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Abstract 
 

This article discusses the constrained nonlinear optimization formulation for calculating the worst case of lower and 
upper bounds of relative disturbance gain array (RDGA) for uncertain process models. The proposed approach seeks the 
minimum and maximum values of the relative disturbance gains subject to the constraints in which the process and 
disturbance gains are within their uncertainty ranges. RDGA ranges are useful for control structure determination and the 
related robustness, as they provide information regarding the sensitivity to gain uncertainties. The proposed method is 
demonstrated by ternary distillation column case study. Closed loop simulation results support the analysis based on the 
proposed method. It is shown that for a particular degree of uncertainties, the range of process gain determinant should 
not include zero to ensure the successfulness of the calculation. For the distillation system being studied, the maximum 
allowable α is 0.339 to avoid the singularity of matrix K. 
 
 

Abstrak 
 

Kondisi Terburuk Harga Relative Disturbance Gain Array untuk Sistem Distilasi Tak Pasti. Artikel ini 
mempresentasikan formulasi optimisasi nonlinear berbatas untuk menghitung kondisi terburuk batas bawah dan batas 
atas harga relative disturbance gain array (RDGA) untuk suatu model proses yang mengandung ketidakpastian. 
Pendekatan yang diusulkan adalah untuk mencari harga relative disturbance gain minimum dan maksimum sesuai 
batasan kisaran ketidakpastian yang terdapat baik pada gain proses maupun gain gangguan. Kisaran RDGA berguna 
untuk penentuan struktur pengendali dan ketegarannya (robustness) karena menyediakan informasi terkait sensitivitasnya 
terhadap ketidakpastian harga gain. Metode yang diusulkan kemudian diaplikasikan pada studi kasus kolom distilasi. 
Hasil simulasi lintas tertutup mendukung analisis yang didasarkan pada metode yang diusulkan. Pada kasus yang 
dipelajari, ditunjukkan bahwa untuk suatu derajat ketidakpastian tertentu, kisaran determinan gain tidak boleh mencakup 
titik nol untuk menjamin keberhasilan perhitungan. Untuk kasus sistem distilasi yang dipelajari, harga maksimum 
ketidakpastian, α adalah 0.339 untuk menghindari singularitas matrix K (gain). 
 
Keywords: distillation control, relative disturbance gain array, relative gain array 
 
 
 
1. Introduction  
 
With a given set of controlled and manipulated 
variables, controllability analysis can be performed to 
the system for selecting control configuration [1]. A 
system is said to be controllable if the controlled 
variables can be maintained at their set points in steady 
states, in spite of disturbances entering the systems. For 
a square system, a system is controllable if the 
determinant of the gain matrix is non-zero. 
 
Decentralized (multi-loop) control relies heavily on 
steady state tools such as the relative gain array (RGA) 

[2], Niederlinski Index (NI) [3], relative disturbance 
gain (RDG) and relative normalized gain array (RNGA) 
[4-5]. RGA has found widespread acceptance both in 
academia and industry since its introduction over 40 
years ago, particularly after the improvement on closed 
loop stability considerations using NI as a stability 
criteria. The RGA–NI rule for decentralized control are 
summarized as follows [6]: a) The original RGA offers 
an interaction rule by its size (the paired RGA elements 
should be the closest to 1 and large RGA elements 
should be avoided), b) The NI provides a necessary 
stability condition by its sign (avoid pairings with 
negative NI), c) The signs of the RGA elements lead to 



MAKARA, TEKNOLOGI, VOL. 16, NO. 2, NOVEMBER 2012: 135-143 136 

the integrity rules (all the paired RGA elements must be 
positive), d) The sensitivity of the RGA elements to 
gain uncertainties presents the robustness rule. 
 
The popularity of RGA is mainly because of its 
simplicity and confirmed reliability in many case 
studies. However, RGA has been known to have some 
deficiencies, as it does not consider dynamics and 
disturbances. Based on the process and disturbance 
transfer function models, Stanley et al. [4] proposed 
RDG for analyzing the disturbance rejection capability 
in multi-loop control. RDG overcomes one of the 
limitations of RGA by allowing disturbances to be 
included in operability analysis. Chang and Yu extended 
this concept by introducing relative disturbance gain 
array (RDGA) and generalized relative disturbance gain 
array (GRDG) [7]. 
 
Recently, Chen and Seborg [8] presented an analytical 
expression for RGA uncertainty bounds. Two types of 
model uncertainty were considered: worst case bounds, 
where all elements of the steady state process gain matrix 
are allowed to change simultaneously within their 
bounds, and statistical uncertainty bounds. A different 
method by using the structured singular value (μ) 
analysis framework was introduced for the calculation 
of the magnitude of the worst-case relative gain [9].  
 
Agustriyanto and Zhang [10] reported a method for 
calculating uncertainty bounds for relative disturbance 
gain via optimization for the calculation of RDGA range 
under model uncertainties. The model uncertainty type 
considered is worst-case bounds. The lower and upper 
bounds of an RDGA element are calculated as two 
constrained optimization problems. The method seeks 
the minimum (for the lower bound) or maximum (for 
the upper bound) of an RDGA element subject to the 
constraints that allowable model parameters are within 
their uncertainty bounds. RDGA ranges are shown to be 
important for control pairing analysis. In this paper, 
closed loop simulation was then performed to evaluate 
the RDGA analysis. 
 
2. Methods  
 
The RDGA matrix of a non-singular square matrix K 
and a vector disturbance Kd can be determined as 
follows [7]: 
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where diag(.) transforms a vector (.) into a diagonal 
matrix with each element put on the corresponding 
diagonal position, that is, the ith element of a vector (.) is 
put on the iith entry of a matrix. 
 
Each element of RDGA matrix is related to the 
corresponding element of RGA matrix through the 

following relationship: 
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where  ijβ   = element of RDGA matrix 

 ijλ   is the ij th element of the RGA  

  ikK
(

 is the element on the ith row   and kth  

                        column of  1−K  
 
The following equation is the relation between ijth 
element of RGA and steady state gains matrix [11]: 
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In Eq. (3), ijK  is the submatrix that remains after the ith 
row and jth column of K are deleted. 
 
It is obvious that ijβ  is a function of K and Kd, that is  

),( dKKfij =β                      (4) 

 
Assuming that the uncertainty bounds for all steady state 
process and disturbance gains Kij  and Kdi are given, then 
there will be 2(n2+n) constraints for all those gains 
which can be formulated as follows: 

bAX ≤                       (5) 
 
where X is a vector of size (n2+n)×1 containing all 
elements of K and Kd as its elements: 

T
dnKdKnnKKX ]...1...11[= , b is a vector 

of size (2(n2 + n))×1 containing the lower and upper 
bound values of the corresponding elements of X, and A 
is an appropriate matrix of size (2(n2 + n))×(n2 + n) 
satisfying the inequalities in Eq.(5). 
 
Therefore, the lower bound and the upper bound of βij can be formulated as the following respectively: 
 Lower bound:     
 

X
min )(Xfij =β                                             (6) 

 Upper bound:     
  

X
max )(Xfij =β                               (7) 

both subject to the constraints in Eq.(4). 
 
Note that βij cannot be determined if the value of det(K) 
= 0. Furthermore, when det(K) = 0, the process will be 
uncontrollable in that some controlled variables will be 
dependent to each other and will not be able to follow 
independent set point changes. Therefore, in order to use 
the above method and also to ensure the process is 
controllable, the range of det(K) should not include 0. 
The range of det(K) can be considered as a function of 
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all the individual elements of the gain matrix: 
det(K) = g(X)                                (8) 
 
The range of det(K) can be calculated by using the same 
optimization method: 
 Lower bound:          
 

X
min )()det( XgK =                                       (9) 

 Upper bound:          
 

X
max )()det( XgK =                            (10) 

both subject to the same constraints in Eq.(5). 
 
The RDGA matrix in conjunction with the structure 
selection matrix is used to determine the so-called 
GRDG, which is useful for control structure selection. A 
structure selection matrix is an n×n matrix where the ijth 
entry is set equal to 1 if the element is chosen for 
controller pairing or equal to zero if the element is 
ignored. The value of GRDG vector element is simply 
the row wise summation of RDGA with the 
corresponding structure selection matrix. 
 
There are various numerical methods that can be used to 
solve this constrained optimization problem, such as grid 
search, random jumping method, the generalized reduced 
gradient algorithm, etc [12-13]. By using grid search 
optimization, RDGA in Eq.(1) can be evaluated at all 
combination points that are specified between the 
uncertainty bounds of K and Kd in nested loop and hence 
RDGA ranges are determined by sorting out the 
minimum and maximum values of each element from all 
the computed RDGAs. This method requires huge 
number of RDGA calculation, which cannot be avoided. 
By dividing each element of each gain into only 2 equal 
segments (3 nodes) then for 3×3 size of K matrix and 
3×1 Kd matrix, it will require 3(9+3) = 531,441 
calculations. This method generally is not preferred since 
the number of segments/nodes must be increased for 
more precise calculation. Moreover, most plant wide 
control problem involves many control, manipulating 
and disturbance variables, which contribute to the rapid 
increase of the number of calculation. 
 
In random jumping method, random values of each 
element of K and Kd between their bounds are generated 
and the RDGA is evaluated at this point. Calculation is 
performed for large number of random points of K and 
Kd and the RDGA ranges are picked from the total 
results. This method is simple and fairly acceptable for 
this purpose. Other advance optimization techniques 
may require gradient of the function for generating new 
point for iteration. However, the availability of the 
optimizer such as Matlab Optimization Toolbox (e.g. 
fmincon) makes computation become faster and able to 
provide accurate results without bothering about 
derivatives of the function, which is often difficult to 
obtain. The formulated problem can be readily solved in 

this Matlab environment. A satisfactory result can be 
obtained by initiating the optimization from different 
starting point within the bounds if the objective function 
exhibits many local optima. 
 
3. Results and Discussion 
 
In this example we consider the two distillation column 
system for separating benzene, toluene and m-xylene 
[14]. The process transfer function matrix, G(s), and the 
disturbance transfer function matrix, Gd(s), of the Ding 
and Luyben (DL) column are as follows: 
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The process outputs are: 
y1 = composition of benzene from top of column 1 
y2 = composition of toluene from top of column 2 
y3 = composition of m-xylene from bottom of column 2. 
 
The manipulated variables are: 
u1 = heat transfer to reboiler 1 
u2 = reflux rate at column 2 
u3 = heat transfer to reboiler 2 
 
The disturbance variable is: 
d = feed composition type 3 (30%, 40%, 30%) or 4 
(20%, 60%, 20%). 
 
The nominal value of RDGA calculated using Eq.(1) is: 
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13.166.079.0
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RDGA  (13) 

 
Assuming now that the uncertainty bounds for all 
processes and disturbance steady state gain Kij and Kdi 
are given by  

ijKijK ˆα≤Δ  (14) 

diKdiK
)

α≤Δ  (15) 
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Similar to what have been done for the nominal case 
[7], GRDG analysis is performed for the three cases of 
uncertain models. The results are compared to the 
nominal value analysis. The controller structures are 
limited to be of diagonal, block diagonal (bd), and full 
multivariable structures. 
 
The uncertainty ranges for RDGA calculated by random 
jumping method are shown below in Eq.(16–18) for the 
case of α =0.01, 0.1 and 0.25 respectively. 
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As a comparison, Eq. (19-21) below are the results 
computed by using Matlab Optimization Toolbox. It is 
shown that wider ranges can be obtained compared to 
previous results using random jumping method. 
Therefore, the GRDG analysis for uncertain system 
presented in this paper will be based on the RDGA 
results computed by Matlab Optimization Toolbox due 
to its accuracy 
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GRDG analysis for the nominal model (Table 1) shows 
that the block diagonal controller bd [(1,3),2] offers the 
best disturbance rejection capability [7]. Small values of 
GRDG elements are preferable since they reflect the 
ratio of net load effect over the open loop load effect. 
The GRDG values for the three cases of model 
uncertainties are presented in Table 2. 
 
For α = 0.01, it is obvious from Table 2 that the block 
diagonal controller bd [(1,3),2] will be recommended. 
However, as the value of α increased to 0.1 and 0.25, it 
can be predicted that bd [(1,3),2] will be no longer the 
best choice. The performance of this control structure 
may not be as good as the diagonal control structure. 
 
Table 1. GRDG for the Nominal Model of the DL Column 

 

Control Structure GRDG 
Diagonal [1.00 0.41 1.13]T 
bd [(1,2),3] [1.00 0.83 1.13]T 
bd [(1,3),2] [1.00 0.41 0.34]T 
bd [(2,3),1] [1.00 0.58 1.79]T 
Full [1.00 1.00 1.00]T 

 
Table 2. GRDG for Uncertainty Models of the DL Column 

 

Control structure α = 0.01 α = 0.1 α = 0.25 
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Figure 1 shows that the maximum allowable α for this 
system is 0.339 to avoid singularity of matrix K. Closed 
loop simulation was then performed to evaluate the 
control performance. PI controllers were used. For 
tuning purpose, the system is disturbed by the sequence 
of step disturbance as shown in Figure 2 and the 
following set-point changes: y1 set-point was changed 
from 0 to 1 at t = 450 min; y2 set-point was changed 
from 0 to -1 at t = 550 min; y3 set-point was changed 
from 0 to 1 at t =650 min. 
 
The output values are recorded for 1000 min simulation 
time with 1 min sampling time. Table 3 shows the 
controller parameters obtained via optimization for both 
disturbance rejection and set point tracking during the 
specified time by minimizing the sum squared of error 
(SSE). 
 
Simulations were then performed for the arbitrarily 
altered process and disturbance gains (which reflect 
model uncertainties) as follows: 
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The profile of the considered disturbance in simulation 
is similar to that used for tuning purpose (Figure 2) but 
with larger magnitude: ∆d = +5 at t = 50 min; ∆d = +5 at t 
= 150 min; ∆d = -15 at t = 250 min; ∆d = +5 at t = 350 min. 
 
Figure 3 shows the results for three different values of α 
ranging from 0 to 0.25. It is shown that closed loop 
performance deteriorates as the level of model 
uncertainties is increased. For α = 0.339, as shown in 
Figure 4, the control structure bd[(1,3),2] with controller 
parameters obtained based on the nominal model 
obviously fails to achieve the required control objectives. 
 
GRDG analysis for uncertain models indicates that for 
increased values of α (0.1 and 0.25) control structure 
bd[(1,3),2)] may not be the best choice compared to the 
diagonal control structure. In order to verify the above 
analysis, closed loop performance was also investigated 
 
Table 3. Controller Parameters for the Control Structure 

bd[(1,3),2] 
 

Controller Kc Ti 
Gc,11 -1.14 36.55 
Gc,31 0.01 0.29 
Gc,13 -0.09 2.55 
Gc,33 1.19 15.42 
Gc,22 1.18 9.49 
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Figure 1. Range of det(K) vs  α 
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Figure 2. Profile of Disturbance for Controller Tuning 
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Figure 3.  Simulation Results for Example 2, bd[(1,3),2], (y setpoint,           y for α = 0,           y for α = 0.1, ____ y for α = 0.25) 
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Figure 4. Simulation Results for Example 2, bd[(1,3),2], α = 0.339, (          y setpoint, ____ y for α = 0.339) 
 
 
for the diagonal control structure. Table 4 shows the 
controller parameters obtained via optimization for the 
diagonal control structure (y1-u1, y2 – u2, y3 – u3). 
 
Figure 5 shows the simulation results for three different 
values of α (α = 0, 0.1 and 0.25). It can be seen that the 
diagonal control structure with nominal controller 
settings gives better performance than bd[(1,3),2] when 
α = 0.25. The SSE values from the two different control 
structures are presented in Table 5. It is shown that for 
small values of α (α = 0 and 0.01), the control 
performance of bd[(1,3),2] is better than that of the 
diagonal structure, i.e. with lower SSE values. The 
results support the above GRDG analysis that as the 
value of α is increased to 0.1 or 0.25 (Table 4), it 
becomes harder to see that bd[(1,3),2] is the best choice 
or not. 
 
The closed loop performance in term of SSE as 
presented in Table 5 were obtained based on controller 
setting for the nominal process (i.e. α = 0). However, for 
uncertain systems, it is not necessary to find controller 
settings for the nominal model. Table 6 provides 
alternative controller settings for both bd[(1,3),2] and 
diagonal structures obtained based on the altered gains 
in Eq. (22) and Eq. (23) for different values of α. 
Optimization tuning method was used to obtained the 
best performance (minimum SSE) for each case. Each 
set of controller setting was then tested on other values 

Table 4. Controller Parameters for the Diagonal Control 
Structure 

 

Controller Kc Ti 
Gc,11 -1.15 33.32 
Gc,22 1.08 8.53 
Gc,33 1.17 13.29 

 
 
Table 5.  SSE Comparison between bd[(1,3),2)] and the 

Diagonal Control Structure 
 

α bd[(1,3),2] Diagonal 

0 835.75 937.80 
0.01 842.69 939.52 
0.1 977.78 996.70 
0.25 2238.6 1601.10 
0.339 1.8131×106 3314.60 

 
 
of α and their closed loop performances in term of SSE 
are compared in Table 7. The following conditions were 
used for both tuning and simulation purposes: 1) A 
series of step disturbance (∆d) = +1, +1, -3 and +1 at t = 
50, 150, 250 and 350 min respectively, 2) y1 set-point 
was changed from 0 to 1 at t = 450 min, 3) y2 set-point 
was changed from 0 to -1 at t = 550 min, 4) y3 set-point 
was changed from 0 to 1 at t = 650 min, 5) simulation 
time = 1000 min. 
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Figure 5.  Simulation Results for Example 2, Diagonal, α = 0, 0.1 and 0.25, (        y setpoint,          y for α = 0, y for α = 0.1, ⎯ y 
for α = 0.25) 

 
 
Table 6.  Controller Parameters based on Different Values 

of α  
 

α Control 
Structure Controller Kc Ti 

bd[(1,3),2] Gc,11 
Gc,31 
Gc,13 
Gc,33 
Gc,22 

-1.14 
 0.10 
-0.23 
 1.26 
 1.19 

32.01 
1.81 
6.24 

15.17 
8.76 

 

0.01 

diagonal Gc,11 
Gc,22 
Gc,33 

-1.16 
 1.07 
 1.18 

33.65 
8.31 

13.43 
 

bd[(1,3),2] Gc,11 
Gc,31 
Gc,13 
Gc,33 
Gc,22 

-1.20 
2.9896×10-4 

-0.14 
 1.38 
 1.11 

41.09 
 0.01 
 4.37 
15.49 
 7.55 

 

0.1 

diagonal Gc,11 
Gc,22 
Gc,33 

-1.23 
 0.96 
1.30 

37.13 
 6.62 
14.24 

 
bd[(1,3),2] Gc,11 

Gc,31 
Gc,13 
Gc,33 
Gc,22 

-1.14 
0.0011 
-0.19 
 1.62 
 0.82 

33.35 
1 

21 
10.57 
 4.46 

 

0.25 

Diagonal Gc,11 
Gc,22 
Gc,33 

-1.25 
 0.73 
 1.49 

37.42 
 4.25 
10.07 

Table 7.  SSE Comparison for bd[(1,3),2] and Diagonal 
Control Structures for Different Controller Settings 

 

α as controller 
setting basis 

α for closed loop 
performance test 

bd[(1,3),2] 
SSE 

diagonal
SSE 

0.01 0 
0.01 
0.1 

0.25 
0.339 

32.85 
33.09 
38.05 

116.39 
12327 

37.41 
37.46 
39.50 
60.53 

134.98 
 

0.1 0 
0.01 
0.1 

0.25 
0.339 

34.81 
34.79 
36.81 
73.24 

474.71 

38.22 
38.12 
38.94 
56.75 

126.30 
 

0.25 0 
0.01 
0.1 

0.25 
0.339 

82.04 
74.20 
45.87 
50.90 
94.82 

72.74 
66.34 
45.04 
51.53 
94.66 

 
 
Closed loop performance comparison presented in Table 
7 can be summarized as the following: 1) For controller 
parameters obtained based on the altered gains at α = 
0.01, similar closed loop performance as that using 
nominal model based settings were obtained. On these 
settings, bd[(1,3),2] gives better performance (smaller 
SSE values) when tested on low α values (0, 0.01 and 
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0.1) while the diagonal control structure gives better 
performance on other α values; 2) Controller parameters 
based on α = 0.1 also show that bd[(1,3),2] was better 
when the system is tested on α =0,  0.01 and 0.1 for the 
specified altered process; 3) By using controller 
parameters obtained based on α = 0.25, the closed loop 
performance shows that the diagonal control structure 
was better for all cases; 4) Both bd[(1,3),2] and diagonal 
control structures give relatively similar SSE values 
when tested on α = 0.1. This evidence support the 
GRDG prediction that as the value of α increased to 0.1 
and 0.25, it becomes harder to see that bd[(1,3),2] is the 
best choice or not. 
 
4.  Conclusions 
 
This paper discusses an alternative method for 
determining worst case lower and upper bounds RDGA 
ranges for uncertain process models. Constrained 
optimization is used to find the uncertain RDGA ranges. 
The proposed method is applied to the ternary 
distillation column. It is shown that the proposed 
method is easy to use and gives accurate results. Closed 
loop simulation results confirm the analysis based on 
the proposed method. 
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