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Abstract— The behavior of quintic nonlinear dispersion coefficient of creeping soliton in a spatial domain with 
hyperbolicity analysis of Hartman-Grobman Theorem by using variational approach is studied. Complex 
Ginzburg-Landau equation (CGLE) is used in the analysis as we relate the creeping soliton with Hartman-
Grobman Theorem. We evaluated our work based on perturbed Jacobian matrix from system of three 
supercritical ordinary differential Euler-Lagrange equations, in which the eigenvalues of the stability matrix touch 
the imaginary axis. As a consequence in unfolding the bifurcation of creeping solitons, the equilibrium structure 
ultimately chaotic at the variation of the coefficient µ away from the critical value, µc . This leads to 
hyperbolicity loss of Hartman-Grobman Theorem in the dissipative system driven out the oscillatory instability of 
µ  exceeded the criticality parameter corresponding to the Hopf bifurcations as the system is highly complex. 
This overall approach restrict to numerical investigation of the space time hyperbolic variation of CGLE. 
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1 INTRODUCTION 
The Complex Ginzburg-Landau equation is a generic equation that models a variety of phenomena in 

weakly nonlinear behavior of dissipative systems. We are dealing with infinite dimensional dynamical 

system governed by the CGLE throughout this paper. The variety of these systems is so large that “The World 

of the Ginzburg-Landau equation” is about broadly list of applications in the equation, written by Aranson 

and Kramer [1]. The CGLE mostly has a wide range of applications in various branches of sciences (physic, 

biology and chemistry) [2]. Other than that, this complex equation is a model of generation in 

superconductivity, super fluidity, Bose-Einstein condensation, and strings in field theory. Depending on the 

system parameters, the CGLE has different types of solutions, including solitons, fronts, pulsating, snaking 

[3], and creeping, erupting, and chaotic solitons [2]. There is a practical difficulty of finding a parallel 

between different regions in the parameter space and various types of localized waves since the CGLE is 

characterized by several parameters. However, the solution to this problem usually needs huge numerical 

simulations with different sets of parameters and initial conditions. 

A creeping soliton is a special type of pulsating localized solution that changes its shape periodically 

and shifts a finite distance in the transverse direction after each period of oscillations [4]. Although the 

motion occurs as a step-by-step translation in one direction, the value of the shift is constant for each period 

so that the soliton has a finite average velocity. For instance, creeping solitons have long flat-top profiles that 

consist of two fronts (move asymmetrically in time) at the sides of the soliton which the two fronts are 

creating creeping movements of the whole ‘worm-like’ formation. 

Creeping solitons were first observed in numerical simulations by Soto-Crespo et. al [5]. Their existence 

has been confirmed in other publications for various dissipative systems [6][7][8]. 
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Creeping solitons exist in a range of the equation parameters. Only isolated examples had been found 

previously [8].The results of simulations are summarized in [2]. Here, we would like to particularly site 

Mancas’s work of the variational formulation in CGLE [9]. We attempt to extend our attention on his method 

and use to relate with Hartman-Grobman Theorem. Since the variational formalism not so well explored by 

others, this study only approach in a novel way.  

In this paper, we address the issues of study of behavior of 5th order nonlinear dispersion of creeping 

soliton in the CGLE with hyperbolicity analysis of Hartman-Grobman Theorem by using variational 

approach. To analyze the hyperbolicity of creeping solitons, we relate it to the Hartman-Grobman Theorem. 

We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical 

ordinary differential equations (ODEs) in the Euler-Lagrange system, which the eigenvalues of the Jacobian 
matrix touch the imaginary axis. Taking µ  as a control bifurcation parameter, we can restrict ourselves to 

analyze the numerical investigation of the space-time hyperbolic variation of the CGLE. 

2 MATHEMATICAL MODEL 
In our notation, the complex GLE can be written as 

∂t A =δA+ (β + i
D
2
)∂x

2A− (ε − iγ ) A 2 A− (µ − iν ) A 4 A  (1) 

where t and x are distance traveled variable and retarded time, respectively. Note that the coefficients can be 
set to unity by appropriate scaling of time, space and A(x,t) . D is group velocity dispersion coefficient, with 

D =±1 , depending on whether the group velocity is anomalous or normal, respectively, δ  is the linear gain-
loss coefficient, β  is spectral filtering or linear parabolic gain (β > 0) , ε  represents the nonlinear gain, µ  

is the saturation of the nonlinear dispersion, ν  is the coefficient of quintic nonlinearity, and γ  is a higher 

order correction of the cubic nonlinearity. In this paper, we shall assume D =1  and γ =1  [5]. 

3 HYPERBOLIC ANALYSIS 
If one of the parameters changes, it causes pulsating solitons to exhibit more complicated behaviors. 

These pulsations can be transformed by period-doubling bifurcations of creeping solitons as the parameter 

changes further. This is due to the bifurcation at certain boundaries in the parameter space and also through 

a sequence of period-doubling bifurcation. 

Since Mancas [9] has succeeded on the work of variational method in pulsating and snaking solitons, 

hence we decide to study another soliton class by analyzing its hyperbolicity. This investigation can be 

related to Hartman-Grobman Hyperbolic Theorem. 

The fixed point of Euler-Lagrange equations in system are as follow: 

A
.
1(t)= f1[A1(t),ϕ(t),α(t)]   

ϕ
.
(t)= f2[A1(t),ϕ(t),α(t)]  (2) 

α
.
(t)= f3[A1(t),ϕ(t),α(t)]  

For the systems of differential equations given by (2), by using progressively slower spatial scales, the 
limit cycle is determined by expanding the amplitude A1(t) , the inverse width φ(t)  and the phases of 

solitons α(t) . All are allowed to vary arbitrarily in time, and the chirp terms of trial functions are omitted for 

simplicity [3]. 

Mancas [9] was introduced θ  as the usual multiple scales expansion parameter and set θ =1  at the end 
in the usual way. We choose the parameterµ  as the control or distinguished bifurcation parameter. The 
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expansion of fixed point (2) takes the form 

A1(t)= A11(Z0,Z1,Z2 )+θA12 (Z0,Z1,Z2 )+θ
2A13(Z0,Z1,Z2 )...,   (3)      

ϕ(t)=ϕ1(Z0,Z1,Z2 )+θϕ2 (Z0,Z1,Z2 )+θ
2ϕ3(Z0,Z1,Z2 )...,  (4) 

α(t)=α1(Z0,Z1,Z2 )+θα2 (Z0,Z1,Z2 )+θ
2α3(Z0,Z1,Z2 )...  (5) 

The delay parameter µ  is ordered as  

µ = µc +θµ1   (6)      

where µc  is the critical parameter value, such that the necessary conditions for characteristics 

polynomial of Jacobian matrix for fixed point (2) to have Re(λ)< 0  is not satisfied, (i.e. µc  is a solution of 

one of the conditions) [3]. Using (3)-(5) in (2) and equating powers of θ  yields equations at O(θ i )  of the 

form:  

 

Si, j
! "!

=
d
dZ0

xi
!"
+

f1v f2v f3v
f1w f2w f3w
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"
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 (7) 

 
where i =1,2,3  represents the order, j =1,2,3  represents the equations,  Si, j

! "!
 is the source or 

inhomogeneous terms for the j th  equation at O(θ i )  , and  xi
!"

 is the solution according the order which we 

assume it depend on parameter µ  and x  hyperbolic equilibrium of µ , 

Here,         
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where J  is the Jacobian matrix of (2).  

The second order sources in standard way, take the form  
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and the third order sources 
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Now, the evolution equation can be written as 

 

S3, j
1
! "!!

=

f1v + iω0 f2v f3v
f1w f2w + iω0 f3w
f1z f2z f3z + iω0

"

#

$
$
$$

%

&

'
'
''
x3
!"!

 (11) 

From above, this system can be written in a compact form given as 

 S3, j
1
! "!!

= (A−λI )x3
!"!

 (12) 
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where λ(µ)=±iω0 (µ)  are the eigenvalues of A . Here, the eigenvalues of A  is the function ofµ , and 

variation in µ  will cause them to move in the complex plane. If an eigenvalue touch an imaginary axis 

( Imω0 ), this leads to the case of the fixed point (3) – (5) is no longer hyperbolic. 

Setting r = 1
2
Aeiξ  and separate equation [1] yields 

∂A
∂Z2

=
S1RA

3

4
+S2RA  (13) 

where S1R  and S2R  represent the real part of S1  and S2  respectively. Here, the normal form in polar 

coordinates (A,r)  can be written as: 

A
.
= A[S2R(µ)+

S1R(µ)
4

A2 +S3R(µ)A
4 ]= S2RA+

S1R
4
A2 +O(A5 )  (14) 

r
.
=ω0 (µ)+O(µ,A

2 )  (15)     
 

This gives the complex conjugate pair of eigenvalues S2R(µ)± iω0 (µ)  and is assumed to satisfy  

S2R(0)= 0,ω0 (0)≠ 0  (16)              
 

Since only eigenvalues of A on the imaginary axis form a conjugate pair, then the loss of hyperbolicity of 

Hartman-Grobman Theorem is distinguished. 

Let us consider 
S1R
4
< 0  for example-from (14) the radial equilibria satisfy A(S2R(µ)+

S1R
4
(µ)A2 ) ≈ 0  

and there are two branches (A,AH )   

A = 0 , AH =±2 −
S2R
S1R

 (17) 

Since AH  must be real, the latter solution is exists only for S2R(µ)> 0 . When (15) is taken into account, 

this new solution in fact describes a periodic orbit of amplitude AH . Linearize (14) about A = AH  and the 

linear eigenvalue analytically to check the new solution can be determined. Thus, the system undergoes the 
condition for stability of Hopf bifurcation AH  is said to be supercritical ( S1R < 0 , S2R > 0 ,µ > 0 ) or 

subcritical ( S1R > 0 ,S2R < 0 ,µ < 0  ). 

4 UNFOLDING A BIFURCATION 
Suppose a stable equilibrium is perturbed by varying an external parameterµ , at a critical valueµ = µc , 

the equilibrium develops a neutral mode. Since at µc  hyperbolicity is lost, and we must study what happens 

to the system as µ  is varied aboutµc , we give the simplest and most general effect on behaviors of creeping 

soliton. Here, we investigate the effects on the quantic nonlinear coefficient µ  in (1). We vary µ  away from 

critical valueµc , (µ > µc )  which we let at criticality µc = 0  for an equilibrium undergoing either steady state 

or Hopf bifurcation. 

The simulation was started from equilibriumµ = µc  up to chaotic solution in the soliton as we attempt 

to exhibit all possible behaviors of creeping soliton. We fix parameters D ,ν ,ε , β , δ , γ  and varies µ . 
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Fig.1. Space-time variation of the A   
forδ = −0.1 , β = 0.08 , D = +1 ,ν = −0.08 , γ = +1 , ε = −0.782 and µ = 0.107 . 

 

 

Fig.2. Space-time variation of the wave pattern amplitude A .  
The parameters areδ = −0.1 , β = 0.08 , D = +1 ,ν = −0.08 , γ = +1 , ε = −0.782 and µ = 0.121 . 

 

We study the behavior of wave patterns of quantic nonlinear dispersion coefficient of creeping soliton 

in a spatial domain. We first solved (1) for the set of parameters with an initial condition. Once Fig.1 

converges to periodic creeping soliton (Fig.2), we use the initial condition for finding new solutions for 
different values of parameter as we changed µ  while keeping all the parameter fixed. In Fig.3, the solution 

through a transition when small perturbation occurs when µ  increases to 0.165. 

 

 

Fig.3. Space-time variation of A   
forδ = −0.1 , β = 0.08 , D = +1 ,ν = −0.08 , γ = +1 , ε = −0.782 and µ = 0.165 . 



40 A Variational Approach of Creeping Solitons with Hartman-Grobman Theorem in Complex Ginzburg-Landau Equation 

NATURAL-A © 2014 http://natural-a.ub.ac.id/ 

 
 

Fig.4. Space-time variation of A   
forδ = −0.1 , β = 0.08 , D = +1 ,ν = −0.08 , γ = +1 , ε = −0.782 and µ = 0.20 . 

 

The variation of the coefficientµ leads to bifurcation of equilibrium solution to chaotic states, which is 

illustrated in Fig.1 until Fig.4. These figures show the nature of the transitions can occur if we changed one 

parameter as a control bifurcation coefficient. It reveals that the effects on the pattern from vary the quintic 
nonlinear parameter µ  are propagate in only one direction toward the left and decreasing in time. We were 

able to find out how the solutions change their behavior asµ changed and we have noticed that 

whenµ further increases, the chaotic motion frequently spread the soliton travels before transforming each 

pulsations getting closer. As we discovered the behavior of the pattern and the disordered regimes in the 

domain become more complex, the system becomes more and more chaotic (Fig.4). 

5 CONCLUSION 
In this paper, we have studied the behavior of quintic nonlinear dispersion coefficient of creeping 

solitons using variational approach as we relate our work with Hartman-Grobman Theorem. Other than that, 

we have discussed briefly on the theoretical work for analyzing the hyperbolicity of one class of solitary waves 

(creeping soliton) in the CGLE and presented some numerical simulations for dissipative creeping soliton 
solutions to the CGLE. The dynamics of the wave patterns were controlled by one parameter,µ in (1). We 

attempted to exhibit all possible behaviors for the system of equilibrium,µ = µc , up to chaotic solution in 

creeping solitons. Sinceµ is driven out the oscillatory instability exceeded the critically parameter which is 

corresponding to the Hopf bifurcations as the system is highly complex. 

We found that the regimes are disordered in the domain and equilibrium states undergo propagation 
of the chaotic states when µ increases.  

In the case of hyperbolic analysis, the eigenvalues of Jacobian matrix touch the imaginary axis. This 

leads to hyperbolicity loss of Hartman-Grobman Theorem in the dissipative system. 
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