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Abstract— Microarray is an analysis for monitoring gene expression activity simultaneously. Microarray data are 

generated from microarray experiments having characteristics of very few number of samples where the shape 

of distribution is very complex and the number of measured variables is very large. Due to this specific 

characteristics, it requires special method to overcome this. Bayesian Model Averaging (BMA) is a Bayesian 

solution method that is capable to handle microarray data with a best single model constructed by combining all 

possible models in which the posterior distribution of all the best models will be averaged. There are several 

method that can be used to select the model components in Bayesian Model Averaging (BMA). One of the 

method that can be used is the Occam's Window method. The purpose of this study is to measure the 

performance of Occam's Window method in the selection of the best model components in the Bayesian Model 

Averaging (BMA). The data used in this study are some of the gene expression data as a result of microarray 

experiments used in the study of Sebastiani, Xie and Ramoni in 2006. The results showed that the Occam's 

Window method can reduce a number of models that may be formed as much as 65.7% so that the formation 

of a single model with Bayesian Model Averaging method (BMA) only involves the model of 34.3%. 

Keywords— Bayesian Model Averaging, Microarray Data, Model Components Selection, Occam's Window 

Method. 

1 INTRODUCTION 

Microarray data is the data obtained from a microarray experiment that is an experiment with a 

particular analysis technique to monitor the activity of thousands genes expression simultaneously [1]. 

Microarray data have several characteristics i.e. -limited availability of the number of samples because of 

limited budget, resources and time. Though the availability of the number of samples is limited, the 

measurable characteristic variables can be hundreds or even thousands of gene expression. By these special 

characteristics, it is possible that the nature of the distribution of gene expression data will be very complex 

in which the distribution of the data is probably not a normal distribution [2]. Due to these specific 

characteristics, it requires special method to overcome this. 

Bayesian is a statistical analysis method that does not consider the number of samples (especially for 

very small sample size) and to any form of distribution. Moreover, Bayesian method is based on information 

from the original data (driven data) to obtain the posterior probability distribution which is a product of the 

prior distribution and the likelihood function [3]. Model Parameter in Bayesian method is viewed as a 

random variable in the space of model parameter and allows for the formal combination of different from 

the prior distribution and facilitates the iterative updating of new information which thus overcome the 

problem of uncertainty and complexity of the model in the data [4] . 

Bayesian Model Averaging (BMA) is a Bayesian solution to model uncertainty in which the completion 

of the model by averaging the posterior distribution of all the best models. The basic principles of the BMA is 

form the best single model by considering all possible models that could be formed so that the purpose of 

the BMA is models incorporate uncertainty and obtain the best model [5]. There are several method that can 
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be used for the model components selection in the BMA of which Occam 's Window method of [5]. This 

method is quite simple and widely used in research related the BMA in which obtained quite good results in 

the model components selection in the modeling of the BMA [5] and [6].Various studies have been done 

related to the Bayesian Model Averaging (BMA), among others [6], [7], [8], [9], [10] and [11]. In this study will 

be used Occam's Window method of [5] to select the component model in the modeling of the BMA for 

microarray data. 

2 MICROARRAY, BAYESIAN MODEL AVERAGING AND OCCAM’S WINDOW METHOD 

2.1 Microarray Techniques and Microarray Data 

According to [1], microarray technique is a technique of data collection by using the platform 

(reference) which is a duplicate of the original object identifier. The measurement data of a microarray 

technique called Microarray Data [12]. There are a variety of different technologies have been developed for 

microarray techniques, among which is a Synthetic Oligonucleotide Microarray Technology [13]. Gene 

expression data is the measurement data from Microarray techniques so that the gene expression data has 

the characteristics of microarray data. According to [2], the data obtained from experiments with microarray 

technique has the following characteristics: 

1. The number of samples that can be observed very limited (slightly) because of limited budget, 

resources and time. Though the availability of the number of samples is limited, the measurable 

characteristic variables can be hundreds or even thousands of gene expression. 

2. The nature of the distribution of data will be very complex in which the distribution of the data is 

probably not a normal distribution. 

 By looking at the characteristics possessed by the microarray data then to analyze of the microarray 

data requires special handling because it is generally the basis of parametric statistical method, especially 

for the comparative analysis requires a large number of samples. If the basis of this statistical method is not 

fulfilled then the conclusion of the analysis cannot be accounted for [9]. 

2.2 Bayesian Method 

Bayesian is a statistical method based on the combination of two information that are the past of data 

information as the prior information and the observations data as a constituent likelihood function to 

update the prior information in the form of posterior probability distribution model. Bayesian method is 

based on information from the original data (driven data) to obtain the posterior probability distribution and 

it is does not consider the number of samples (especially for very small sample size) and to any form of 

distribution. Bayesian method allows for the formal combination of different from the prior distribution and 

facilitates the iterative updating of new information, which thus overcome the problem of uncertainty and 

complexity of the model in the data. The Rational of Bayesian method derived from Bayes Theorem thinking 

concept invented by Thomas Bayes in 1702-1761[3], [4], [14] and [15].  

In Bayesian method, the parameters of the model θ  are seen as a random variable in the parameter 

space θ . Suppose there are x observational data with likelihood function f (x |θ ) then the known 

information about the parameters before the observations were made is referred to as priorθ namely p(θ ) . 

Posterior probability distribution of θ , namely p(θ | x)determined by the rules of probability in Bayes 

theorem [3] as in equation (2.1).θ  

p(θ | x)=
f (x |θ )p(θ )

f (x)
,  (2.1) 
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where 

f (x)= E[ f (x |θ )]= f (x |θ ) f (θ )dθ
x∈R

∫  if θ  continuous, and 

f (x)= E[ f (x |θ )]= f (x |θ )p(θ )
x∈B

∑ if θ  discrete. 

f (x)  is a constant called the normalized constant [4]. So that the equation (2.1) can be written as: 

 p(θ | x)∝ f (x |θ )p(θ )  (2.2) 

Equation (2.2) shows that the posterior probability is proportional to the product of the likelihood 

function and the prior probability of the model parameters. This means that the update's information prior 

to use information of samples in the data likelihood to obtain the posterior information that will be used for 

decision making [16]. 

2.2.1 Markov Chain Monte Carlo (MCMC) Algorithms with Gibbs Sampler Approach 

According to [17], [18] and [19], MCMC algorithms with Gibbs sampler approach can be described as: 

Step 1.  Set initial values for θ
(k )

at k = 0  so that θ
(0) = θ

1

(0)
,...,θ

r

(0)( )  

Step 2.  Sampling process to obtain the value of θ j  from the conditional distribution by the sampling 

for θ
(k+1)

 in r steps as follows: 

 2.1.  Sampling θ
1

(k+1) from p θ1 | x,θ2
(k )
,...,θr

(k )( )   

 2.2. Sampling θ
2

(k+1) from p θ2 | x,θ1
(k )
,θ

3

(k )
,...,θr

(k )( )   

! 

2.r. Sampling θ
r

(k+1) from p θr | x,θ1
(k )
,θ
2

(k )
,...,θr−1

(k )( )   

Step 3.  Doing iteration in step 2 as M  times with M →∞   

2.3 Bayesian Model Averaging (BMA) 

2.3.1 Basic Concepts of Bayesian Model Averaging (BMA) 

The basic concept of Bayesian Model Averaging (BMA) is the best single model formed by considering 

all possible models that could be formed. BMA is a Bayesian solution for model uncertainty in which the 

completion of the model uncertainty by averaging the posterior distribution of all the best models. The 

purpose of the BMA is to combine models of uncertainty in order to obtain the best model [5] and [6]. 

According to [20], the prediction parameters using the BMA approach uses data derived from a 

combination of hierarchical models. If known {M
1
,M

2
,...,M

q
} is the set of models which, may be formed 

from M and  is the value to be predicted, then the BMA prediction begins with determining the prior 

probability distribution of all the parameters of the model and the model M
k

. Posterior distribution of Δ  if 

x  is known to the data as: 

P(Δ | x)= P(Δ |M k , x)P(M k | x)
k=1

q

∑ , Δ  (2.3) 

where q is the sum of all the models that may have formed. PosterΔ ior distribution of  if known the data x  is 

the average of the posterior distribution if known models weighted by posterior probability models. While 

the posterior probability of the model M
k

 is: 

P(M k | x)=
P(Y |M k )P(M k )

P(Y |M l )P(M l )
l=1

q

∑
,  (2.4) 
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where 

P(x |M
k
)= P(x |θ

k
,M

k
)P(θ

k
|M

k
)dθ

k
∫  (2.5) 

Equation (2.5) is the marginal likelihood of the model M
k

. Prior probability of θ
k

 if known model M
k

 is 

p(θk |M k )  and p(θk |M k )  is the likelihood and p(M k ) is the prior probability of M
k

if model M
k

is true. 

Implicitly, all probabilities depend on the model M so that the expected value of the coefficient of Δ  

obtained by averaging the model of M , that is: 

E(Δ | x)= P(M k | x)E(Δ |M k , x)
k=1

q

∑  (2.6) 

The value of E(Δ | x)  in the equation (2.6) shows the weighted expected value of Δ  in every model possible 

combination (weights determined by the prior and the model). While the variance of (Δ | x)  is: 

Var(Δ | x)= (var(Δ | x,M k )+[E(Δ |M k , x]
2
)P(M k | x)−E(Δ | x)

2
)

k=1

q

∑  (2.7) 

2.3.2 Model Components Selection in Bayesian Model Averaging (BMA). 

Based on the basic concept of Bayesian Model Averaging (BMA), the components of the model will be 

selected to be included in the equation (2.3) of q number of models that may be formed. There are several 

method for selecting the components model that will be includeed in the equation (2.3) based on its 

posterior probabilities, which are Occam's Window method [5]. Occam's Window method is quite simple 

and widely used in research related to the BMA and give good results in the selection of components model 

in the BMA [5] and [6]. According to [5], the rationale of Occam's Window method in selecting the 

component model in the BMA modeling based on the posterior probability of the model. The model that will 

be accepted by this method (the model can fit in modeling BMA) must satisfy the following equation: 

A’= {M
k
:
max

l
(P(M

l
| x))

P(M
k
| x)

≤ c}  (2.8) 

where A’ is the posterior odds to the model-k and c values of 20 is equivalent to α = 5%  if using the test 

criteria with p-value [21]. If a model has a value of A’ is greater than 20, then the model is not included in the 

modeling of the BMA and must be removed from the equation (2.3) and otherwise if a model has a value of A’ 

is less than or equal to 20, then the model will be included in the modeling of the BMA and should be 

included in the calculation of equation (2.3). In the equation (2.8), max
l
(P(M

l
| x))  is the model with the 

highest posterior probability score and P(M
k
| x)  is the value of the posterior probability of the model-k. In 

the various applications of Occam's Window method is generally able to reduce the large number of 

components model so that it becomes less than 100 models of even less than 10 models. Reduction of 

component model that only one or two models are very rare but may occur [5]. 

3 PROCEDURE 

The data used in this study are some of the data used in the study [22]. Selection of component models 

in the BMA modeling begins with determining the most appropriate form of distribution to the data and 

parameter estimator and then based on the distribution model raised several distribution models by MCMC 

method with the Gibbs sampler approach to obtain some models that might be formed. Selection of 

component in the BMA modeling using Occam's window method [5] with the following formula: 

A’={M
k
:
max

l
(P(M

l
| x))

P(M
k
| x)

≤ c} . The BMA Modeling in the equation (2.3) is based on the result of model 

components selection from Occam's Window method. 
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4 RESULTS AND DISCUSSION 

4.1 Description of Gene Expression Data on Diseased and Health Conditions with Poly Detector 
and mRNA Method 

Results of Descriptive statistics for gene expression data on the deseased and healthy condition can be 

seen in the following figure: 

 

Figure 4.1. Mean Value of Gene Expression with Poly Detector Method 

 

Figure 4.2. Mean Value of Gene Expression with mRNA Method 

 

Based on Figure 4.1 and Figure 4.2 for the 10 ID genes were observed known that there are differences in 

gene expression for diseased and healthy conditions in which there are several ID genes showed that in 

healthy condition is more expressive than the diseased condition that is H55933, R39465-2, U14973, R02593, 

T51496, H80240 and T55131 for Poly Detector method and U14973 for mRNA method and otherwise there 

are several ID genes showed that in diseased condition is more expressive than the healthy condition that is 

R39465-1, R85482 and T65938 for Poly Detector method and H55933, R39465-1, R39465-2, R85482, R02593, 

T51496, H80240, T65938 and T55131 for the mRNA method. 

4.2 Identification of Distribution and Parameter Estimator for the Data 

The results of the identification to distribution and parameter estimator for gene expression data can 

be seen in Table 4.1 and Table 4.2 below: 
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Based on Table 4.1 and Table 4.2, it can be seen that there are some differences in the distribution of ID 

genes in diseased and healthy conditions that is 6 ID genes with Poly Detector method and 5 on the mRNA 

method and some other ID genes that have the same distribution that is 4 ID genes in Poly Detector method 

and 5 on the mRNA method. In addition, most of the data have a non-normal distribution that is lognormal 

distribution and there are some others have 2-parameter exponential distribution.  

 

TABLE 4.1. DISTRIBUTION SHAPE AND ESTIMATOR PARAMETER FOR GENE EXPRESSION DATA  
WITH POLY DETECTOR METHOD 

No Gene IDs 

Diseased Condition 
Poly Detector Methods 

Healthy Condition 
Poly Detector Methods 

Distribution 
Shape 

Location Scale Threshold 
Distribution 

Shape 
Location Scale Threshold 

1. H55933 Lognormal 8.68823 0.53647 - Lognormal 8.98607 0.42519 - 

2. R39465-1 Lognormal 8.42867 0.43524 - Normal 4687.485 1140.79842 - 

3. R39465-2 Normal 3853.22364 1332.10555 - Lognormal 8.25584 0.26893 - 

4. R85482 Lognormal 8.54118 0.42501 - Normal 3896.826 1470.0419 - 

5. U14973 
2-parameter 

Exponential 
- 1652.94571 1016.28221 Lognormal 7.95942 0.46248 - 

6. R02593 
2-parameter 

Exponential 
- 2095.14952 1366.67186 Normal 5334.62 2808.25975 - 

7. T51496 
2-parameter 

Exponential 
7.78386 0.62935 - Normal 4319.807 1849.69333 - 

8. H80240 Normal 2657.95909 763.91763 - Normal 3358.974 1453.48354 - 

9. T65938 Lognormal 8.51113 0.56238 - Lognormal 8.3776 0.43201 - 

10. T55131 Normal 3757.73 1316.13062 - Normal 3937.965 1043.66701 - 

 

TABLE 4.2. DISTRIBUTION SHAPE DAN ESTIMATOR PARAMETER FOR GENE EXPRESSION DATA  
WITH MRNA METHOD 

No Genes ID 

Diseased Condition 
mRNA Methods 

Healthy Condition 
mRNA Methods 

Distribution 
Shape 

Location Scale Threshold 
Distribution 

Shape 
Location Scale Threshold 

1. H55933 Lognormal 8.72189 0.42906 - Lognormal 8.75844 0.30471 - 

2. R39465-1 Lognormal 8.38318 0.57471 - Lognormal 8.45241 0.32637 - 

3. R39465-2 Lognormal 8.1925 0.57658 - Lognormal 8.25693 0.41378 - 

4. R85482 Lognormal 8.12102 0.52561 - Normal 2969.44511 600.46329 - 

5. U14973 Normal 2909.89154 1072.18635 - Lognormal 7.89766 0.51977 - 

6. R02593 Normal 4896.14989 2376.9857 - Lognormal 8.37758 0.48290 - 

7. T51496 Lognormal 8.12411 0.49305 - Lognormal 7.98207 0.35348 - 

8. H80240 Normal 2883.15608 978.17506 - Lognormal 7.75971 0.50076 - 

9. T65938 Lognormal 8.34434 0.51322 - Lognormal 8.06509 0.51298 - 

10. T55131 Lognormal 8.14477 0.64651 - Lognormal 8.24902 0.36438 - 

 



NATURAL-A Journal of Scientific Modeling & Computation, Volume 1 No.2 – 2014 7 
 

ISSN 2303-0135  

4.3 Model Components Selection in BMA with Occam's Window Method 

The results of the identification to model components selection in BMA with Occam’s Window method 

can be seen in Table 4.3 and Table 4.4. 

Based on Table 4.3 and Table 4.4, it can be seen that the total of overall mean to percentage of the 

component models included in the BMA modeling at 34.3% that is derived from this calculations 

TABLE 4.3. PERCENTAGE OF COMPONENT MODELS INCLUDED IN THE BMA MODELING  
WITH OCCAM'S WINDOW FOR POLY DETECTOR METHOD. 

No Gene IDs 

Diseased Condition 
Poly Detector Methods 

Healthy Condition 
Poly Detector Methods 

The number 
of models 

generated by 
the MCMC 

method 

The number 
of models 

included in 
the BMA 

modeling 

Percentage of 
component 

models 
included in the 
BMA modeling 

The number 
of models 

generated by 
the MCMC 

method 

The number 
of models 

included in 
the BMA 

modeling 

Percentage of 
component 

models 
included in the 
BMA modeling 

1. H55933 1000 51 5.1 1000 467 46.7 

2. R39465-1 1000 335 33.5 1000 327 32.7 

3. R39465-2 1000 769 76.9 1000 902 90.2 

4. R85482 1000 417 41.7 1000 475 47.5 

5. U14973 1000 1 0.1 1000 456 45.6 

6. R02593 1000 835 83.5 1000 488 48.8 

7. T51496 1000 1 0.1 1000 889 88.9 

8. H80240 1000 1 0.1 1000 862 86.2 

9. T65938 1000 51 5.1 1000 591 59.1 

10. T55131 1000 793 79.3 1000 907 90.7 

Overall Mean 32.54 Overall Mean 63.64 

 
TABLE 4.4. PERCENTAGE OF COMPONENT MODELS INCLUDED IN THE BMA MODELING  

WITH OCCAM'S WINDOW FOR MRNA METHOD. 

No Gene IDs 

Diseased Condition 
mRNA Methods 

Healthy Condition 
mRNA Methods 

The number 
of models 

generated by 
the MCMC 

method 

The number 
of models 

included in 
the BMA 

modeling 

Percentage of 
component 

models 
included in 

the BMA 
modeling 

The number 
of models 

generated by 
the MCMC 

method 

The number 
of models 

included in 
the BMA 

modeling 

Percentage of 
component 

models included 
in the BMA 
modeling 

1. H55933 1000 17 1.7 1000 855 85.5 

2. R39465-1 1000 5 0.5 1000 856 85.6 

3. R39465-2 1000 5 0.5 1000 405 40.5 

4. R85482 1000 6 0.6 1000 1 0.1 

5. U14973 1000 1 0.1 1000 62 6.2 

6. R02593 1000 368 36.8 1000 151 15.1 

7. T51496 1000 7 0.7 1000 615 61.5 

8. H80240 1000 1 0.1 1000 59 5.9 

9. T65938 1000 6 0.6 1000 55 5.5 

10. T55131 1000 1 0.1 1000 629 62.9 

Overall Mean 4.17 Overall Mean 36.88 
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((32.54+63.64+4.17+36.88)/4). This means that in a study with Occam's Window method can reduce the 

component models in the BMA modeling was 65.7% so that in the formation of the BMA modeling involves 

only 34.3% of the overall model might be formed. 

5 CONCLUSION 

Based on the results of research conducted, it can be concluded that most of the gene expression data 

as a result of microarray experiments have non-normal distributions both in healthy and diseased 

conditions. In addition, there are different type of data distribution in healthy and diseased conditions and 

there is also the same type of data distribution in healthy and diseased conditions. There are several gene IDs 

that have the value of the expression in diseased condition stronger than healthy condition and otherwise 

there are several gene IDs that have the value of the expression in healthy condition stronger than diseased 

condition. The average percentage of the component model that can be included in the BMA modeling with 

Occam's Window method as much as 34.3%. This means that the Occam 's Window method can reduce the 

component model may be formed as much as 65.7% so that in the form of the BMA modeling involve only 

34.3% where it would further simplify the model without reducing the validity of the model is formed. 
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