ANALISIS KESEIMBANGAN KONSTRUKSI PESAWAT TDS BRAKITERAPI MEDIUM DOSE RATE

Bandi Parapak
Pusat Rekayasa Perangkat Nuklir
Kawasan Puspiptek, Gedung 71 Lt. 2, Serpong, Tangerang Selatan

ABSTRAK

ANALISIS KESEIMBANGAN KONSTRUKSI PESAWAT TDS BRAKITERAPI MEDIUM DOSE RATE. Salah satu bagian terpenting dalam kegiatan rancang bangun pesawat brakiterapi adalah melakukan analisis dengan menentukan titik pusat berat guna menjaga keseimbangan konstruksi brakiterapi, baik pada saat beroperasi maupun pada saat dipindah-pindahkan. Pengoperasian brakiterapi tidak saja dilakukan pada satu tempat saja sehingga sangat perlu dilakukan analisis keseimbangan gaya-gaya pada saat tidak bergerak, dipindahkan pada lantai datar dan lantai miring. Pendekatan perhitungan yang dilakukan adalah menghitung berat komponen-komponen mekanik pada masing-masing modul. Setelah itu titik berat masing-masing modul dihitung. Untuk analisis keseimbangan gaya-gaya dilakukan dengan asumsi pada saat brakiterapi dalam posisi tidak bergerak pada lantai datar, dipindahkan dari suatu tempat ke tempat yang lain pada lantai datar dan pada lantai dengan sudut kemiringan 30°. Dari hasil analisis ini diharapkan keseimbangan keempat roda dapat bergerak tanpa tergelincir pada saat menurun maupun tanjakan. Selain itu hasil analisis ini dapat digunakan dalam merancang konstruksi brakiterapi secara mobile dengan mempertimbangkan faktor estetika yang ideal, mudah dioperasikan, menjamin keamanan alat, operator dan pasien.

Kata kunci : konstruksi, brakiterapi, terapi, kanker rahim.

ABSTRACT

CONSTRUCTION BALANCE ANALYSIS OF DOSE RATE MEDIUM BRACHYTHERAPY TDS. One of the most important part of brachytherapy instrument design activities is analyze by determining the centroid point of construction in order to maintain the balance of brachytherapy instrument, either during operation as well as when transported. Operation of brachytherapy is not only done in one place so it is necessary to balance the analysis of the forces at the time did not move, moved on the horizontal floor and sloping floor. Calculation approach who is done to calculate the weight of mechanical components on each module, and then calculate the centroid of each module, for the balance of forces analysis performed with the assumption at the time of brachytherapy in the position of not moving on a horizontal floor, moved from a place to another on the horizontal floor and on the floor with sloping angle 30°. Base on the results of this analysis are expected to balance the four wheels can move without slipping at the time of decline or incline. Also, results of analysis can be used in designing a mobile construction brachytherapy taking into consideration the aesthetic ideal, easy to operate, ensure the safety of equipment, operator and patient.

Keywords: Construction, brachytherapy, therapy, cervical cancer

1. PENDAHULUAN

Brakiterapi adalah suatu pesawat yang digunakan untuk pengobatan kanker rahim dengan terapi radio isotop Ir-192, dimana sumber radiasi langsung dikontakkan dengan kanker secara internal. Pesawat ini telah digunakan di beberapa Rumah Sakit di Indonesia, dimana pengadaannya masih diimpor dari negara-negara maju yang harganya sangat mahal.

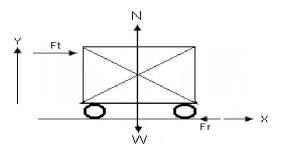
Pengembangan rancang bangun brakiterapi sudah lama dilakukan di Batan yaitu mengembangkan teknik remote afterloading, dimana teknik ini dilengkapi dengan sistem remote untuk mendorong sumber keluar dari kontainer pengaman menuju aplikator menggunakan sling. Sumber ditarik kembali ke kontainer pengaman setelah penyinaran selesai secara elektromekanik dengan kendali

ISSN: 1411-0296

komputer. Pesawat brakiterapi dirancana secara efisien dengan estetika. mempertimbangkan aspek ekonomi. teknologi. keamanan. keselamatan dan aspek pasar. Guna memenuhi aspek tersebut pesawat brakiterapi dirancang dengan menggunakan bahan-bahan kandungan murah lokal yang dan mudah didapatkan dipasaran. Pesawat brakiterapi dirancang dalam beberapa modul yang terdiri dari komponenkomponen mekanik dengan dimensi, bentuk, letak dan massa yang berbeda-Oleh karena itu beda. dalam perancangan pesawat brakiterapi perlu dilakukan analisis keseimbangan dari masing-masing modul sistem mekanik menghitung berat dengan setiap komponen. menentukan titik berat modul masing-masing kemudian menentukan titik berat pesawat berakiterapi.

Pengoperasian pesawat brakiterapi tidak dilakukan pada satu tempat saja kadangkala dioperasikan di bentuk landasan. beberapa Untuk memindahkannya tidak tertutup kemungkinan mengalami penurunan atau tanjakan sehingga memerlukan perhitungan dari segi statika. Pendekatan perhitungan yang dilakukan ialah dengan asumsi lantai mendatar sudut dan kemiringan 30°. Dari assumsi perhitungan ini diharapkan dari ke empat roda dapat bergerak tanpa tergelincir baik pada saat penurunan maupun pendakian.

2. DASAR TEORI


Keseimbangan suatu benda dalam posisi tidak bergerak ataupun dalam posisi bergerak harus selalu dipertimbangkan dalam suatu perancangan, sehingga tidak menimbulkan kerugian baik bagi alat dan manusia. Analisis keseimbangan konstruksi brakiterapi dilakukan dengan menghitung titik berat masing-masing modul dan titik berat berakiterapi pada arah sumbu X. Y. Z.

Untuk menghitung keseimbangan gaya-gaya yang bekerja pada pesawat saat dalam posisi tidak bergerak, posisi

bergerak pada lantai mendatar dan posisi bergerak pada lantai dengan 30^{0} kemiringan (asumsi) sangat ditentukan oleh kekasaran lantai. Kekasaran permukaan lantai dinyatakan dengan koefisien gesekan yang sangat pada kekasaran tergantung pesawat brakiterapi dan lantai yang saling bersentuhan. Selain itu gaya penghambat atau gesekan juga bergantung terhadap gaya normal yang pada badan pesawat brakiterapi. Besarnya gaya normal yang bekerja pada badan pesawat brakiterapi harus sebanding dengan gaya berat badan pesawat brakiterapi tersebut. Pada gambar 1 dan 2 diuraikan gayagaya yang bekerja pada badan pesawat brakiterapi.

ISSN: 1411-0296

2.1 Gaya gesek pada saat pesawat didorong pada lantai datar

Gambar 1. Pesawat pada lantai datar

Bila pesawat belum bergerak (posisi diam), maka :

Pada arah sumbu X:

 $\Sigma Fx = 0 \longrightarrow Ft = -Fr = 0$

Pada arah sumbu Y:

 $\Sigma Fv = N - W = 0$

N = W, karena W = m.g

 $N = m.g \tag{1}$

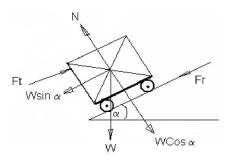
Pada saat pesawat bergerak atau didorong arah horizontal pada lantai datar, maka :

Pada arah sumbu X : $\Sigma Fx = m.a_x$

 $Ft - Fr = m.a_x$

 $Fr = Ft - m.a_x \tag{2}$

Pada arah sumbu Y:


 $\Sigma Fy = m.a_x$, dimana $a_x = 0$

N - W = 0; sehingga N = W, karena

W = m.q

 $N = m.g \tag{3}$

2.2 Gaya gesekan pada lantai miring

Gambar 2. Pesawat pada lantai miring

Ada dua gaya gerak yang dilakukan terhadap pesawat, yaitu saat pesawat meluncur turun ke bawah dan saat pesawat didorong naik ke atas. Ke dua gaya gerak tersebut :

a. Pada saat pesawat turun ke bawah

Pada arah sumbu X :

 $\Sigma Fx = m.a_x$

Ft + Wsin α – Fr = m.a_x --- \rightarrow Ft = 0, sehingga m.g.sin α – Fr = m.a_x

 $Fr = m.g \sin \alpha - m.a_x$ (4)

Pada arah sumbu Y:

 $\Sigma Fy = m.a_x$, dimana $a_x = 0$

N - W. $\cos \alpha$ = 0, dengan

memindahkan W.cosα ke kanan sehingga :

 $N = W.cos\alpha$, dimana W = m.g, maka :

 $N = m.g.cos\alpha$ (5)

b. Pada saat pesawat bergerak atau didorong ke atas

Pada arah sumbu X :

 $\Sigma Fx = m.a_x$

Ft - W.sin α – Fr = m.a_x

Ft = W.sin α + Fr + m.a_x

Fr = Ft - W.sin α – m. a_x

Fr = m.g sin α – m.a $_x$ (6)

Pada arah sumbu Y:

 $\Sigma Fy = m.a_x$ dimana $a_x = 0$

 $N - W.\cos\alpha = 0$

 $N = W.cos\alpha$, dimana W = m.g, maka:

 $N = m.g \cos \alpha \tag{7}$

Dimana:

Fr = gaya gesek statis (N)

Ft = gaya dorong(N)

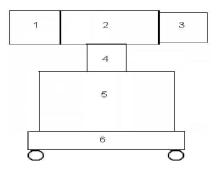
N = gaya normal(N)

W = gaya berat (N)

m = massa pesawat (kg)

a = percepatan pesawat (m/s²)

g = percepatan gravitasi (10 m/s²)


 α = sudut kemiringan lantai (derajat)

ISSN: 1411-0296

3. TATA KERJA ANALISIS

3.1 Menghitung keseimbangan konstruksi pesawat brakiterapi

a. Menentukan modul pesawat
 Modul pesawat dibagi dalam 6
 bagian seperti pada gambar 3.

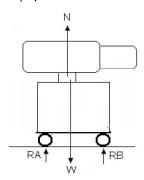
Gambar 3. Modul-modul desain pesawat

 b. Menentukan titik berat pesawat Tinggi pegangan dorong pesawat brakiterapi adalah 927 mm dari permukaan lantai. Perhitungan titik berat masing-masing modul kordinat X, Y, Z dapat dilihat dalam Tabel 1.

Tabel 1. Hasil perhitungan berat dan titik berat kordinat X, Y, Z

					,	,	
No.	Modul/Komponen	Fn	Sumbu Xn (an)	Sumbu Yn (cm)	Sumbu Zn(cm)	Luas An (cm ²)	Berat (kg)
1	Modul 1 : Sistem Peggerak Sumber	F1	12,5	79,5	22,8	1140	11,8
2	Modul 2: Sistem Kontainer	F2	57,5	79,5	12,25	471,2	104,2
3	Modul 3 : Sistem Distributor Channel	F3	69,75	79,5	10,825	924,67	9,3
4	Kolom Penyangga	F4	57,5	33,15	6,35	6,45	10,147
5	Casing Kolom Penyangga	F5	57,5	27,65	14,5	1281,8	3,0
6	Landasan Penyanga	F6	57,5	8,15	22,5	2961	9,83

Dari hasil perhitungan pada tabel


1 di atas diperoleh : Sumbu $X_0 = \sum Xn.An/An$

= 51.61 cm;

Volume 8, Nomor 2, November 2011

Sumbu
$$Z_0 = \Sigma Z n.A n/A n = 18,7 cm$$

Sumbu $Y_0 = \Sigma Y n. \Sigma F n/ \Sigma F n$
= 71 cm

3.2 Menghitung keseimbangan pesawat brakiterapi pada lantai datar

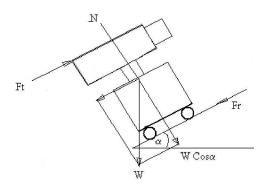
Gambar 4. Pesawat pada lantai datar

Berat keseluruhan dari pesawat adalah 150 kg yang disangga oleh empat buah roda yaitu dua roda RA dan dua roda RB.Masing-masing roda menerima beban 150 kg / 4 = 37,5 kg. RA = RB = 37,5 kg ----→ m = 37,5 kg. Dari buku RS. Component Edisi September 1995 halaman 1572 Koefisien gesek kinetis dapat diperoleh :

f_k = (Koefisien gesek kinetis basah karena adanya pelumasan yang telah bekerja)

=
$$0.002 + 0.01$$
 diambil $f_k = 0.002 + 0.01$

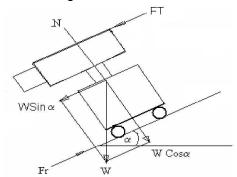
= 0,006 (untuk satu roda) Koefisien gesek kinetis untuk empat buah roda $4 \times 0,006 = 0,024$ Percepatan, $a_x = 0,2 \text{ m/detik}^2$ (asumsi)


- a. Pesawat dalam keadaan tidak bergerak atau diam
 Gaya normal, N = W
 = 37,5 x 9,81 = 368 N
 Gaya gesek, Fr
 = 0,024 x 368
 = 8,8 N
- b. Pada saat pesawat bergerak arah horizontal
 Pada arah sumbu X :
 Gaya dorong : Ft Fr = m.a_x, maka :
 Ft = 8,8 + 37,5 x 0,2 = 16,3 N

Pada arah sumbu Y : N = 37,5 x 9,81 = 368 N

3.3 Pesawat didorong pada lantai miring

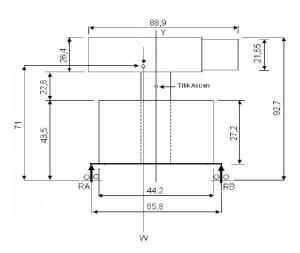
ISSN: 1411-0296


a. Pesawat didorong ke atas dengan sudut miring 30°

Gambar 5. Pesawat pada lantai miring posisi tanjakan

Pada arah sumbu X $\sum Fx = m.a_x$ $Ft = 37,5 \text{ Sin } 30^0 + 8,8 + 37,5 \times 0,2$ $= 37,5 \times 0,5 + 8,8 + 37,5 \times 0,2$ = 13 N

b. Pesawat turun ke bawah dengan sudut miring 30°



Gambar 6. Pesawat pada lantai miring posisi menurun

Pada arah sumbu Y : $\Sigma Fy = m.a_x$ $a_x = 0$ N = 37,5 x cos 30⁰ = 37,5 x 0,866 = 32,5 N

4. HASIL DAN PEMBAHASAN

Menghitung titik berat pesawat brakiterapi sedikit rumit karena banyaknya komponen pada masingmodul masing yang mempunyai dimensi, bentuk dan bahan yang berbeda-beda sehingga berat setiap komponen juga berbeda-beda. Dari hasil perhitungan titik berat sumbu X, Y, dan berat masing-masing modul, maka posisi keseimbangan pesawat brakiterapi menunjukkan titik berat berada pada kordinat: $X_0 = 51.61$ cm. $Z_0 = 18,7$ cm, $Y_0 = 71$ cm seperti ditunjukkan pada gambar Gambar 7.

Gambar 7. Posisi keseimbangan pesawat

Menghitung posisi keseimbangan pesawat brakiterapi dengan asumsi beberapa bentuk landasan atau lantai mendatar pada saat pesawat brakiterapi dipindahkan dari satu tempat ke tempat vang lain. Untuk lantai mendatar dalam posisi tidak bergerak gaya normal sebesar 368 N dan gaya gesek roda sebesar 8,8 N. Pada saat pesawat brakiterapi bergerak didorong ke arah horizontal dibutuhan gaya dorong sebesar 16,3 N berarti hampir dua kali dari gaya gesek. Pada saat pesawat brakiterapi dipindahkan melalui lantai dengan sudut kemiringan dibutuhkan daya dorong sebesar 13 N. hal ini masih dimungkinkan karena gaya dorong masih lebih besar daripada gaya gesek. Pada saat pesawat brakiterapi

dipindahkan menuruni lantai dengan sudut kemiringan 30° agar tidak tergelincir dibutuhkan gaya normal untuk menahan pesawat sebesar 32,5 N.

ISSN: 1411-0296

5. KESIMPULAN

Dari uraian analisis di atas dapat disimpulkan bahwa dalam mendesain pesawat brakiterapi yang mobile, keseimbangan konstruksi haruslah selalu diperhitungkan, karena bila hanya mengandalkan desain gambar secara visual hasilnya tidaklah selalu akurat.

6. DAFTAR PUSTAKA

- [1]. Douglas C. Giancoli, Physics: Principles With Applications, Fifth Edition, 1998.
- [2]. Ir, Heinz Frick, Mekanika Teknik, Statika dan Kegunaannya, 1979.
- [3]. Buku RS. Components Edisi Pebruari 1995.
- [4]. Polyteknik oleh Prof Ir. Soetomo Wongso Tjitro Tahun 1980.