph, and

the weight should be a positive number. Given G is a weighted digraph with nodes V (G) = {v1,

v2,…,vn} and shortest path in question is from v1to vn, Dijkstra's algorithm begins from v1.

During its iteration, Dijkstra's algorithm will find a successor node which costs a smaller up-to

weight than the current node. Selected successor nodes are kept aside and not involved in the next

iteration. The whole pseudo code for Dijkstra's algorithm is declared in Figure 3.

164 ComTech Vol. 7 No. 3 September 2016: 161-171

Figure 3 Pseudocode for Dijkstra's Algorithm

The study constructed these models to support the research. A system model used in this research,

which follows the block diagram shown in Figure 4.

Function Dijkstra (M: graph weight in an array of nodes, a :

integer)

Declare

D, S : array[1..n] of integer

i, j, k min : integer

Steps

{ Step 0 (initialisation): }

for i ← 1 to n do
 S[i] ← 0
 D[i] ← M[a, i]
Endfor

 { Step 1: }

S[a] ← 1 { input initial node into S }

{ Steps 2, 3, ..., n-1 : }

for k ← 2 to n – 1 do

{ look for node j as to S[j] = 0

 Dan D[j] = Minimum{D[1], D[2], ..., D[n] }

 min ← D[1]
 j ← l
 for i ← 2 to n do
 if (S[i] = 0) and (D[i] < min) then

 min ← D[i]
 j ← i
 endif

 endfor

 S[j] ← l {Node j is already selected into the shortest path}
 {recalculate D[i] from node a to node i S}

 for i ← l to n do
 if S[i] = 0 then

 if D[i] > (D[j] + M[j,i]) then

 D[i] ← D[j] + M[j,i]
 endif

 endif

 endfor

endfor

return D

Shortest

A

store no

dynamic

T

Observa

user inte

original

changing

T

which m

visualize

to end no

its "orig

finishabl

T

wheneve

path is th

T

map for

which is

has a tot

t Path … (Eliza

A data struc

odes, edges r

cally.

These mode

ations and ev

erface which

weight of an

g a node terr

The terrain a

may lead the

ed on-screen

ode, and cha

inal" shortes

le, correct or

The path is

er there is a

hen merged w

Two predefin

twenty sess

s also its tota

tal weight of

abeth Nurmiy

cture model

relating two

els are imple

valuations are

h helps the e

n edge (state

ain or puttin

and obstacle

e system to s

by an ambu

anges in path

st path. The

r render to an

recalculated

weight chan

with the prev

ned “maps”

sions conduc

al initial shor

f 2500 for it

iyati Tamatjita

Figu

used to stor

o nodes and

emented as

e conducted

ease of use

ed as the dis

g certain obs

represent a

select anothe

ulating red sp

h selection ar

animated sp

n unfinished

Figure 5 T

d from a nod

nge in at leas

vious path w

or certain fo

cted. Map A

rtest path len

ts initial sho

ta; Aditya Wik

ure 4 System M

re the digrap

its weight.

a program

using the pro

in visualizin

stance betwe

stacles availa

change in tr

er feasible r

phere running

re easy to ob

phere is also

loop. The pr

Testing Progra

de to be reac

st one of esta

which has trod

orms of graph

A has a total

ngth, with st

rtest path, w

kan Mahasta

Model

ph data. The

The weight

which used

ogram. The r

ng the map m

een two nod

able into an e

raffic load or

road on an i

g along the "

bserve visual

o used to obs

rogram interf

m Interface

ched by the

ablished shor

dden and bec

hs are used in

l weight of 2

tandard comp

with 2500 un

ama)

data structu

t should be

to test the

resulting pro

model of an

des), or dyna

edge.

r congestion

intersection.

"shortest" pat

ly with the s

serve whethe

face is presen

red sphere.

rtest path ed

come the fina

n forty testin

2000 for its

pletion time

nits long and

ure should b

able to be

cases in th

ogram has a

n area, modi

amically mod

in a success

The selecte

th from the s

sphere deviat

er the offere

nted in Figur

Recalculatio

dges. The rec

al shortest pa

ng sessions, w

initial short

200 seconds

d standard co

165

be able to

modified

his study.

graphical

fying the

dify it by

sive road,

d path is

start node

ting from

ed path is

re 5.

on occurs

calculated

ath.

with each

test path,

s. Map B

ompletion

166 ComTech Vol. 7 No. 3 September 2016: 161-171

time of 250 seconds. Map A and Map B has their special characteristics in which Map A has most

edges exiting from a node with slight differences in weight – which reflects small differences in edge

length, while Map B has a very different weight for most existing edges, as shown in Figure 6.

Figure 6 Characteristics of Map Types

These served as possible conditions of a road map, where sometimes the path choice are easily

available because they are near identical; and sometimes there are only a few choice, including turning

back if necessary, to obtain the shortest path. Every two sessions, the same dynamic modifications

conducted using a single-way digraph and two-way digraph.

For the two-way digraph test, the maps are not entirely made as the two-way digraph, only

selected edges are made to have parallel edges to simulate the real condition of city streets, which

frequently are a two-way system, and vehicles are often able to turn back to select a better path from a

node before. The two-way digraph also uses to test the possibility of Dijkstra's algorithm in solving it,

since researches conducted before have not been discussing about a possibility of the two-way

digraph. The types test sessions conducted are illustrated in Table 1.

Table 1 Test Types

Map Dynamic Change # Digraph Test Session

Map A Mod #1 One-way Test A1-1

Two-way Test A1-2

Mod #2 One-way Test A2-1

Two-way Test A2-2

Mod #3 One-way Test A3-1

Two-way Test A3-2

Mod #4 One-way Test A4-1

Two-way Test A4-2

Mod #5 One-way Test A5-1

Two-way Test A5-2

Mod #6 One-way Test A6-1

Two-way Test A6-2

Mod #7 One-way Test A7-1

Two-way Test A7-2

Mod #8 One-way Test A8-1

Two-way Test A8-2

Mod #9 One-way Test A9-1

Two-way Test A9-2

Mod #10 One-way Test A10-1

Two-way Test A10-2

Shortest

W

weight r

the “terr

number

node is a

path has

M

modifica

modifica

modifica

path up

the end n

t Path … (Eliza

Map

Map B

Weight mod

required for p

rain level” to

to arriving e

altered so as

to be selecte

Modification

ation, so M

ations. Figur

ation, the sh

to the end no

node is reach

abeth Nurmiy

Dy

B

dification is

passing edge

o water or hil

edges’ weigh

the original

ed. The inten

n with a bi

od #10 will

re 7 illustra

ortest path i

ode. Next te

hed.

iyati Tamatjita

Table 1 T

ynamic Chang

Mod #1

Mod #2

Mod #3

Mod #4

Mod #5

Mod #6

Mod #7

Mod #8

Mod #9

Mod #10

done by alte

es to reach th

ll (default is

ht. This can a

incoming pa

nsity of the a

igger numbe

l have at le

ated how mo

s recalculate

est session co

Figure 7

ta; Aditya Wik

Test Types (co

ge #

ering a pred

his node. Alte

0 or a flat la

also serve as

ath's weight b

alterations is

er indicates

east ten mo

odifications

ed and waite

ommenced b

Mod #1-#3 fo

kan Mahasta

ontinued)

Digraph

One-way

Two-way

One-way

Two-way

One-way

Two-way

One-way

Two-way

One-way

Two-way

One-way

Two-way

One-way

Two-way

One-way

Two-way

One-way

Two-way

One-way

Two-way

determined n

ernation is do

and), to incre

traffic conge

become not e

indicated by

previous m

difications a

#1 to #3 o

ed until the r

by performing

for Map A

ama)

Test

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Te

Tes

Tes

node for each

one by select

ease the wei

estion weigh

eligible to pa

y the radius o

modification

as it resulte

of Map A ar

red sphere fi

g all modific

t Session

st B1-1

st B1-2

st B2-1

st B2-2

st B3-1

st B3-2

st B4-1

st B4-2

st B5-1

st B5-2

st B6-1

st B6-2

st B7-1

st B7-2

st B8-1

st B8-2

st B9-1

st B9-2

st B10-1

st B10-2

h test to inc

ting a node t

ght by addin

ht. The prede

ass, and an al

of the bluish m

added with

ed from all

re made. A

inished follo

cations and w

167

rease the

then slide

ng certain

etermined

lternative

mists.

h another

previous

fter each

owing the

wait until

168

F

of the pa

D

suggeste

M

Map A

(Initia

path:

weigh

length

standa

comp

200se

For every tes

ath, factors o

Data collect

ed path are su

Map

A

al shortest

(1) total

ht: 2000, (2)

h: 2000, (3)

ard

letion time

econds)

F

st session co

occurred rega

R

ted from tes

ubject to fini

Dyn. Chang

Mod #1

Mod #2

Mod #3

Mod #4

Mod #5

Mod #6

Mod #7

Mod #8

Mod #9

Mod #10

Figure 7 Mod #

onducted, dat

arding finish

RESULTS

sting session

ishability, the

Table 2

ge # Digr

One-w

Two-

One-w

Two-

One-w

Two-

One-w

Two-

One-w

Two-

One-w

Two-

One-w

Two-

One-w

Two-

One-w

Two-

One-w

Two-

Com

#1-#3 for Map

ta is collected

ability, and t

AND DIS

ns sum up t

erefore, com

2 Test Session

aph Tes

way T

-way T

way T

-way T

way T

-way T

way T

-way T

way T

-way T

way T

-way T

way T

-way T

way T

-way T

way T

-way T

way Te

-way Te

mTech Vol. 7

p A (continue

d regarding s

time of comp

CUSSION

the results a

mpletion time

n Results

st Session

est A1-1

est A1-2

est A2-1

est A2-2

est A3-1

est A3-2

est A4-1

est A4-2

est A5-1

est A5-2

est A6-1

est A6-2

est A7-1

est A7-2

est A8-1

est A8-2

est A9-1

est A9-2

est A10-1

est A10-2

 No. 3 Septe

d)

shortest path

pletion.

NS

as presented

regarded as

Finishable

Yes

Yes

Yes

Yes

Yes

No – Loop

Yes

No – Loop

Yes

Yes

Yes

No – Loop

Yes

No – Loop

Yes

Yes

Yes

Yes

Yes

Yes

ember 2016:

h solved, fini

in Table 2

not available

e Complet

20

20

20

20

21

20

20

20

21

20

20

20

20

20

21

21

 161-171

sh ability

. Not all

e.

t. time (s)

01

01

03

03

10

06

01

05

15

08

04

04

02

02

16

11

Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 169

Table 2 Test Session Results (continued)

Map Dyn. Change # Digraph Test Session Finishable Complet. time (s)

Map B (Initial

shortest path:

(1) total

weight: 2500,

(2) length:

2500, (3)

standard

completion

time 250

seconds)

Mod #1 One-way Test B1-1 Yes 223

Two-way Test B1-2 Yes 222

Mod #2 One-way Test B2-1 Yes 235

Two-way Test B2-2 Yes 251

Mod #3 One-way Test B3-1 Yes 258

Two-way Test B3-2 Yes 245

Mod #4 One-way Test B4-1 Yes 258

Two-way Test B4-2 Yes 262

Mod #5 One-way Test B5-1 Yes 255

Two-way Test B5-2 No – Loop

Mod #6 One-way Test B6-1 Yes 256

Two-way Test B6-2 No – Loop

Mod #7 One-way Test B7-1 Yes 253

Two-way Test B7-2 No – Loop

Mod #8 One-way Test B8-1 Yes 252

Two-way Test B8-2 Yes 252

Mod #9 One-way Test B9-1 Yes 252

Two-way Test B9-2 Yes 252

Mod #10 One-way Test B10-1 Yes 252

Two-way Test B10-2 Yes 252

From 40 test sessions conducted, seven of them (17,5%) are failed to be finishable. This

means that the red sphere keeps looping between two nodes and not selecting another option as a way

out of this. Three modifications (7,5%) even resulting better completion times than the original

standard, and seven pairs of one-way and two-way tests or 14 sessions (35%) result in the same

completion time.

The result is inevitably subjected to the features of Map A or Map B. Map A has the feature of

which alternative edges have nearly similar weights, while Map B has the unique feature of which

alternative path(s) may have a very different weight, speaking of individual edge weights, total

alternative path weight or even node count. Thus, Map B has a wider variation of alternative path

weights than Map A. Nevertheless, there are several discussion points regarding the results.

First, identical completion time between pairs of one-way and two-way tests is a result of

same new path rendered and one or two-way edge are not heavily affecting the resulting new path.

This especially occurred at the beginning or near the edge of the path where options are rare.

Second, loops occurred whenever an edge selected as the best beginning “way back” also has

the smallest weight in the “next” intersection, which originally was the “previous” intersection. This

leads to selecting the same edge as a path over and over and the red sphere are keep rotating over the

edge. It may be a feature specific to the map.

Third, completion times which are lower than the standard completion time is a result of over

adding weight on an edge, then the sphere turned back on its first edge and selected another edge

which happens to have less weight and less node compared to the added modification.

Fourth, another possible explanation for completion time lower than standard is that the red

sphere began to move right after the first edge is determined. This is a programming feature which

170 ComTech Vol. 7 No. 3 September 2016: 161-171

may or may not interfere with the final “correct” shortest path, as is it unknown whether the first edge

determination is final or not for the corresponding path.

Fifth, each completion time has a small deviation compared to the real length of path. Every

second is roughly equal to 10 units of route length. Although completion time cannot be rendered as

detail as milliseconds, the deviation which manually calculated in seconds shows only 1%, thus the

recalculation time is so fast and not effective when implemented to the real map of the same

complexity.

CONCLUSIONS

The study made three conclusions from research conducted. First, Dijkstra’s algorithm is

feasible to solve shortest path problem with dynamic weights, using a one-way digraph (digraph

without parallel edges). Second, Dijkstra’s algorithm is not feasible to solve shortest path problem

with dynamic weights, using a two-way digraph (digraph with opposite parallel edges), because a

large “loop” may occur between two nodes after a recalculation. Therefore regular road map

consisting of two-way traffic is not to be solved as is using Dijkstra’s algorithm. A suggestion to

eliminate this is by programming that parallel edges between two nodes are not to be selected as a

sequence in the path. Third, there are no performance drawbacks in recalculating the shortest patch

every time a change happened. For example, when situated as a problem-solving alternative of how to

avoid city traffic congestion and road class from the fire station to fire site, this has no significant

effect in computational time. Effects on a wider graph consisting of more than 30 nodes are unknown.

REFERENCES

Astuti, Y. D. (2015). Dasar Teori Grafin “Logika dan Algoritma” lecture notes. Retrieved February

18, 2015 from http://rifki_kosasih.staff.gunadarma.ac.id/Downloads/files/37568/Bab+1+-

+Dasar+Teori+Graf.pdf

Arifianto, S. (2012). Sistem Aplikasi Penentuan Rute Terpendek Pada Jaringan Multi Moda

Transportasi Umum Menggunakan Algoritma Dijkstra (Master’s thesis). Semarang: Program

Studi Sistem Informasi, Program Pascasarjana Universitas Diponegoro

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1,

269–271

Djojo, M. A., & Karyono. (2013). Pengukuran Beban Komputasi Algoritma Dijkstra, A*, dan Floyd-

Warshall pada Perangkat Android. ULTIMA Computing, 5(1), 13-17.

Głabowski, M., Musznicki, B., Nowak, P., & Zwierzykowski, P. (2013). Efficiency Evaluation of

Shortest Path Algorithms. In The Ninth Advanced International Conference on

Telecommunications (AICT) 2013 Proceedings (pp. 154-160). Rome, Italy.

Harju, T. (2011). Lecture Notes on Graph Theory, Department of Mathematics, University of Turku,

Finland. Retrieved February 18, 2015 from http://cs.bme.hu/fcs/graphtheory.pdf

Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 171

Prasetyo, V. Z. (2013). Penerapan Algoritma Dijkstra Untuk Perutean Adaptif Pada Jaringan

Pendistribusian Air PDAM di Kabupaten Demak (Bachelor’s thesis). Semarang: Jurusan

Matematika, Fakultas MIPA, Universitas Negeri Semarang

Rodrigue, J-P., & Ducruet, C. (2015). Graph Theory: Measures and Indices. Retrieved February 18,

2015 from https://people.hofstra.edu/geotrans/eng/methods/ch1m3en.html

Ruohonen, K. (2013). Graph Theory. Retrieved February 18, 2015 from http://math.tut.fi/

~ruohonen/GT_English.pdf

Sholichin, R., Yasindan, M., & Oktoviana, L. T. (2012). Implementasi Algoritma Dijkstra Dalam

Pencarian Lintasan Terpendek Lokasi Rumah Sakit, Hotel Dan Terminal Kota Malang

Berbasis Web. Jurnal Online Universitas Negeri Malang, (Online).

Sunaryo, Siang, J. J., & Chrismanto, A. R. (2012). Pencarian Jalur Terpendek Antar Kota Di Jawa

Tengah Dan D.I. Yogyakarta Dengan Algoritma Dijkstra Via SMS Gateway (Bachelor’s

thesis). Yogyakarta: Program Studi Teknik Informatika, Fakultas Teknologi Informasi,

Universitas Kristen Duta Wacana

Triansyah, F. A. (2013). Implementasi Algoritma Dijkstra Dalam Aplikasi Untuk Menentukan

Lintasan Terpendek Jalan Darat Antar Kota Di Sumatera Bagian Selatan. Jurnal Sistem

Informasi (JSI), 5(2), 611-621.

