KAJIAN KINERJA SISTEM DETEKSI
ANTARA DETEKTOR NaI(Tl) DAN CsI(Tl)
UNTUK PERANGKAT RENOGRAF PORTABEL JINJING

Joko Sumanto, Sigit Bachtiar, Abdul Jalil
Pusat Rekayasa Perangkat Nuklir-BATAN-Kawasan Puspiptek, Serpong

ABSTRAK

KAJIAN KINERJA SISTEM DETEKSI ANTARA DETEKTOR NaI(Tl) DAN CsI(Tl)
UNTUK PERANGKAT RENOGRAF PORTABEL JINJING. Telah dilakukan kajian kinerja sistem
deteksi antara detektor NaI(Tl) dan CsI(Tl) untuk perangkat renograf portabel jinjing. Kegiatan
ini dimaksudkan untuk menggantikan sistem deteksi yang lebih kecil, sehingga perangkat
renograf menjadi mudah di jinjing. Metoda yang digunakan adalah dengan studi literatur dan
membandingkan kinerja sistem deteksi yang meliputi pengukuran tegangan kerja, resolusi dan
efisiensi detektor NaI(Tl) 2x2” PMT dan detektor CsI(Tl) 1x1” PMT dan photodiode. Hasil kajian
menunjukkan bahwa detektor NaI(Tl) 2x2” memberikan efisiensi yang lebih besar dan resolusi
yang cukup baik dibandingkan dengan detektor CsI(Tl) 1x1”. Dengan demikian detektor CsI(Tl)
yang lebih kecil belum bisa mengggantikan detektor NaI(Tl) 2x2” pada perangkat renograf.

Kata kunci: Detektor, NaI(Tl), CsI(Tl), photodiode

ABSTRACT

PERFORMANCE REVIEW OF DETECTORS DETECTION SYSTEM NaI (Tl) and
CSI (TI) DEVICE FOR RENOGRAF PORTABLE TOTE. Performance review has
been conducted between the detector NaI(Tl) detection systems and portable renograph
CsI(Tl) for portable devices. This activity is intended to replace a smaller detection system, so
the device becomes easy renograph in tote. The method used is the study
of literature and compare the performance of detection systems, including measurement of
work stress, resolution and detector efficiency NaI(Tl)2x2”PMT and CsI(Tl)1x1”
PMT and photodiode detector. The study results showed that the NaI(Tl)2x2”
detectors provide greater efficiency and resolution is quite good compared to the
detector CSI. Thus CSI smaller detector can not replace NaI(Tl)2x2” detector on the device
renograph.

Keywords: detector, NaI(Tl), CSI(Tl), photodiode

1. PENDAHULUAN

BATAN telah berupaya untuk
mengembangkan beberapa prototip
peralatan kedokteran yang
memanfaatkan teknologi nuklir dengan
mengikuti trend teknologi komputer.
Walaupun demikian peralatan-peralatan
tersebut masih memerlukan
pengembangan lebih lanjut agar dapat
beroperasi dengan daya yang lebih
rendah dan dimensi ukuran yang lebih
kompak, portable jinjing. Perekayasaan
renograf portable jinjing dilakukan
berdasarkan permintaan renograf, agar
dapat dipindah-pindah dengan mudah
dan ringan. Pengembangan yang akan
dilakukan adalah pada sistem deteksi,
menggunakan detektor NaI(Tl) 2x2" dengan detektor CsI(Tl)1/2x1". Dalam sistem spektroskopi gamma di bidang kesehatan, sistem deteksi yang digunakan biasanya menggunakan detektor NaI(Tl) 2x2" yang mempunyai efisiensi yang besar, tetapi resolusinya masih cukup baik. Namun detektor ini masih menggunakan photomultiplier- PMT dan catu daya tegangan tinggi. Sedangkan detektor CsI(Tl)1/2x1" dapat menggunakan teknologi photodiode dimana tidak memerlukan catu daya tegangan tinggi, sehingga menjadi praktis. Dengan mengganti sistem deteksi menggunakan detektor CsI(Tl) 1/2x1" diharapkan perangkat renografi menjadi portabel jinjing.

2. TEORI

Beberapa kajian tentang kemungkinan penggunaan detektor berbasis teknologi photodiode telah dilakukan.

Photodiode bekerja atas dasar pengubahan cahaya tampak yang mengenai photokatoda sehingga menghasilkan elektron. Dengan tegangan bias yang diberikan antara katoda dan anoda, elektron tersebut akan mengalir sehingga diperoleh arus listrik dan selanjutnya diubah menjadi tegangan. Besarnya tegangan yang dihasilkan tergantung pada kuat cahaya yang mengenai photokatoda. Secara umum photokatoda memiliki dark current yang kecil orde nano ampere. Dark current merupakan arus yang timbul pada photokatoda untuk keadaan gelap atau tanpa dikenai cahaya sama sekali. Photokatoda mempunyai waktu tanggap yang cepat dan responsif pada wilayah panjang gelombang cahaya tampak yaitu antara 200nm sampai 1100nm dengan panjang gelombang effektif pada 800nm.[1,2]

CsI(Tl) adalah sinitiator anorganik yang sangat cocok untuk digandengkan dengan photodiode karena memiliki yield cahaya yang paling tinggi, kuantum efisiensi sebesar 69% sepanjang spektrumnya dibandingkan dengan 49% pada NaI(Tl).

Kristal sinitiator CsI(Tl) berbentuk kubus dengan dimensi 10 x 10 x 10 mm3 dan diletakkan pada photodiode dengan menggunakan teflon tape dan silicon oil. Kristal sinitiator CsI(Tl) bersama photodiode dan penguat hibride dikemas dalam aluminium berbentuk silinder yang kedap cahaya. Hal ini dilakukan untuk menghindari kesalahan deteksi pada saat digunakan untuk mendeteksi foton.

Photodiode adalah dioda semikonduktor yang khusus dirancang untuk keperluan pembangkitan energi listrik karena penyinaran. Photodiode yang dikopel dengan sinitiator dibuat dari silikon dengan resistivitas tinggi, biasanya dari tipe N dengan resistivitas sekitar 5000 Qcm sampai dengan 10.000 Qcm untuk mendapatkan kapasitansi yang rendah pada tegangan bias yang rendah.

Jika sumber radiasi pengion melewati kristal maka tingkat energi elektron pada kristal akan meningkat sampai ke tingkat eksitasi di bawah conduction band sehingga pada pita valensi terbentuk hole-hole, yang menyebabkan terjadinya eksitasi, yang pada eksitasinya dipancarkan foton-foton.

Keluaran dari detektor ini berupa pulsa yang lemah dan lebarnya beberapa nano detik. Oleh karena itu pada detektor ini ditambahkan rangkaian pengait operasional dalam mode integrator dengan menggunakan
kapasitor umpan balik. Penguat ini memiliki impedansi masukan tinggi dan mengintegrasikan pulsa-pulsa listrik yang lemah serta mengubahnya menjadi pulsa tegangan sehingga dihasilkan impedansi keluaran yang rendah. Penguat ini disebut penguat awal peka muatan.

Jika radiasi gamma menumbuk detektor maka muatan Q dihasilkan dengan amplitudo yang setara dengan energi partikel. Sehubungan dengan muatan yang timbul, keluaran penguat peka muatan naik dan bersamaan itu, tegangan dengan polarisasi terbalik muncul pada keluarannya. Penguat ini memiliki open loop gain besar sehingga melalui rangkaian feedback seolah-olah tegangan pada ujung masukan adalah nol. Akibatnya pulsa-pulsa muatan semuanya diintegrasikan terhadap kapasitor feedback dan menimbulkan tegangan keluaran. Pada titik ini tahanan feedback untuk arus searah dihubungkan paralel dengan kapasitor feedback dan tegangan keluaran menjadi pulsa-pulsa tegangan yang meluruh secara perlahan.

Nal(Tl) adalah sintilator yang paling banyak digunakan untuk mendeteksi sinar γ. Dalam bentuk kristal tunggal berdiameter 0,75 m dan tebal 0,25 m serta memiliki tingkat kerapatan sebesar 3,67 x 103 kg/m3. Karena rapat massanya yang besar, nomor atom yang tinggi dan ukuran yang besar maka NaI(Tl) sangat efisien untuk mendeteksi radiasi gamma.

Sintilator NaI(Tl) mempunyai banyak sifat yang merugikan seperti rapuh dan sensitif terhadap temperatur tinggi dan panas mendadak. Selain itu juga bersifat higroskopik sehingga harus terlindung setiap saat. NaI(Tl) selalu mengandung sejumlah kecil potasium yang memberikan efek tertentu karena radioaktivitas.

Kelebihan dan kekurangan detektor CsI(Tl) photodiode
- Dimensi kecil
- Dioperasikan pada tegangan rendah (tidak perlu tegangan tinggi)
- Tinggi sinyal sangat stabil
- Kokoh (rugged)
- Tidak terpengaruh oleh medan magnet

Karakteristik yang memungkinkan penggunaan jenis Photodiode dapat dilihat dari grafik di bawah ini:
Gambar 3b. Karakteristik Photodiode.[4]

Sektrum Energi
Sektrum energi terdiri dari latar dan suatu luasan pada puncak energi dengan besar energi tertentu yang sesuai dengan energi sumber radiasi yang digunakan. Setiap sumber radiasi memiliki jumlah puncak energi sektrum yang berbeda-beda tergantung pada banyaknya energi yang dimiliki sumber radiasi tersebut.

Resolusi detektor
Resolusi detektor dinyatakan dengan lebar setengah tinggi maksimum dimana satuan yang digunakan adalah keV atau dinyatakan dalam % terhadap energi dan dinyatakan dengan persamaan:

\[\text{Resolusi} = \frac{FWHM \times 100\%}{E} \]

Dimana E adalah energi puncak dari sumber referensi. Nilai resolusi yang semakin kecil menunjukkan resolusi yang semakin baik untuk memisahkan puncak energi yang berdekatan. Artinya detektor yang memiliki resolusi yang baik adalah detektor yang mampu memisahkan dua puncak energi yang sangat berdekatan.

Efisiensi detektor
Efisiensi detektor dinyatakan sebagai perbandingan antara banyaknya cacah dengan aktivitas mutlak sumber yaitu cacah pancaran radiasi yang dihasilkan oleh sumber ke segala arah (4\pi). Kemampuan detektor untuk menerima pancaran radiasi dapat dipengaruhi oleh jarak sumber radiasi dengan detektor, medium antara detektor dengan sumber radiasi dan besarnya volume aktif detektor (sintilator). Makin besar volume aktifnya makin banyak jumlah cacah radiasi yang dapat diterima oleh detektor. Dengan memperhatikan faktor geometri dan faktor dari sumber, efisiensi detektor dinyatakan dengan persamaan:

\[E = (n /3,7 \times 10^{4} \text{ s f a})100\% \](2)

Dimana:
\(E \) = Counting Efficiency (%)
\(n \) = count rate yang telah dikoreksi background (c/s)
\(s \) = aktivitas sumber standar pada sertifikat (\(\mu \text{Ci} \))
\(f \) = Decay factor for source to day of measurement
\(a \) = Fractional abundance of detected radiation per desintegrasi (for Cs-137 this factor is 0,832)

3. HASIL DAN PEMBAHASAN
Komparasi Sektrum sumber standar Cs-137 (662kev) menggunakan sistem deteksi dari detektor NaI(Tl) 2x2" dan detektor CsI(Tl) Photodiode 10x10mm, masing-masing diperlihatkan pada Gambar 6 dan Gambar 7. Sedangkan Sektrum sumber standar Co-60 (1173,1kev dan 1332,4kev) menggunakan sistem deteksi dari detektor NaI(Tl) 2x2" dan detektor CsI(Tl) Photodiode 10x10mm, masing-masing diperlihatkan pada Gambar 8 dan Gambar 9 [5].

<table>
<thead>
<tr>
<th>Material</th>
<th>Max. Wavelength λ<sub>max</sub> (nm)</th>
<th>Decay Constant (µs)</th>
<th>Refractive Index λ<sub>max</sub></th>
<th>Conversion Efficiency (%)</th>
<th>Total Attenuation Coefficient (cm<sup>2</sup>/m)</th>
<th>Density (gr/cm<sup>3</sup>)</th>
<th>Hygroscopic?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI(Tl)</td>
<td>415</td>
<td>0.23</td>
<td>1.85</td>
<td>100</td>
<td>2.3</td>
<td>3.67</td>
<td>Yes</td>
</tr>
<tr>
<td>CsI(Na)</td>
<td>420</td>
<td>0.63</td>
<td>1.83</td>
<td>85</td>
<td>4.2</td>
<td>4.51</td>
<td>Yes</td>
</tr>
<tr>
<td>CsI(Tl)</td>
<td>550</td>
<td>1.00</td>
<td>1.80</td>
<td>45</td>
<td>4.2</td>
<td>4.51</td>
<td>Rather</td>
</tr>
<tr>
<td>BGO</td>
<td>480</td>
<td>0.30</td>
<td>2.15</td>
<td>12</td>
<td>9.6</td>
<td>7.13</td>
<td>No</td>
</tr>
<tr>
<td>GSO(Ce)</td>
<td>430</td>
<td>0.06</td>
<td>1.90</td>
<td>16</td>
<td>-</td>
<td>6.71</td>
<td>No</td>
</tr>
<tr>
<td>CdWO<sub>4</sub></td>
<td>540</td>
<td>5.00</td>
<td>2.30</td>
<td>40</td>
<td>9.2</td>
<td>7.90</td>
<td>No</td>
</tr>
<tr>
<td>ZnWO<sub>4</sub></td>
<td>460</td>
<td>5.00</td>
<td>2.20</td>
<td>26</td>
<td>-</td>
<td>7.87</td>
<td>No</td>
</tr>
<tr>
<td>CaF<sub>2</sub>(Eu)</td>
<td>435</td>
<td>0.94</td>
<td>1.44</td>
<td>50</td>
<td>0.49</td>
<td>3.19</td>
<td>No</td>
</tr>
<tr>
<td>BaF<sub>2</sub></td>
<td>325</td>
<td>0.63</td>
<td>1.49</td>
<td>20</td>
<td>3.90</td>
<td>4.88</td>
<td>No</td>
</tr>
<tr>
<td>CaF<sub>3</sub></td>
<td>390</td>
<td>0.006</td>
<td>1.48</td>
<td>3-5</td>
<td>3.30</td>
<td>4.64</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Gambar 6. Spektrum energi Cs-137
Menggunakan detektor NaI(Tl) 2’x2’’. [8]

Gambar 7. Spektrum energi Cs-137
Menggunakan detektor CsI(Tl)
(Photodiode 10x10mm). [8]
Dari Gambar 6. sampai dengan Gambar 9. menunjukkan komparasi kinerja sistem deteksi radiasi gamma dari detektor NaI(Tl) 2"x2" dan detektor CsI(Tl) Photodiode 10x10mm. Dari Gambar tersebut terlihat bahwa detektor NaI(Tl) 2"x2" mempunyai resolusi / daya pisah yang baik serta efisiensi yang lebih besar dibandingkan dengan detektor CsI(Tl) Photodiode 10x10mm. Sedangkan dari Tabel 1. menunjukkan bahwa efisiensi detektor NaI(Tl) dan detektor CsI(Tl) berbanding 100% dan 45%. Jika akan digunakan detektor CsI(Tl) Photodiode dengan ukuran kristal yang lebih kecil, maka efisiensinya juga akan semakin menurun. Hal ini dapat dilihat pada Gambar 4 dan Gambar 5.

<table>
<thead>
<tr>
<th>No</th>
<th>Karakter</th>
<th>NaI(Tl)</th>
<th>CsI(Tl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max wavelength λ_{max} (nm)</td>
<td>415</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>Decay constant 9(μs)</td>
<td>0,23</td>
<td>1,00</td>
</tr>
<tr>
<td>3</td>
<td>Refraction Index λ_{max}</td>
<td>1,85</td>
<td>1,80</td>
</tr>
<tr>
<td>4</td>
<td>Conversion Efficiency (%)</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Attenuation Coefficient (cm^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. 150 Kev</td>
<td>2,30</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>b. 500 Kev</td>
<td>0,37</td>
<td>0,55</td>
</tr>
<tr>
<td>6</td>
<td>Density (gr/cm^{3})</td>
<td>3,67</td>
<td>4,51</td>
</tr>
<tr>
<td>7</td>
<td>Hygroscopic</td>
<td>Yes</td>
<td>Rather</td>
</tr>
</tbody>
</table>

Hasil pengujian dengan sinyal keluaran amplifier menggunakan sumber standar Ba-133 antara detektor NaI(Tl) 2"x2" PMT buatan Bicron dan detektor CsI(Tl) 1"x1" PMT buatan Hilger type W556 7699 diperlihatkan pada Tabel 3.
Tabel 3. Hasil pengujian sinyal keluaran dengan menggunakan sumber ^{133}Ba

<table>
<thead>
<tr>
<th>Nama</th>
<th>Keluaran Detektor NaI(Tl) 2”x2” Bicron Pada HV=638 V</th>
<th>Keluaran Detektor CsI(Tl) 1”x1” Hilger Pada HV=601 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bentuk</td>
<td>Keterangan</td>
</tr>
<tr>
<td>Sinyal Detektor</td>
<td>Pulsa Negatif</td>
<td></td>
</tr>
<tr>
<td>Output Pre Amplifier</td>
<td>Pulsa Positif Amplitudo=1,8V Periode=20-30μs</td>
<td></td>
</tr>
<tr>
<td>Output Amplifier</td>
<td>Pulsa Positif Semi Gaussian Amplitudo=2,5V & 0,5V Periode=5,5μs</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4. Hasil pengujian FWHM, Resolusi, Efisiensi antara detektor NaI(Tl) 2”x2” dan CsI(Tl) 1”x1”.

<table>
<thead>
<tr>
<th>Sumber</th>
<th>Ket.</th>
<th>Detektor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NaI(Tl) 2”x2”</td>
<td>CsI(Tl) 1”x1”</td>
<td></td>
</tr>
<tr>
<td>^{137}Cs</td>
<td>FWHM</td>
<td>50,312 KeV</td>
<td>62,16 KeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolusi</td>
<td>7,6 %</td>
<td>9,4 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efisiensi</td>
<td>5,116 %</td>
<td>1,730 %</td>
<td></td>
</tr>
<tr>
<td>^{133}Ba</td>
<td>FWHM</td>
<td>40,23 KeV</td>
<td>47,87 KeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resolusi</td>
<td>11,3 %</td>
<td>13,4 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efisiensi</td>
<td>14,18 %</td>
<td>6,79 %</td>
<td></td>
</tr>
</tbody>
</table>

Dari Tabel 3. terlihat bahwa intensitas pulsa yang dihasilkan detektor NaI(Tl) 2”x2” lebih terang dibandingkan dengan intensitas pulsa yang dihasilkan detektor CsI(Tl) 1”x1”. Hal tersebut dipengaruhi oleh perbedaan diameter yang dimiliki kedua detektor tersebut. Semakin besar diameter detektor semakin besar pulsa radiasi gamma yang tertangkap, akibatnya detektor yang memiliki diameter lebih besar akan menghasilkan intensitas yang lebih terang.

Dari data Tabel 4. di atas, diperoleh resolusi menggunakan sumber ^{137}Cs untuk detektor NaI(Tl) 2”x2” sebesar 7,6% dan untuk detektor CsI(Tl)1” sebesar 9,4%. Sedangkan resolusi pada saat menggunakan sumber ^{133}Ba didapatkan 11,3% untuk detektor NaI(Tl) 2”x2” dan 13,4% untuk detektor CsI(Tl) 1”x1”.

Dari hasil hitungan ini dapat dikatakan bahwa resolusi detektor NaI(Tl) 2”x2” lebih baik dibandingkan dengan resolusi detektor CsI(Tl) 1”x1”. Secara fisik, resolusi detektor NaI(Tl) 2”x2” lebih baik dibandingkan dengan resolusi detektor CsI(Tl) 1”x1”. Kenyataan ini dapat dilihat dari FWHM yang dihasilkan pada detektor NaI(Tl) 2”x2” lebih kecil dibandingkan dengan FWHM yang dihasilkan pada detektor CsI(Tl) 1”x1” baik pada saat menggunakan sumber ^{137}Cs maupun ^{133}Ba. Spektrum energi puncak yang dihasilkan oleh detektor NaI(Tl) 2”x2” lebih ramping dibandingkan dengan
Tabel 5. Pengujian Terhadap Fungsi Jarak menggunakan Sumber 133Ba.

<table>
<thead>
<tr>
<th>No</th>
<th>Jarak (cm)</th>
<th>Cacah netto/10s</th>
<th>Detektor NaI(Tl) 2"x2"</th>
<th>Detektor CsI(Tl) 1"x1"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>107773</td>
<td>51626</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>58645</td>
<td>14974</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>27386</td>
<td>5494</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>15926</td>
<td>3299</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>10452</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>7129</td>
<td>1518</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>5278</td>
<td>1032</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>4037</td>
<td>799</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>3004</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>2617</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>2135</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>1863</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>1570</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>26</td>
<td>1357</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>28</td>
<td>1163</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>1033</td>
<td>238</td>
<td></td>
</tr>
</tbody>
</table>

Gambar 10. Grafik cacah terhadap fungsi jarak menggunakan sumber 137Cs.

Tabel 6. Pengujian Terhadap Fungsi Jarak menggunakan Sumber 137Cs.

<table>
<thead>
<tr>
<th>No</th>
<th>Jarak (cm)</th>
<th>Cacah netto/10s</th>
<th>Detektor NaI(Tl) 2"x2"</th>
<th>Detektor CsI(Tl) 1"x1"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>104296</td>
<td>35203</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>52781</td>
<td>11071</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>30220</td>
<td>4954</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>17612</td>
<td>2882</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>11626</td>
<td>1826</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>8148</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>6000</td>
<td>934</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>4587</td>
<td>711</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>3612</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>2929</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>2409</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>2097</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>1730</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>26</td>
<td>1525</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>28</td>
<td>1296</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>1155</td>
<td>193</td>
<td></td>
</tr>
</tbody>
</table>

Dari pengujian terhadap fungsi jarak dapat dilihat bahwa kemampuan cacah detektor NaI(Tl) 2"x2" lebih baik dibandingkan dengan detektor CsI(Tl)1" dengan menggunakan sumber 137Cs ataupun 138Ba. Pada jarak antara sumber dan detektor yang sama cacah yang dihasilkan detektor NaI(Tl) 2"x2" lebih besar dibanding detektor CsI(Tl) 1"x1".

Hal ini menunjukkan bahwa detektor NaI(Tl) 2"x2" mempunyai kemampuan utuk mendeteksi sumber radiasi dengan jarak yang agak jauh, seperti halnya dalam pemeriksaan dengan menggunakan metode in-vivo. Dalam pemeriksaan menggunakan metode in-vivo biasanya jarak dari detektor ke pasien yang akan diperiksa antara 20- 40 cm. Sehingga detektor NaI(Tl) 2"x2" ini cocok digunakan untuk pemeriksaan dengan metode in-vivo.
atau pemantauan yang membutuhkan jarak antara 20-40 cm.

Sedangkan, detektor CsI(Tl) 1”x1” dapat dimanfaatkan untuk pemeriksaan dengan metode in-vitro. Karena pada pemeriksaan dengan metode in-vitro tidak memerlukan jarak yang jauh.

Dari pengujian terhadap fungsi jarak juga dapat diketahui bahwa semakin jauh jarak detektor ke sumber radiasi, maka semakin kecil pula jumlah cacah yang dihasilkan.

Dari hasil perhitungan efisiensi, didapatkan efisiensi detektor NaI(Tl) 2”x2” dan CsI(Tl) 1”x1” menggunakan sumber 137Cs sebesar 5,116 % dan 1,73 %. Sedangkan efisiensi detektor NaI(Tl) 2”x2” dan CsI(Tl) 1”x1” menggunakan sumber 133Ba adalah 14,18% dan 6,79%. Dari hasil pengujian tersebut menunjukkan bahwa efisiensi detektor NaI(Tl) 2”x2” lebih baik dibandingkan detektor CsI(Tl) 1”x1”.

Nilai Efisiensi yang dihasilkan dipengaruhi oleh jenis detektor dan juga setting atau pengaturan selama melakukan pencacahan yaitu jarak antara sumber dengan detektor, tegangan kerja, faktor amplifikasi pada amplifier, serta lebar window diskriminator. Hal lain yang mempengaruhi efisiensi sistem pencacah adalah jenis radiasi, energi radiasi, dan intensitas radiasi. Sehingga Detektor NaI(Tl) 2”x2” memiliki efisiensi yang lebih besar karena memiliki ketebalan material sintilasi yang lebih besar dibanding detektor CsI(Tl) 1”x1”.

Berdasarkan standart Tec-Doc IAEA 602 tahun 1991 tingkat kepercayaan yang digunakan untuk pengujian kestabilan adalah 95%. Untuk data sebanyak 20 dengan kepercayaan 95%, rentang chi kuadrat yang diperbolehkan adalah 10,117<\chi^2<30,144. Dari hasil pengujian chi square test dengan menggunakan detektor NaI(Tl) 2”x2” dan CsI(Tl) 1”x1”, harga \chi^2 yang dihasilkan masih berada dalam rentang yang diizinkan. Sehingga dari informasi yang didapatkan tersebut, menunjukkan bahwa alat yang digunakan masih dalam keadaan stabil.

Dari hasil pengujian diatas menunjukkan kinerja sistem deteksi menggunakan detektor NaI(Tl) 2”x2” dan detektor CsI(Tl) 1”x1” sebagai berikut:

1. Berdasarkan pengamatan bentuk pulsa pada keluaran amplifier menggunakan detektor NaI(Tl) 2”x2” buatan Bicron type 2M2/2 dan detektor CsI(Tl) 1”x1” buatan Hilger type W556 7699 CsI(Tl) sama sama memiliki bentuk pulsa yang baik.

2. Resolusi detektor NaI(Tl) 2”x2” dari Bicron 7,6 % dan detektor CsI(Tl) adalah 9,4 % untuk 137Cs (662keV). Hal ini menunjukkan bahwa sistem deteksi detektor NaI(Tl) mempunyai kemampuan yang lebih baik untuk memisahkan spektrum energi yang berdekatan. Namun keduanya masih memenuhi syarat yaitu antara 6% - 10% untuk Cs-137.

3. Efisiensi detektor NaI(Tl) 2”x2” dari Bicron 2M2/2 lebih tinggi dibandingkan efisiensi detektor CsI(Tl) 1”x1”. Hal ini menunjukkan bahwa efisiensi detektor berbanding lurus dengan dimensinya.

4. Pada uji fungsi jarak, semakin dekat jarak sumber dengan detektor maka jumlah cacah yang diperoleh semakin besar. Dari data-data yang telah diperoleh dapat dinyatakan bahwa pada jarak 0.5cm sampai dengan 30 cm interaksi detektor NaI(Tl) 2”x2” dari Bicron terhadap radiasi sinar gamma lebih baik dibandingkan detektor CsI(Tl) 1”x1”.

5. Dari hasil uji chi square test menggunakan detektor NaI(Tl) 2”x2” dari Bicron 2M2/2 maupun detektor CsI(Tl) 1”x1” dari Hilger type W556 7699 telah memenuhi syarat kestabilan dengan tingkat kepercayaan 95% sesuai TECDOC IAEA 602 tentang uji kualitas peralatan kedokteran nuklir.
4. KESIMPULAN

Kajian sistem deteksi antara detektor NaI(Tl) dan detektor CsI(Tl) untuk perangkat renograf portabel jingga telah dilakukan. Hasil kajian dari literatur menunjukkan bahwa, penggunaan jenis detektor CsI(Tl) photodiode dibandingkan dengan penggunaan detektor NaI(Tl) yaitu dapat mengurangi dimensi akibat penggunaan PMT. Disamping itu tidak memerlukan catu daya tegangan tinggi dan tidak terpengaruh medan magnet. Namun demikian perlu dipertimbangkan, bahwa efisiensi detektor CsI(Tl) photodiode lebih rendah dibandingkan dengan detektor NaI(Tl) PMT. Penggunaan kristal detektor CsI(Tl) yang lebih kecil dimensinya, menyebabkan efisiensi detektor tersebut juga bertambah rendah. Sedangkan perangkat renograf perlu efisiensi detektor yang besar disamping penggunaan kolimator. Dengan demikian detektor CsI(Tl) yang lebih kecil belum bisa menggantikan sistem deteksi dari detektor NaI(Tl) 2x2" pada perangkat renograf.

5. DAFTAR PUSTAKA