UJI AKTIVITAS ANTIHIPERKOLESTEROLEMIA FRAKSI ETIL ASETAT EKSTRAK DAUN KELOR (*Moringa oleifera* Lam.) TERHADAP KADAR KOLESTEROL TOTAL DAN LDL KOLESTEROL PADA HAMSTER HIPERKOLESTEROLEMIA

HYPERCHOLESTEROLEMIC ACTIVITY OF ETHYL ACETATE FRACTION OF *Moringa oleifera* Lam.) LEAVES EXTRACT TO TOTAL AND LOW DENSITY CHOLESTEROL ON HYPERCHOLESTEROLEMIC HAMSTER

Dwitiyanti, Hadi Sunaryo, Ika Resty Kania

Fakultas Farmasi dan Sains, Universitas Muhammadiyah Prof. Dr. HAMKA, Jl. Delima II/IV, Kledung Jakarta Timur 13460
Email: dwiti.farmasi@gmail.com (Dwitiyanti)

ABSTRAK

Daun kelor merupakan tanaman yang sering digunakan sebagai penurun kadar kolesterol. Tujuan penelitian ini untuk membuktikan pengaruh pemberian fraksi etil asetat ekstrak daun kelor terhadap penurunan kadar kolesterol total dan LDL darah pada hamster hiperkolesterolemia. Penelitian ini menggunakan hamster Syrian jantan yang dibagi dalam 6 kelompok perlakuan, masing-masing terdiri 4 hamster: kelompok I (kontrol normal), kelompok II (kontrol positif) yang diberi atorvastatin, kelompok III (kontrol negatif), kelompok IV, V, dan VI (kelompok uji) diberi fraksi etil asetat daun kelor dengan dosis 1,186 mg/kg BB; 3,722 mg/kg BB; dan 7,444 mg/kg BB. Induksi pakan tinggi kolesterol dengan kuning telur 10% dan pakan standar 90% diberikan selama 28 hari. Uji ANOVA satu arah (p<0.05) menunjukkan adanya pengaruh perlakuan. Uji LSD kolesterol total dan LDL menunjukkan kelompok VI dosis 7,444 mg/kg BB memberikan efek yang sama dengan kontrol positif yaitu atorvastatin dosis 5,2 mg/kg BB, sehingga disimpulkan dosis tersebut dapat menurunkan kadar kolesterol total dan LDL.

Kata kunci: fraksi etil asetat daun kelor, hiperkolesterolemia.

ABSTRACT

Moringa is a plant that is often used to lowering cholesterol. The purpose of this study is to prove the treatment of ethyl acetate fraction of *Moringa* leaves extract to decrease total cholesterol and LDL blood in hypercholesterolemic hamsters. This study uses male Syrian hamsters divided into 6 treatment groups, each comprising 4 hamsters: group I (normal control), group II (positive control) were given atorvastatin, group III (negative control), group IV, V and VI (test group) were given ethyl acetate fraction of *Moringa* leaves extract at dose of 1.186 mg/kg BW, 3.722 mg/kg BW, and 7.444 mg/kg BW. The induction of high cholesterol feed with 10% egg yolk and 90% standard feed was given for 28 days. One-way ANOVA test (p <0.05) showed a treatment effect. LSD test showed
total and LDL cholesterol of group VI at dose of 7.444 mg/kgBW gives the same effect as positive control (atorvastatin at dose of 5.2 mg/kg BW), so it is concluded that this dosage can reduce total cholesterol and LDL.

Key words hypercholesterolemia, kelor leaves ethyl acetate fraction.
Pendahuluan

Penyakit jantung koroner merupakan salah satu penyakit aterosklerosis yang terutama disebabkan oleh dislipidemia, suatu kelainan metabolisme lipid. Berdasarkan data organisasi kesehatan dunia WHO (2011) bahwa Penyakit Jantung Koroner (PJK) merupakan penyebab kematian nomor satu di dunia dan 60% dari seluruh penyebab kematian penyakit jantung adalah penyakit jantung iskemik dan sedikitnya 17,5 juta atau setara dengan 30% kematian di seluruh dunia disebabkan oleh penyakit jantung (WHO 2011). Menurut Riskerdas tahun 2007, prevalensi hiperkolesterol di Indonesia pada usia 40-60 tahun sebesar 74% (Hatma, 2012).

Kolesterol merupakan salah satu lipid plasma, dua sumber utama kolesterol dalam darah diperoleh dari makanan (eksogen) dan dari sintesis lemak di hati (endogen) (Price dan Wilson, 2006). Hiperkolesterolemia didefinisikan sebagai tingginya kadar kolesterol dalam darah yang melebihi nilai normal. Hiperkolesterolemia terjadi karena adanya gangguan metabolisme lemak yang dapat mengakibatkan terjadinya peningkatan kadar lemak dalam darah (Katzung, 2002).

Abnormalitas dari lemak plasma merupakan predisposisi timbulnya penyakit jantung koroner (Priyanto, 2009).

Untuk menanggulangi meningkatnya kadar kolesterol dalam darah, upaya pertama yang dilakukan yaitu diet makanan rendah lemak, mempertahankan berat badan ideal, olahraga secara teratur, namun bila usaha itu gagal perlu dipertimbangkan untuk memulai penggunaan obat hipolipidemik. Secara ekonomi obat hipolipidemik umumnya mahal, terlebih lagi bila obat tersebut harus digunakan dalam jangka waktu lama.

Pengobatan kolesterol dapat dilakukan dengan penggunaan obat tradisional. Kekayaan tumbuhan obat yang tersedia mendukung pemanfaatan pengobatan tradisional. Obat tradisional Indonesia merupakan warisan budaya yang telah menjadi bagian integral dari kehidupan bangsa Indonesia. Salah satu penggunaan obat tradisional itu adalah penggunaan daun kelor (Moringa oleifera Lam.).

Kelor (merupakan salah satu tanaman yang telah dimanfaatkan masyarakat dalam pengobatan tradisional. Senyawa yang terkandung dalam daun kelor adalah saponin dan

155
polifenol, di samping itu kulit batangnya mengandung alkaloida dan daunnya mengandung minyak atsiri. Selain itu juga berkhasiat sebagai obat sesak nafas dan beri-beri (Depkes RI., 2001). Kandungan dari daun kelor yang memiliki peran penting dalam aksi antioksidan yaitu flavonoid (Rajanandh et al., 2012).

Penelitian tentang aktivitas tanaman kelor sudah pernah dilakukan sebelumnya, yaitu ekstrak daun kelor pada dosis 75 mg/kg BB dapat menurunkan kadar kolesterol total darah tikus normal sebesar 47,5% (Muniandy, 2013). Untuk mengetahui pengaruh aktivitas kandungan daun kelor yang lebih efektif, maka penelitian dilakukan ke tahap fraksinasi. Fraksinasi bertujuan untuk memisahkan senyawa-senyawa berdasarkan tingkat kepolaran. Pada penelitian ini fraksinasi dilakukan menggunakan pelarut semi polar yaitu etil asetat. Tujuan fraksi etil asetat adalah untuk menarik senyawa aktif yang bersifat semi polar yaitu flavonoid sebagai antioksidan dan mempunyai efek terhadap penurunan kadar kolesterol total dan LDL kolesterol hamster hiperkolesterololemia.

Metode Penelitian

Alat

Alat yang digunakan adalah kandang, wadah tempat ransum, wadah makan dan minum, botol timbang, oven, hot plate, blender, timbangan analitik, spuit disposable, corong pisah, pipet mikro, gelas ukur, mikrotube, vortex mixer (vm-300), mikrocentrifuge, fotometer klinikal (VARTA 506), sonde, timbangan berat badan hamster, pipa kapiler, gelas beker, dan peralatan lain yang lazim digunakan dalam laboratorium.

Bahan

Daun kelor, etanol 70%, etil asetat, NaOH 0,5 N, pereaksi Mayer, pereaksi Dragendorf, pereaksi Bouchardat, asam asetat anhidrat, asam sulfat, asam klorida, FeCl₃, n-heksana, Na CMC, reagen kit kolesterol FS, reagen kit LDL FS, dan akuades.

Jalannya Penelitian

1. Pembuatan fraksi etil asetat daun kelor

Ekstrak etanol 70% daun kelor difraksinasi dengan menggunakan pelarut n-heksana dengan perbandingan 1:1. Pengocokan dilakukan selama 15 menit, setelah itu didiamkan hingga terbentuk 2 lapisan etanol dan lapisan n-heksana

2. Dosis daun kelor

Berdasarkan penelitian sebelumnya, dosis efektif ekstrak etanol 95% daun kelor adalah 75 mg/kg BB dapat berkhasiat sebagai antihiperlipidemia yang efektif terutama untuk menurunkan kadar kolesterol total sebesar 47,5% pada tikus wistar jantan, maka dibuat variasi dosis fraksi etil asetat daun kelor sebagai uji aktivitas penurunan kadar kolesterol darah. Untuk mengetahui dosis efektif dalam menurunkan kadar kolesterol, dibuat tiga dosis yang berbeda yaitu: (1) Dosis I = 1,186 mg/kg BB, (2) Dosis II = 3,722 mg/kg BB, (3) Dosis III = 7,444 mg/kg BB.

3. Dosis atorvastatin

Sebagai bahan pembanding digunakan atorvastatin. Dosis lazim atorvastatin pada manusia adalah 10-80 mg/hari (Martindale, 2002). Dosis untuk hamster harus dikonversikan berdasarkan tabel konversi Paget dan Barners yaitu 0,468 mg/90 g BB.

4. Persiapan hewan uji

Hewan uji menggunakan hamster Syrian jantan (Mesocricetus auratus), usia 3-4 bulan, dan bobot badan ±90 g. Penelitian ini menggunakan 6 kelompok hewan uji dengan masing-masing kelompok terdiri atas 4 hewan, dengan total 24 hewan uji. Hewan uji diaklimatisasi selama 14 hari untuk mengadapatasi hewan pada lingkungan yang baru dengan diberi minum dan pakan standar.

5. Pembuatan pakan tinggi kolesterol

Hasil orientasi pakan tinggi kolesterol dibuat dengan menggunakan kuning telur ayam mentah. Pembuatan pakan tinggi kolesterol 200 g/hari, ditimbang kuning telur sebanyak 20 g, dimasukkan ke dalam wadah kemudian dicampur dengan pakan
standar yang telah dihaluskan sebanyak 180 g, ditambahkan ±5 mL air kemudian dibentuk seperti pelet.

6. Perlakuan hewan uji

Semua hamster diaklimatisasi dan kelompok II sampai VI dibuat hiperkolesterolemia dengan pemberian pakan tinggi kolesterol selama 28 hari. Pada hari ke-29 hamster diberi perlakuan sesuai dengan pembagian kelompok masing-masing selama 14 hari.

Semua hamster dibagi menjadi 6 kelompok masing-masing 4 ekor hamster, dengan pembagian kelompok sebagai berikut: (1) Kelompok I: hanya mendapat makanan standar (kontrol normal) (2) Kelompok II: hamster hiperkolesterolemia diberi pakan standar dan sediain pembanding (kontrol positif) (3) Kelompok III : hamster hiperkolesterolosemia diberi pakan standar (kontrol negatif) (4) Kelompok IV: hamster hiperkolesterolemia diberi pakan standar dan fraksi daun kelor dosis rendah 1,1856 mg/kg BB (5) Kelompok V: hamster hiperkolesterolemia diberi pakan standar dan fraksi daun kelor dosis sedang 3,7222 mg/kg BB (6) Kelompok VI: hamster hiperkolesterolosemia diberi pakan standar dan fraksi daun kelor dosis tinggi 7,444 mg/kg BB. Pada hari ke-29 dan hari ke-44 dilakukan pengambilan darah. Sebelum pengambilan darah hamster dipusukan terlebih dahulu selama ±16 jam, kemudian dilakukan pengukuran kadar kolesterol total dan LDL. Pengambilan darah dilakukan pada bagian mata hamster.

7. Pengambilan dan pemeriksaan serum darah hewan uji

Darah hamster diambil dengan cara hamster dibius dengan ketamin hingga tidak sadarkan diri, ditusuk bagian sudut mata hamster dengan pipa kapiler, kemudian diputar pipa kapiler hingga darah mengalir. Darah ditampung pada tabung mikrotube, kemudian darah diambil kira-kira 1,5 mL, kemudian disentrifugasi pada putaran 4000 rpm selama 15 menit agar diperoleh serum. Serum disimpan dalam lemari es (Vogel, 2008).

8. Pengukuran kadar LDL dan kolesterol total

Pengukuran kolesterol total dilakukan dengan mengambil serum sebanyak 10 µL, kemudian dicampur reagen enzim (kit) sebanyak 1000 µL,
kemudian dicampur dengan menggunakan alat vortex dan diinkubasi selama 10 menit pada suhu 25 °C, kemudian dibaca dengan fotometer klinikal.

Pengukuran kadar LDL dilakukan dengan mengambil serum 100 µL, dimasukkan ke dalam mikrotube, ditambah 1000 µL reagen pengendap LDL, kemudian dicampur dengan menggunakan alat vortex. Kemudian larutan diinkubasi selama 10 menit dengan temperatur 25 °C, disentrifugasi selama 15 menit, selanjutnya didiamkan selama 1 jam. Setelah itu diambil supernat sebanyak 100 µL dimasukkan ke dalam mikrotube, kemudian dicampur dengan 1000 µL reagen enzim (kit). Campuran dihomogenkan, diinkubasi selama 10 menit pada suhu 25 °C. Kadar LDL kolesterol diukur dengan fotometer klinikal.

9. Analisis data

Data yang diperoleh berupa kadar kolesterol total dan LDL awal setelah 28 hari pemberian pakan aterogenik dan akhir setelah 14 hari pemberian fraksi yang dihitung presentase penurunannya. Data presentase penurunan kadar yang diperoleh dianalisis dengan menggunakan statistik. Analisa data ditentukan terlebih dahulu homogenitas datanya (Test of Homogeneity of Variance) dan normalitas data (Kolmogorov-Smirnov Test) dan dilanjutkan dengan uji ANOVA satu arah dengan taraf signifikansi 95% (α=0,05) untuk mengetahui adanya pengaruh perlakuan. Dilanjutkan dengan uji LSD untuk mengetahui perbedaan bermakna antar kelompok (Nawari, 2010).

Hasil dan Pembahasan

Daun kelor yang digunakan pada penelitian ini diperoleh dari perkebunan di daerah Bogor dan dideterminasi di Herbarium Bogoriense, LIPI Bogor. Hal ini dimaksudkan agar tidak terjadi kesalahan terhadap tanaman yang akan digunakan untuk penelitian. Hasil determinasi menunjukkan bahwa adalah
benar daun kelor yang digunakan adalah jenis Moringa oleifera Lam. dari suku Moringaceae. Kandungan daun kelor yang memiliki peran penting dalam antioksidan yaitu flavonoid yang dapat menurunkan kadar kolesterol total dan LDL kolesterol (Rajanandh et al., 2012).

Tahap-tahap yang dilakukan pada penelitian ini yaitu fraksinasi dan penurunan kadar kolesterol darah melalui pengukuran uji kolesterol total dan LDL kolesterol. Penelitian ini menggunakan 24 hewan uji hamster Syrian jantan, dengan umur dan kondisi lingkungan yang sama untuk menghindari perbedaan aktivitas biologis. Perlakuan dibagi menjadi 6 kelompok perlakuan. Untuk meningkatkan kadar kolesterol, hamster diberi induksi hiperkolesterol selama 28 hari.

Pengambilan darah dilakukan setelah hewan uji diinduksi hiperkolesterol 28 hari dan setelah perlakuan selama 14 hari. Dari data pengambilan darah awal dan akhir yang diperoleh kemudian dibuat persentase delta kadar kolesterol total dan LDL. Data yang diperoleh kemudian dihitung nilai presentase penurunan kadar kolesterol total dan LDL (Gambar 1 dan 2).

Gambar 1. Rata-rata persentase penurunan kadar kolesterol total.
Berdasarkan grafik batang ratarata persentasi penurunan kadar kolesterol total dan LDL kolesterol dapat dilihat bahwa dosis III menunjukkan ratarata persen penurunan terbesar pada kolesterol total sebesar 69,46% dan LDL kolesterol sebesar 63,29%. Data yang sudah diperoleh kemudian dimasukkan dalam uji statistik, kemudian data diuji normalitas dan homogenitasnya, dilanjutkan dengan uji ANOVA satu arah dengan taraf signifikansi 95% (α = 0,05) untuk mengetahui adanya pengaruh perlakuan.

![Gambar 2. Rata-rata persentase penurunan kadar LDL.](image)

Data kemudian dilanjutkan dengan uji LSD untuk melihat perbedaan tiap kelompok, hasil menunjukkan bahwa dosis III berbeda bermakna dengan kelompok kontrol negatif, dosis I, dan dosis II, tetapi tidak berbeda bermakna dengan kontrol positif. Dosis I berbeda bermakna dengan kontrol positif, kontrol negatif, dosis III. Hal ini menunjukkan bahwa pemberian fraksi etil asetat daun kelor pada dosis I (1,186 mg/kg BB) sudah mampu menurunkan kadar kolesterol total dengan presentase penurunan sebesar 47,46%, walaupun tidak sebesar penurunan kadar kolesterol total pada dosis III (7,444 mg/kg BB) yaitu 69,46%. Data uji statistik menunjukkan bahwa kelompok kontrol positif dengan kelompok dosis III tidak berbeda bermakna, sehingga dosis III merupakan dosis yang mampu menurunkan kadar kolesterol total sebanding dengan kontrol positif.

Hasil uji LSD untuk persen penurunan kadar LDL menunjukkan bahwa dosis III berbeda bermakna dengan kontrol negatif, dosis I, dan dosis II, tetapi tidak berbeda bermakna pada
kontrol positif. Dosis I berbeda bermakna dengan kontrol positif, kontrol negatif, dan dosis III, tetapi tidak berbeda bermakna dengan dosis II, sehingga hal ini menunjukkan bahwa dosis III (7,444 mg/kg BB) memberikan efek yang sama dengan kontrol positif yang diberikan obat pembanding atorvastatin. Dengan demikian dosis III adalah dosis yang mampu menurunkan kadar LDL dibandingkan dengan dosis lainnya yaitu dengan presentase penurunan sebesar 63,29%.

Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan dapat disimpulkan bahwa pemberian fraksi etil asetat daun kelor pada kelompok dosis III (7,444 mg/kg BB) merupakan dosis yang mampu menurunkan kadar kolesterol total dan LDL kolesterol sebanding dengan kelompok positif, dengan persentase penurunan kolesterol total dan LDL masing-masing sebesar 69,46% dan 63,29%.

Ucapan Terima Kasih

Peneliti mengucapkan terimakasih kepada penanggung jawab Laboratorium Farmakologi, Fitokimia, dan Patologi Klinik, Fakultas Farmasi dan Sains, UHAMKA atas sarana yang diberikan dalam melakukan penelitian ini, serta kepada seluruh staf dan dosen UHAMKA yang banyak membantu sehingga terselesaikannya penelitian ini.

Daftar Pustaka

