KANDUNGAN PROTEIN TEMPE GANDUM

Oleh: Suryana Purawisastra

ABSTRAK

Telah dilakukan percobaan pembuatan tempe biji gandum pada cawan petri menggunakan biakan murni "Rhizopus oligosporus UQM 145F" dan Rhizopus sp. UQM 186F. Substrat dipersiapkan dengan tiga cara: pertama, biji gandum direbus; kedua, biji gandum direndam semalam sebelum direbus; ketiga, biji gandum direndam dalam larutan zat gizi sebelum direbus. Selama fermentasi kenaikan kandungan protein diamati. Hasil percobaan menunjukkan bahwa kenaikan tertinggi diperoleh pada biji gandum yang direndam dalam larutan zat gizi, yaitu 369% untuk "Rhizopus oligosporus UQM 145F", dan 366% untuk "Rhizopus sp. UQM 186F". Pengaruh perendaman biji gandum dalam air sebelum direbus terhadap kenaikan kandungan protein hanya terjadi pada fermentasi dengan "Rhizopus oligosporus UQM 145F".

Pendahuluan

Gandum dan hasil olahnya dikenal sebagai sumber energi, serat, karbohidrat, protein, vitamin B, zat besi, kalsium, fosfor, seng, kalium, dan magnesium. Komposisinya tergantung dari varitas dan kondisi tempat ditanam, seperti frekuensi turunnya hujan, keadaan tanah, suhu, dan jenis pupuk yang digunakan. Walaupun demikian, pada umumnya biji gandum mengandung protein lebih tinggi dibandingkan dengan jenis sereal lainnya, berkisar antara 6% sampai 20% (1).

Dalam tulisan ini disajikan hasil pengamatan kandungan protein tempe biji gandum selama fermentasi. Tempe dibuat dengan jenis Rhizopus disertai tiga perlakuan yang berbeda pada substrat. Percobaan ini dilakukan dalam rangka mencari cara pembuatan tempe gandum yang dapat meningkatkan kandungan protein gandum seoptimal mungkin.

Bahan dan Cara

Penyediaan biakan kapang dan suspensi spora

Rhizopus oligosporus UQM 145F dan Rhizopus sp. UQM 186F diperoleh dari koleksi biakan di Departemen Mikrobiologi, Universitas Queensland, Brisbane. Rhizopus oligosporus UQM 145F diiklukkan dan disimpan pada media miring yang mengandung 1
gram pati, 0.5 gram amonium sulfate, 0.1 gram kalium dihidrogen fosfate, 0.1 gram di-kalium hidrogen fosfate dan 2 gram agar, per 100 ml air sulung (4). *Rhizopus sp. UQM 186F* dibiakkan dan disimpan pada media miring PDA (potato dextrose agar) (5). Biakan kemudian diinkubasi pada suhu 37° selama 3 sampai 5 hari, kemudian disimpan pada suhu 4° C. Ke dalam biakan ditambahkan 10 ml air sulung steril kemudian dikocok sehingga diperoleh suspensi spora. Suspensi spora dipipet 3 ml dan diencerkan menjadi 100 ml yang kemudian digunakan untuk menginokulasi substrat. Satu mililiter suspensi spora encer digunakan untuk menginokulasi 10 gram substrat gandum (4).

Penyediaan substrat

Biji gandum diperoleh dari penyalur cerealia di Brisbane, kemudian diolah dengan tiga cara. Pertama, biji gandum direbus sampai masak yang ditandai dengan adanya biji gandum yang pecah. Kedua, sebelum direbus biji gandum direndam semalam di dalam air. Ketiga, biji gandum direndam dalam larutan zat gizi yang mengandung 8 gram amonium sulfate, 2 gram urea, 0.10 gram kalium dihidrogen fosfate, 0.10 gram kalium hidrogen fosfate, dan 0.10 gram Hertico trace elements fertiliser untuk 100 ml air sulung (4).

Gandum masak kemudian dipisahkan dari air perebusnya; didinginkan dan ditiriskan pada suhu ruang sehingga keadaannya baik untuk pertumbuhan kapang.

Cara fermentasi

Fermentasi dilakukan menggunakan cawan petri. Sekitar 30 gram substrat ditimbang untuk satu cawan petri. Inokulasi kapang dilakukan dalam cawan petri dengan menambahkan 1 ml suspensi spora encer untuk 10 gram substrat. Setelah dihomogenkan, cawan petri diinkubasi pada suhu 37°C.

Analisis

Pengambilan contoh tempe gandum dimulai setelah tampak pertumbuhan *micelium* pada permukaan substrat. Setiap pengambilan contoh dilakukan sebanyak dua cawan petri. Seluruh isi masing-masing cawan petri digerus sehingga homogen, kemudian digunakan untuk analisis.

Kandungan air contoh ditentukan dengan pengeringan (q 2 gram) pada 105°C sampai diperoleh bobot tetap. Kandungan protein ditetapkan dengan metode Biuret. Contoh (q 3 gram) ditambah air sulung sehingga volume menjadi 50 ml, kemudian dihomogenkan dengan Virtis-23 Homogenisasi sekitar 1 menit pada kecepatan sedang. Suspensi contoh dilarutkan dalam larutan NaOH 3 M dan dipanaskan di atas penangas air (6,7).

Hasil dan Bahasan

Rata-rata kenaikan kandungan protein tempe gandum selama fermentasi disajikan pada Tabel 1 dan Tabel 2.
Tabel 1. menunjukkan hasil pengamatan kenaikan kandungan protein tempe gandum yang diinokulasi dengan *Rhizopus oligosporus 145F*. Ternyata fermentasi selama 24 jam biji gandum yang direndam semalam dalam larutan zat gizi kemudian direbus dalam larutan tersebut menghasilkan kenaikan protein yang paling tinggi, yaitu 359% dari kandungan protein biji gandum mentah.

Perendaman biji gandum dalam air selama semalam sebelum direbus juga memberikan pengaruh pada peningkatan kandungan protein. Dalam waktu fermentasi 20 jam kenaikan kandungan protein mencapai 258.7%, padahal dalam tempe biji gandum yang tidak mengalami perendaman kenaikan protein hanya 73.7% dalam waktu fermentasi yang sama. Walaupun dibandingkan dengan kenaikan protein tertinggi, yaitu sebesar 159.27% yang dicapai dalam waktu fermentasi 24 jam, kenaikan kandungan protein tempe biji gandum yang mengalami perendaman masih tetap lebih tinggi.

Setelah dicapai kenaikan yang optimal kandungan protein tempe gandum tejadi penurunan kandungan protein sesuai waktu fermentasi.

<table>
<thead>
<tr>
<th>Waktu fermentasi (jam)</th>
<th>rata-rata kenaikan protein</th>
</tr>
</thead>
</table>
| | A | B | C
| 16 | 7.4 | 140.0 | |
| 20 | 73.7 | 258.7 | 260.7 |
| 24 | 159.3 | 103.2 | 369.0 |
| 36 | 132.6 | 207.3 | 303.0 |
| 40 | 114.0 | 157.1 | 327.5 |

A = gandum direbus
B = gandum direndam semalam dan kemudian direbus
C = gandum direndam semalam dalam larutan zat gizi kemudian direbus dalam larutan tersebut.

<table>
<thead>
<tr>
<th>Waktu fermentasi (jam)</th>
<th>Persentasi rata-rata kenaikan protein</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>216.7</td>
<td>239.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>252.4</td>
<td>199.8</td>
<td>365.6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>240.7</td>
<td>183.0</td>
<td>366.0</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>351.3</td>
<td>361.2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>214.2</td>
<td>232.0</td>
<td>324.3</td>
<td></td>
</tr>
</tbody>
</table>

A = gandum direbus
B = gandum direndam semalam dan kemudian direbus
C = gandum direndam semalam dalam larutan zat gizi kemudian direbus dalam larutan tersebut

Perendaman biji gandum dalam air selama semalam sebelum direbus pada pembuatan tempe gandum menggunakan kapang *Rhizopus sp. 186F* tidak meningkatkan kandungan protein seperti halnya dengan menggunakan kapang *Rhizopus oligosporus 145F*. Akan tetapi kenaikan kandungan protein tempe biji gandum yang tidak mengalami perendaman sebelum direbus sudah tinggi, malah mencapai kenaikan yang terjadi pada tempe biji gandum yang mengalami perendaman.

Kenaikan optimal kandungan protein tempe gandum yang difermentasi dengan *Rhizopus sp. 186F* sama halnya dengan yang difermentasikan dengan *Rhizopus oligosporus 145F* terjadi pada waktu fermentasi tertentu, setelah itu terjadi penurunan.

Bahasan

Sukara dan Doelle (5) melaporkan bahwa kapang *Rhizopus sp 186F* dapat tumbuh lebih baik karena kapang ini menghasilkan enzim amiloglukosidase yang cukup banyak.

Simpulan

2. Perendaman biji gandum selama semalam sebelum direbus berpengaruh pada pertumbuhan *Rhizopus oligosporus 14SF* sehingga kandungan protein tempe meningkat.

3. Pertumbuhan *Rhizopus sp 186F* pada pembuatan tempe biji gandum yang tidak mengalami perendaman lebih baik daripada pertumbuhan kapang *Rhizopus oligosporus 14SF*.

Ucapan terima kasih

Ucapan terima kasih ditujukan kepada DR. David A Mitchell sebagai pimpinan laboratorium bioteknologi terapan (Applied Biotechnology, Department Chemical Engineering) Queensland University, Australia, yang telah mengijinkan penulis melakukan percobaan ini.

Rujukan

