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Abstract— Quartz crystal resonator which is used as a basis for quartz crystal microbalance (QCM) sensor was 
modelled using many different approach. The well-known model was a four parameter model by modelling the 
resonator as a circuit composed from two capacitors, inductor and resistor. Those four parameters control the 
impedance and phase again frequency applied to the resonator. Electronically, one can measure the resonator 
complex impedance again frequency by using an impedance analyser. The resulting data were a set of 
frequency, real part, imaginary part, impedance value and phase of the resonator at a given frequency. 
Determination of the four parameters which represent the resonator model is trivial for QCM sensor analysis and 
application. Based on the model, the parameter value can be approximately calculated by knowing the series 
and parallel resonance. The values can be calculated by using a least mean square error of the impedance value 
between model and measured impedance. This work presents an approach to calculate the four parameters 
basic models. The results show that the parameter value can be calculated using an iterative procedure using a 
nonlinear optimization method. The iteration was done by keeping two independence parameters R0 and C0 as 
a constant value complementary. The nonlinear optimization was targeted to get a minimum difference between 
the calculated impedance and measured impedance. 
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1 INTRODUCTION 
Quartz crystal microbalance sensor (QCM) was built using AT-cut quartz crystal resonator. To be used as 

sensing elements, especially for chemical sensor or biosensor, on top of the resonator was coated with an 

additional coating layer or sensitive layer. To understand and investigate the properties of the additional 

layers, the behaviour of the sensor before any additional coating was needed to be known. In its original 

condition, where there was no additional coating and the resonator surface in contact with air, the behaviour 

of the quartz crystal resonator described the behaviour of the QCM sensor. To understand the behaviour of 

the sensor, some mathematical and electrical model has been proposed to model the resonator. The 

physical equation describes the resonator behaviour governs by a piezoelectric, Newton’s and Maxwell’s 

equations. Thus modelling in three dimensional was very difficult. For a resonator for QCM sensor in a form 

of thin disc, a one dimensional model can be used as an approximation for the resonator behaviour.  

There were two well-known approaches to model the behaviour of a circular disc resonator. One is the 

distributed model or transmission line model [1], [2], [3] and the other was the lumped model. The lumped 

model was also known as Butterworth van Dyke (BVD) model [1], [4]. Based on the physical properties of the 

resonator, the BVD model used four parameters, i.e. two capacitor, one resistor and one inductor to model 

the resonator behaviour. Modified BVD model was also introduced to model the resonator [5]. Based on the 

model, a viscoelastic properties of the layer on top of the sensor can also be analysed using transfer matrix 

method [6]. The BVD model with additional parameters was also used as a basis for modelling the resonator 

contacting liquid medium [7], [8]. 

The advantages of the BVD model was its simple model to represent the resonator behaviour. This 

model gives a direct mathematical model which allows a straight forward calculation of the impedance and 

phase angle of the resonator. The approximated model parameters was usually done by measuring the 
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impedance value using impedance analyser. Using impedance analyser the measurement data at least 

consists of given frequency, impedance value and phase angle. In this work we shows that the determination 

of four parameters value of the resonator using BVD model can be obtained by optimizing the parameters 

value using nonlinear optimization. 

2 THEORY AND EXPERIMENTAL PROCEDURE 
2.1 Butterworth Van Dyke Model 

A quartz crystal resonator was made from a disc of quartz crystal cut at AT-cut angle and giving a two 

cylindrical electrode made of a thin metal shown in Figure 1. This two adjacent electrode made the resonator 

to have a behaviour as a capacitor. When an alternating electrical signal applied to the resonator, the 

piezoelectric properties of the resonator can be represented as a resonator circuit composed by a resistor, 

capacitor, and inductor. The BVD model for a resonator was shown in Figure 2. Where the C0, C1, R1 and L1 

were the four parameters of the resonator. 

  

Figure 2. BVD model of the quartz crystal resonator 

The impedance between A and B was a parallel impedance between the impedance of the C0 and the 

impedance of the series impedance of the R1, L1 and C1. The impedance of the upper arm (static arm) and 

bottom arm (motional arm) can be written as: 

Z0 =
1

jωC0

 (1) 

Z1 = R1+ jωL1+
1

jωC0

 (2) 

The total impedance (Z) of the resonator at given frequency between point A and B is: 

Z = Z0Z1
Z0+Z1

 (3) 

For a given frequency we can calculate directly the value of the total impedance by using complex 

number calculation. Where the impedance can be written as: 

Z = R+ jX  (4) 

with R is the real part and X is the imaginary part of the impedance.  

By substituting Z0 and Z1 using equation (1) and (2) we can rewrite equation (3) as: 
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 (5) 

Special condition of Z occurs at a series resonance frequency (ωS) and at a parallel resonance frequency 

(ωP).  At series resonance frequency if the resistance R1 = 0, the resonance frequency occurs at X1=0. This 

condition leads to a relationship between resonance frequency and resonator parameter by: 

ωs =
1
L1C1

 (6) 
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In a condition where R1=0, parallel resonance at the frequency where the admittance of the resonator is 

zero. This condition exists at a condition where X0+X1=0. The relationship of the parallel resonance and the 

resonator parameter was written as: 

ω pL1 −
1

ω pC1
−

1
ω pC0

= 0

ωP
2L1C1 −1=

C1
C0

 (7) 

Using equation (6), equation (7) can be written as: 

ωP =ωS 1+C1
C0

 (8) 

2.2 Impedance Analyser Measurement 
A vector network impedance analyser mainly consists of gain and phase detector measurement. The 

resulted data was usually in a set data consist of frequency, real and imaginary part of the impedance at given 

frequency, absolute impedance value and its corresponding phase. One can calculated the magnitude and 

phase using the real and imaginary part and vice versa. In this experiment we used the Bode-100 Vector 

Impedance Network Analyser from Micorn-Lab. Quartz crystal resonator used in this experiment was the AT-

cut quartz crystal in HC49/U standard package purchased from Great Microtama Surabaya. According to the 

manufacturer, the resonator has been tuned at 10 MHz series resonance frequency and the maximum series 

resistance was 30 Ω. The resonator disc was 8.7 mm with silver electrode diameter closes to 5mm. 

2.3 Steps to calculate four parameters of the BVD Model 
Based on the BVD model, one can calculate directly the absolute value and the phase of the impedance 

if the four parameters were known. Unfortunately, thus parameters cannot be measured directly. The only 

parameters which can be measured was the electrode diameter, which relates to C0, by a condition of zero 

shunt capacitance of the resonator package. However, direct electrode diameter measurement gives us a big 

uncertainty compare to the accuracy and precision of electrical value measurement. The shunt capacitance 

of the resonator caused by resonator leads and package cannot be measured. It means that the calculated C0 

based on the electrode diameter is only an approximate value.  

Using network impedance analyser, one can measure the impedance and phase of the resonator (Z) at a 

given frequency. By changing the frequency from below the series resonance and above parallel resonance 

gives an impedance curve, which gives us an approximate impedance value near series resonance and near 

parallel resonance. he resonance frequency at series and parallel resonance can be found by interpolating 

the measured data at null phase, one at the transition from a negative phase to positive phase for the series 

resonance and from positive phase to negative phase for the parallel resonance. Both of the resonance 

frequency can be interpolated using one, two or three order polynomial. As the phase transition close to ”S” 

curve, approximation using polynomial order three was chosen. Figure 3 shows a typical phase and 

frequency relationship curve and cubic polynomial interpolation. One can calculate the resonant frequency 

at zero phase direct from the best fit polynomial coefficient. Based on this interpolation the value of ωS and 

ωP has been found from measured data. At this point we already have a three approximate value of the 

parameters C0, C1 and L1. 
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Figure 3. Polynomial interpolation for frequency to phase; 

(a) series resonance (b parallel resonance 
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Figure 4. Impedance curve at series resonance for initial R1 value calculation 

At series resonance, the impedance of the resonator is close to the value of R1. Therefore the resistive 

parameter value, R1, can be approximately calculated using the impedance data close to the series 

resonance. The first guess value of the R1 in this work was the minimum value from the interpolated 

quadratic equation formed by impedance value again phase close to the zero phase at series resonance. 

Figure (4) shows a typical second order polynomial curve as a result of interpolated data. 

Model values optimization can be done using nonlinear programming. In this condition, we have 

determined that there is four unknown variables whilst the objective of the function is to minimize the 

absolute difference between measured impedance and calculated impedance using model parameters R1, 

L1, C0 and C1. The nonlinear optimization was chosen as the best resonator behaviour described in equation 

(5) is non linear. To solve this problem, optimization using Generalized Reduced Gradient (GRG) Nonlinear 

method which is available in Microsoft Excel was used. This method used GRG2 code developed by Lasdon 

and Waren [9]. The objective of the optimization was finding the best value for R1, L1, C0 and C1 which best 

model the measured data. 

The scenario was constructed as follows: 

1. Find the minimum (ZS) and maximum impedance value (ZP) from measured data 

2. Find a series and parallel resonance frequency by polynomial order three again 8 data taken from 

the closest data to the ZS and ZP 
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3. Calculate the initial value of R1 using second orde polynomial interpolation of 8 data closest to the 

series resonance 

4. Calculated initial guess value for C0 series resonance frequency 

5. Calculate sum of relative different from series resonance to parallel resonance (ZM: measured 

impedance, ZC: Calculated impedance using BVD model) 

6. Do using GRG Nonlinear Solver until minimum SE found: 

a. Minimize SE by changing C0 and keeping R1 constant  

b. Minimize SE by changing R1 and keeping C0 constant 

The other possibility can be done by canging the sequence of GRG Nonlinear optimization on step 6 

becomes: 

6. Do using GRG Nonlinear Solver until minimum SE found: 

a. Minimize SE by changing R1 and keeping C0 constant 

b. Minimize SE by changing C0 and keeping R1 constant  

3 RESULTS AND DISCUSSION 
We used the above described scenario to calculate the BVD parameter’s value of the resonator. From 

our sample case, the initial BVD parameters value taken from measurement data followed by calculation 

scenario step 1 to 4 was R1 = 6.1301416 Ω, C0 = 4.6939777 pF, C1 = 0.0229395 pF, and L1 = 11.0236714 mH. 

Using this initial guess value, GRG nonlinear optimization by minimizing relative different between 

measured impedance and calculated impedance at given frequency from minimum impedance to 

maximum impedance points. Tabel 1 shows the change in BVD parameters according to the scenario 

described above. We can see that the sum of relative different between calculated and measured impedance 

was constant at step 5. Based on this condition we got the final best value of the BVD paremeters. The 

parameters value was R1 = 7.4162625 Ω, C0 = 4.6115222 pF, C1 = 0.0225365 pF, and L1 = 11.2207780 mH. Slight 

difference results were found by implementing alternative scenario of the GRG Nonlinear optimization. The 

result of the alternative scenario was listed in Table 2. The difference between the scenario is not significant. 

There was only 0.02 ppm different in R1 and 2 ppm different in C0, C1 and L1. For this work the first scenario 

was used for rest of the work.  

Figure 5 shows the impedance spectrum of measured data using Bode 100 Impedance analyser and 

BVD model calculated using the described scenario. The measurement was done from 9.925 MHz to 10.05 

MHz with receiver bandwidth at 30 Hz. Total measurement was 4096 points. This corresponding to a 

frequency spacing between data was 30.25 Hz. 
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Figure 5. Impedance curve at series resonance 

 

From Figure 5 we can see that the resulted model parameter best fitted to the measured data in a whole 

spectrum. The calculated impedance spectrum was well overlaid on top of the measured impedance 

spectrum. It is difficult to see the difference between both graphs. We can see that the resulted BVD 

parameters can model the measured data very well. 

TABLE 1. BVD PARAMATER CHANGES RESULTED BY GRG NONLINEAR OPTIMIZATION USING FIRST SCENARIO 

Step Condition R
1
 (W) C

0
 (pF) C

1
 (pF) L

1
 (mH) S (D) 

0 Initial guess (R
1
, C

0
, C

1
, L

1
) 6.1301416 4.6939777 0.0229395 11.0236714 17.6600412 

1 Constant R
1 

6.1301416 4.6119541 0.0225386 11.2197273 6.6611161 

2 Constant C
0
, C

1
, L

1 
7.4162709 4.6119541 0.0225386 11.2197273 6.3922058 

3 Constant R
1 

7.4162709 4.6115222 0.0225365 11.2207780 6.3918131 

4 Constant C
0
, C

1
, L

1 
7.4162625 4.6115222 0.0225365 11.2207780 6.3918127 

5 Constant R
1 

7.4162625 4.6115222 0.0225365 11.2207780 6.3918127 
 Final Value 7.4162625 4.6115222 0.0225365 11.2207780  

 

 

TABLE 2. BVD PARAMATER CHANGES RESULTED BY GRG NONLINEAR OPTIMIZATION USING SECOND 
SCENARIO 

Step Condition R
1
 (W) C

0
 (pF) C

1
 (pF) L

1
 (mH) S (D) 

0 Initial guess (R
1
, C

0
, C

1
, L

1
) 6.1301416 4.6939777 0.0229395 11.0236714 17.6600412 

1 Constant C
0
, C

1
, L

1 
7.4177934 4.6939777 0.0229395 11.0236714 17.4302883 

2 Constant R
1 

7.4177934 4.6115133 0.0225365 11.2207998 6.3918898 

3 Constant C
0
, C

1
, L

1 
7.4162623 4.6115133 0.0225365 11.2207998 6.3918147 

4 Content R
1 

7.4162623 4.6115133 0.0225365 11.2207998 6.3918147 

5 Constant C
0
, C

1
, L

1 
7.4162623 4.6115133 0.0225365 11.2207998 6.3918147 

 Final Value 7.4162623 4.6115133 0.0225365 11.2207998  
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The difference between measured impedance and calculated one can be seen in Figure 6. It can be seen 

that in term of absolute difference, the biggest difference exists in an impedance value close to the parallel 

resonance. This magnitude can be understood well, as the absolute value of the impedance at parallel 

resonance is very big. In addition, it can be seen in Figure 5 that big impedance gradient exists at parallel 

resonance. Those a slight error in the frequency measurement by the impedance analyser will result in a 

significant difference in the measured impedance compared to the calculated one. 

The relative difference between measured impedance and calculated impedance in Figure 6 shows that 

there are three peaks in the difference curve. We will focus to the first and second peaks difference. The first 

one was at series resonance and the second one was at the parallel resonance. The peaks after parallel 

resonance was caused by a non ideal fabrication the resonator.  
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Figure 6. Absolute and relative difference of the impedance value between measured data and calculated data 

 

At impedance close to the series resonance, the relative difference of the impedance value was high for 

a few data although the absolute difference is small. This is caused by a small absolute value of the resonator 

impedance. High difference at series resonance impedance was only occurring for one or two points. This 

can be caused by the measurement error. 

Closer look at the series and resonance frequency spectrum as shown in Figure 7 shows that the 

agreement between the calculated impedance to the measured impedance existed. It can be seen from 

Figure 7 that the calculated impedance spectrum well overlaid with the measured impedance. Visually there 

was no significant difference between the calculated impedance and measured impedance. 
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Figure 7. Impedance spectrum; 

(a) at series resonance, (b) at parallel resonance 

4 CONCLUSIONS  
The scenario to calculate BVD parameters of a quartz crystal resonator using GRG nonlinear 

optimization has been successfully developed. Optimization criteria by minimizing the sum of the different 

between measured impedance and calculated impedance by varying the value of the four parameters, R1, L1, 

C0 and C1 has been shown. The initial guess value for parameters was calculated using the geometry value of 

the electrode, an interpolated value of the series resonance frequency and parallel resonance frequency at 

zero phase. Initial guess value for the R1 was taken from the minimum impedance close to the series 

resonance. The resulting four parameter’s value of the BVD shows a best fit to the measured data.  
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