
MAKARA, TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 68-74 
 

 

68

ARE IEEE 754 32-BIT AND 64-BIT BINARY FLOATING-POINT 
ACCURATE ENOUGH? 

 
Bernaridho Hutabarat1,2*), I Ketut Eddy Purnama1, Mochamad Hariadi1, and Mauridhi Hery Purnomo1 

 
1. Department of Electrical Engineering, Faculty of Industrial Engineering, Institut Teknologi Sepuluh Nopember, 

Sukolilo, Surabaya 60111, Indonesia 
2. Department of Informatics Engineering, Ma Chung University, Malang 65151, Indonesia 

 
*)E-mail: bernaridho.hutabarat@machung.ac.id 

 
 

Abstract 
 

This paper describes a research toward the accuracy of floating-point values, and effort to reveal the real accuracy. The 
methods used in this research paper are assignment of values, assignment of value of arithmetic expressions, and output 
the values using floating-point value format that helps reveal the accuracy. The programming-tool used are Visual C# 9, 
Visual C++ 9, Java 5, and Visual BASIC 9. These tools run on top of Intel 80 x 86 hardware. The results show that 
1*10-x cannot be accurately represented, and the approximate accuracy ranges only from 7 to 16 decimal digits. 

 
Keywords: accuracy, binary, floating-point, IEEE 754 
 
 
 
1. Introduction 
 
IEEE 754 [1] is a standard for floating-point processed 
inside computer hardware. It defines a set of floating-
point types.  The two most common types are 32-bit and 
64-bit binary floating-point, called single-precision and 
double-precision respectively.  
 
The standard does not elaborate the method of 
converting the binary floating-point value into the 
decimal ones, nor does it explain how to convert 
decimal fraction (or decimal floating-point) into binary 
floating-point. For example: the value of π (3.14159) 
represented in binary fraction as 40490FD0 and 
400921F9F01B866E, in 32-bit and 64-bit binary 
floating-point, respectively. IEEE standard [1] does not 
elaborate how to obtain the result. 
 
Users or programmers never enter or write binary 
floating-point in the source-code. They will write in 
terms of (perceived) decimal floating-point.  
 
While the conversion of binary floating-point into 
decimal fraction are almost always accurate and easy, 
the conversion from the other direction will almost 
always be inaccurate and difficult. The initial example 
will prove this claim, when we display the value 0.1. 
 
Many users, programmers, and lecturers are not aware 
of the inaccuracy. While the inaccuracy is harmless in 
‘toy programs', the inaccuracy can cause severe 

problems and even catastrophic consequences in critical 
application programs like the explosion of Ariane 5 
rocket in 1996 [1].  
 
As Goldberg [2] puts it, there are only few books on the 
subject. Floating-point is touched very briefly in 
textbooks like [3-4]. Recently, some literatures are 
written to fill this gap [5-7]. 
 
It is to raise awareness and understanding of the IEEE 
754 32-bit and 64-bit floating-point in accuracy (lacking 
in manuals like [8-9], and in standards like [10-11] that 
this paper is written. In addition, this paper shows 
simple ways to prove the inaccuracy.  
 
This paper contribution is twofold: 1) Algorithm to 
convert binary fraction into decimal fraction; 2) Method 
to determine upper limit of accuracy within a binary 
floating-point format. 
 
Binary floating-point cannot accurately represent 
decimal fraction. More specifically we hypothesize that: 
1) No guarantee of accuracy for integral values >224 for 
single-precision, and integral values >253 for double-
precision; 2) Single-precision accuracy >10-38 and 
<10+38; 3) Double-precision accuracy >10-307 and 
<10+307. All those hypotheses will be put to the test. 
 
Our hypothesis further state that the factors determining 
the accuracy of binary floating points are: 1) The width 
of fraction digits; 2) The presence and usage of large 

68



MAKARA, TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 68-74 

 

69

unsigned integral registers; 3) The sophistication of 
conversion algorithm. 
 
IEEE binary floating-point format specifies three parts: 
sign-bit, power-bits, and fraction-bits (IEEE 754-1985). 
The sign-bit always occupies 1 bit only. The number of 
power-bits and fraction-bits vary. Single-precision has 8 
power bits, double-precision has 11. Single-precision 
has 23 fraction bits, double-precision has 52 fraction 
bits [12-15] (Figure 1). 
 
Single precision binary floating-point format uses 32-bit 
data format, while the double-precision uses 64-bit data 
format. The value of an object of binary floating-point is 
computed as follows (Formula 1): 
 

(-1)sign× 2Power× Fraction                             (1) 
 
IEEE 754-2008 calls the fraction as significand. It is 
‘significand’ because it is significant in determining the 
accuracy for both integral values and floating-point 
values. Programming books (like [8-9]) often write ‘7-8 
significand digits’ and ’15-16’ significand digits’. The 
former refers to 32-bit, while the latter refers to 64-bit 
binary floating-point. We still use the term fraction to 
ease the discussion about accuracy of decimal fraction. 
 
The value on the rightmost column can be derived from 
signicand * log10(2). It is the significant (decimal) digits 
that the programmers must rely on stating the accuracy 
of their programs. 
 
2. Methods 
 
There are two methods to test the several hypothesis. 
The first is to check the assigned value (no arithmetic). 
The second is to check the result of computation, using 
arithmetic operators. 
 
The first methodology consists of these steps: 1) Assign 
some perceived decimal fraction value into floating-
point variables; 2) Output the value using various 
formats; 3) Check the accuracy of output values. 
 

 
 

Figure 1. Single-precision (upper) and Double-precision 
(Lower) 

 
 

Table 1. Significand and Significant 
 

 Significand 
(binary digit) 

Significant 
(decimal digit) 

32-bit 23 7-8 
64-bit 52 15-16 

The second methodology consists of these steps: 
1) Assign some perceived decimal fraction value into 
two floating-point variables; 2) Operate the two 
floating-point variables; 3) Assign the returned-value of 
the operator into another variable; 4) Note the value 
using various formats; 5) Assign the integral version of 
the input values into two integral variables; 6) Operate 
the two integral variables; 7) Note the output value; 8) 
Compare the output values of floating-point version 
with the output values of integral version. 
 
We choose values that represent some patterns to make 
the cases interesting. 
 
Representative languages and tools. In this paper we 
choose several programming-languages to write 
examples: BASIC, C#, C++, and Java. We use Visual 
C# 9 (2008), Visual C++ 9 (2008), Visual BASIC 9 
(2008), and NetBeans 6. 
 
Those programming languages were chosen due to their 
popularity. Besides the popularity, the free-license 
software equivalent are available. MONO free software 
organization and community has made code-translator 
for C# and BASIC available on top of Linux Operating 
System. This availability means that the researchers 
interrested in proving the result of this research can 
perform the tests in cost effective way. 
 
Hypothesized register and conversion of binary 
floating-point. Converting a binary floating-point value 
to string value is a complex process. The hardware does 
not literally represent 0.510 or 0.2510. Neither does the 
hardware literally represent 0.12 or 0.012. Hardware 
cannot literally represent the values like in Figure 2. 
 
Binary floating-point with x fraction bits require 
integralregisters capable of 10x [7,16]. Value 0.12 
requires 101 to represent it accurately, i.e., 0.510. Value 
0.012 requires 102 to represent it accurately, i.e., 0.2510. 
In the latter example, if integral registers cannot 
represent 102, then we cannot represent 0.2510 (and thus, 
cannot represent 0.012) accurately. 
 
The hardware first compute 10x. Then the hardware 
computes the x fraction bits as if they are integral values 
[2,14,17-18]. The decimal fraction is gained by integral 
division, with the former divided by the latter. The 
result of integral division is stored in long unsigned 
integral register (see Formula 1). Formula 2 exemplifies 
the case for x = 3. 
 

 
(2) 

 

 
(3) 

103

23
b3

102 
22+ b2

101 
21 

+ b1 

   1 
 ∑ bi

i = x 

   10i 
2i 

1      8                   23 

1       11                                     52 



MAKARA, TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 68-74 
 

 

70

Using the example value, 0.0012 is now processed as 
10002, but is not evaluated to 8. It is evaluated as 1* 
(103/23) + 0*(102/22) + 0*(101/21), result in 125. 
 
Finally that integral value is divided by 10x [18]. In our 
example, the 125 is divided by 103, the final result is 
0.12510. The last bit (20) is never computed. Thus, the 
decimal fraction as the result of simplified conversion is 
computed using the formula depicted in Formula 3. 

 

 
10x 

(4) 

 
Limit of conversion The size of unsigned integral 
registers determines the limit of conversion. The Pre-
Pentium mainboard of Intel 80 x 86 provide 80-bit 
registers, which limit the conversion to 1024 (≈280). The 
first step of conversion with those regiters is formulated 
in Formula 3. 

 

 
(5) 

 
The Pentium main boards and later version provide 128-
bit registers, which raises the conversion limit to 1038 
(≈2128). With these registers, the first step of conversion 
is depicted in Formula 5. 

 

 
(6) 

 
All the limits related to both formulas assume the 
absence of sophisticated algorithms conversion. The 
series show the importance of width of unsigned 
integral registers to gain accuracy of decimal fraction 
produced from binary floating-point. On the next 
section the experiments and their results are detailed. 
 
First set: boundary integral values. In the first set of 
experiments, we want to prove theory that accuracy is 
not guaranteed: 1) For single-precision in representing 
integral value >224 (≥16777217); 2) For single-precision 
in representing integral value >253 (≥9007199254740993). 
 
Second set: value of 10 power –n. In the second set of 
experiments, we want to prove the theory that 1 * 10-n 
with n>0 cannot be represented accurately by single-
precision or double-precision object. Note that values 
like 0.5, 0.4 or anything else are not qualified, since 
they are not 1 * 10-n. These tests are intended to prove 
the inequality depicted in Formula 7. 
 

     
 

Figure 2. Fraction Values cannot be Literally Represented 

 

 
(7) 

 
Third set: multiply the first pair of floating-point 
values. On this experiment, we multiply two single-
precision values with designed accuracy of 8 decimal 
fraction (0.12345678 and 0.87654321), and assign the 
result into a single-precision floating-point object.  
These tests are to prove that single-precision object 
cannot accurately represent decimal fraction down to 
10-38 as implicitly suggested by programming books 
(e.g., [8-9]). 
 
Fourth set: multiply the second pair of floating-point 
values. These experiments are similar to the previous 
set, but the input output are of double-precision. These 
tests are to prove that while using double-precision 
object may improve accuracy, a claim that double-
precision object can hold decimal fraction down to  
10-308 is a false one. 
 
Fifth set: multiply the third pair of floating-point 
values. These experiments are similar to the previous 
set but the multiplicand and multiplier are multiplied by 
0.01. We want to observe the effect of shifting a value 
by decimal fraction (10-x, x>0). We choose the case 
where x = 2.  
 
Coloring. To help the readers focusing on important 
things within the result of experiment, we use coloring. 
Inaccurate values or results are yellow-colored 
(highlighted with low-intensity color). Desired or 
accurate values are green-colored (highlighted with 
high-intensity color). 
 
The sample values are chosen in such a way that their 
integral equivalent (e.g., 12345678 * 87654321) can be 
computed using common Intel 80x86 hardware. 
 
3. Results and Discussion 
 
Theoretical upper bound. All the research papers 
consulted in this research [5,19-21]. [3-4,14-15,18,21-
24,28-29] did not provide direct relationship between 
the width of fraction and the width of available 
unsigned registers in determining the upper bound of 
accuracy of decimal fraction computed within binary 
floating-point. We establish the direct relation-ships 
between y fraction bits and z bit of unsigned integral 
registers in the statement (8) and (9) below: 
y fraction-bits requires [11.03521 bits to 
accurately represent the value in decimal fraction (8) 

z bits unsigned integral registers can accurately 

represent  decimal fractions without 
sophisticated algorithm 

(9) ⎣
z

11.035

 10i

 2i 
∑ bi 

1 
i=x 

   n 
  ∑ 2-n ≠ 10-x 
 i: = 1 

1038 
238 

b38 102 
22 

+ b2 101 
21 

+ b1 

1024 
224 

b24 102 
22 

+ b2 101 
21 

+ b1 

0.0012 0.0120.12 



MAKARA, TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 68-74 

 

71

Accurate representation of up to x decimal 
fraction (10-x, x >0) requires ⎡11.03521 bits 
unsigned integral registers 

(10) 

 
Following (3), 2 -y fraction requires unsigned integral 
registers capable of representing unsigned integral value 
of 10y-2

log = 10y * 3.321928095, or 10 3.3219 * y, approximately. 
In turn, the width of unsigned integral value is log2 
(103.3219 * y). Since 10 is 2 3.3219 we can rewrite log2 
(103.3219 * y) as log2 (23.3219 * 3.3219 * y). That brings us to the 
conclusion that to represent 2 yfraction accurately as 
decimal fraction requires 3.321922 * ybit, or 11.03521 y. 
 
On the reverse direction z bit unsigned integral register 

will be capable of representing  decimal-digits 
fraction accurately without sophisticated algorithm. The 
statement (9) is the logical consequence of statement 
(8). For example, the 128-bit unsigned integral registers 
will be capable of accurately representing 11 decimal 
fraction.  
 
The requirements can still be perceived from another 
direction: the required decimal accuracy. Suppose we 
want x decimal fraction accuracy. The size of required 
unsigned integral register is ⎡x * 11.0352. If we want 12 
decimal fraction accuracy we need 133 bits unsigned 
integral registers. This is only possible if the 128-bit 
unsigned integral registers are present and they are 
equipped with 5 extra/guard bits [3]. 
 
The measures in statements (8) and (9) justify the 
inaccuracy the result of sample computations in this 
paper. For example, to accurately representing 16 
decimal fraction we need 177 bits according to 
statement (10). Since the tested hardware does not have 
177 bits, normally the result will be inaccurate. 
 
The measure written in the statements (8)-(10) are the 
yardstick in measuring the effectiveness of algorithms 
to improve the decimal fraction accuracy. Those 
measure are absent in all research papers consulted in 
this research. 
 
The methods in this paper are simple enough to carry 
out to prove that the accuracy of binary floating-point 
does not meet the claims in the programming books  
[8-9] and standards [10-11]. We recommend the authors 
and standard committees to correct the claim of floating-
point accuracy in the programming books and standard. 
 
First set: boundary integral values. The results in 
Table 2 show that all programming tools produce 
inaccurrate values for any integral value >224. The 
highlighted values confirm our hypothesis that the 
integral value representation of single-precision is no 
longer guaranteed to be accurate when the value >224. 

Table 2. Results and Inaccuracies of Single-precision 
Floating-point 

 

Language Assigned value Displayed value 
BASIC 16777216.0 16777220.0 
BASIC 16777217.0 16777220.0 
C# 16777216.0 16777220.0 
C# 16777217.0 16777220.0 
C++ 16777216.0 16777216.0 
C++ 16777217.0 16777216.0 
Java 16777216.0 16777216.0 
Java 16777217.0 16777216.0 
 
 
Table 3. Results and Inaccuracies of Double-precision 

Floating-point 
 

Language Assigned value Displayed value 
BASIC 9007199254740992.0 9007199254740990.0
BASIC 9007199254740993.0 9007199254740990.0
C# 9007199254740992.0 9007199254740990.0
C# 9007199254740993.0 9007199254740990.0
C++ 9007199254740992.0 9007199254740992.0
C++ 9007199254740993.0 9007199254740992.0
Java 9007199254740992.0 9007199254740992.0
Java 9007199254740993.0 9007199254740992.0
 
 
Table 4. Value from Simple Assignment: Single-precision 

 

Language 0.1 0.01 
Visual BASIC 0.100000000000 0.0100000000 
Visual C# 0.100000000000 0.0100000000 
Visual C++ 0.100000000015 0.0099999998 
Java 0.100000000015 0.0099999998 
 
 
Table 3 show that all programming tools produce 
inaccurrate results for any integral value >253 using 
double-precision floating-point. Inaccurate values or 
results are yellow-coloured (highlighted with low-
intensity colour). Desired or accurate values are green 
coloured (highlighted with high-intensity colour). 
 
Second set: assigning 0.1 and 0.01. On these 
experiments, values 0.1 and 0.01 are assigned to single-
precision object. The values are then displayed using 10 
decimal-fraction format. 
 
The results in Table 4 show Java and Visual C++ 
display inaccurate values, with error rate 1.5-10 (1.5-11/ 
10-1) for displaying 0.110. Java and Visual C++ display 
inaccurate values with higher error rate (2-10) in 
displaying the decimal value 0.0110. 
 
Third set: assigning 0.1 and 0.01. On this experiment, 
we multiply two single-precision values (0.12345678 
and 0.87654321), and assign the result into a single-
precision floating-point object. The desired (accurate) 

⎣ 
z 

11.035 



MAKARA, TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 68-74 
 

 

72

value is written in the last row of Table 5. Table 5 show 
that all programming tools display inaccurate values, 
with C++ and Java producing the values that are nearest 
to accurate one. 
 
Fourth set: multiply the second pair of floting-point 
values. On these experiments we multiply two double-
precision values (0.12345678 and 0.87654321), and 
assign the result into a double-precision floating-point 
object.  
 
Compared with Table 5, Table 6 show that using 
double-precision does improve the accuracy. But binary 
floating-point still introduce difficulty for programmers 
that created C++ and Java programming tools, since 
both tools produce inaccurate values. 
 
Fifth set: multiply the third pair of floating-point 
values. In these experiments the multiplicands and 
multipliersof the previous experiments are multiplied by 
0.01. For the unaware programmers, the previous 
experiment may bring hope that the accuracy of double-
precision can reach 10-307 (since accuracy down to 10-16 
seem to be achievable). 
 
Table 7 lists the result of multiplying 1.2345678E-3 
with 8.7654321E-3. Only Visual C++ produces result 
that is still accurate. The error percentage for Visual 
BASIC and C# is small:1.84816916537407E-13%.  
 
Theoretically, the expected accuracy is mostly 10-16. But 
all programming tools exceed the theoretical limit.  
 

Table 5. Value from Multiplication: Single-precision 
 

BASIC:   0.108215205000000000 
C# 0.108215205000000000 
C++ 0.108215205371379900 
Java: 0.108215205371379900 
Actual: 0.108215202237463800 
 
 

Table 6. Value from Multiplication: Double-precision 
 

BASIC:   0.1082152022374640 
C# 0.1082152070974710 
C++ 0.1082152022374638 
Java: 0.1082152022374638 
Actual: 0.1082152022374638 
 
 

Table 7. Result of the Final Experiment 
 

BASIC:   0.0000001082152022374640 
C# 0.0000001082152022374640 
C++ 0.0000001082152022374638 
Java: 0.0000001082152022374600 
Actual: 0.0000001082152022374638 
 

Retrospection. All programming tools fail to produce 
accurate integral values when the integral value >2n+1 
with n represents (width of) significand. Thus, the 
accurate integral values representable by binary floating 
are not very large. 
 
Some programming tools (Visual C# and Visual 
BASIC) seem to be able to represent 10-x accurately. 
Theoretically this is impossible (see Formula 11). 

 

 
(11) 

 
A possible explanation for the seemingly accurate 
values of 10-x shown by Visual BASIC and Visual C# 
are the sophistication of conversion algorithm. The 
code-translator takes the input string-value, performs 
the conversion (with truncation and rounding), and 
knows how to give the perception to the users. 
 
The explanation can be used to explain the 
phoneomenon in the third experiment. In dealing with 
more complicated values resulting from the expression 
containing artihmetic operator-call (like 0.12345678 * 
0.87654321), BASIC and C# produce inaccurate values. 
If the accuracy of 10-xis real, the result of multiplication 
should be accurate down to x decimal fraction. 
 
The inaccuracy is also evident at the fourth 
experiement. Both Visual BASIC and Visual C# – that 
previously give the impression of capable of accurately 
representing decimal fraction 1 * 10-x – fail to produce 
accurate values, compared to other programming tools. 
On the other hand, Java and Visual C++ prove that the 
theoretical limit of 10-16 (for double-precision) is 
achievable.  Both can display the result accurately up to 
16 decimal fraction. 
 
The results as in Table 7 are worth explaining. 
Theoretically the maximum precision is up to 16 
decimal digits, but all programming tools surpass that 
limit. The possible factor is the presence of large 
unsigned registers. If the 80-bit or 128-bit unsigned 
integral registers are unavailable, the results in Table 7 
cannot be achieved. 
 
Large unsigned integral registers, however, is not the 
only factor. The width of significand also determines 
the accuracy. When the result of multiplying two single-
precision binary floating point objects (values 
0.12345678 and 0.87654321) is assigned to single-
precision object, the results from all sample 
programming tools are not accurate, even when 128-bit 
unsigned integral registers are available. This 
inaccuracy is due to the limit of 32-bit floating-point 
accuracy to 2-24 (and therefore 10-8). 

   n 
  ∑ 2-n ≠ 10-x 
 i: = 1 



MAKARA, TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 68-74 

 

73

 
Figure 3. Factors Determining the Real Decimal Accuracy 
 
 
Finally, Table 7 shows shifting the decimal value to 10-x 
(x>0) decreases the accuracy. Because 10-1 cannot be 
accurately represented, multiplying a floating-point 
value by 10-x decreases the accuracy. The factors 
determining the accuracy is pictured in Figure 3. 
 
4. Conclusion 
 
The single-precision 32-bit and double-precision 64-bit 
IEEE 754 binary floating-point cannot accurately 
represent decimal fraction 10-x since no binary fraction 
is exactly equivalent to 10-x. The accuracy of integral 
value for single-precision is limited to–(224) .+(224), 
while for the double-precision it is limited to –(253).+ 
(253).Converting binary floating-point to decimal 
fraction requires large integral registers (≥ 80 bit), with 
the basics of conversion algorithm for significand is 
depicted in this paper. The perceived accurate values of 
10-x are due to the conversion algorithm. The 
contribution of this research is an algorithm to convert 
binary fraction into decimal fraction, and the method to 
determine upper limit of accuracy of a binary floating-
point format given the width of unsigned integral 
register. This relationship is not found in all the works 
listed in the references of this paper. Setting aside the 
factor of algorithm’s sophistication, the width of 
fraction is the primary factor, followed by the size of 
used large unsigned integral register. This research is 
limited to the conversion of binary fraction into decimal 
fraction, the inaccuracy of integral value representation, 
and the inaccuracy of result of simple arithmetic. The 
tested hardware is limited to Intel processor, and the 
software is limited to C#, C++, Java, and BASIC 
programming tool. Further research may look into the 
accuracy of computation using natural and decimal 
logarithm. Natural logarithms play vital role for many 
scientific computations.  
 
References 
 
[1] W. Kahan, Intel and Floating Point, 2008, in 

www.intel.com/standards/floatingpoint.pdf. 
[2] D. Goldberg, ACM Computing Surveys 23/1 

(1991) 5. 
[3] W. Stalling, Computer Organization and 

Architecture, 7th ed, Pearson Education, 2006, 
p.750. 

[4] A.S. Tanenbaum, Structured Computer 
Organization, 5th ed, Pearson Prentice Hall, 
Boston, 2006, p.777. 

[5]  W.D. Clinger, Conference on Programming 
Language Design and Implementation, Utah, USA, 
2003, p.360. 

[6] M.F. Cowlishaw, Proceedings 16th IEEE Symp. 
Comput. Arithmetic. Washington DC, USA, 2003, 
p.104. 

[7] J.J. Fernández, I. Garc´ıa, E.M. Garzón, Future 
Generation Computer Systems, Elsevier, 19/8 
(2003) 1321.  

[8] H.M. Deitel, P.J. Deitel, Visual BASIC 2008  How 
To Program, Pearson Education, New Jersey, 
2009, p.1452. 

[9] P.J. Deitel, H.M. Deitel, Java: How to Program, 5th 
Edition, Pearson, New Jersey, 2006, p.1546. 

[10] ECMA International, Standard ECMA-334 C# 
Language Specification, 4th ed, ECMA 
International, Geneva, 2006, p.553. 

[11] ECMA International, Standard ECMA-335 C# 
Common Language Infrastructure, 4th ed, ECMA 
International, Geneva, 2006, p.558. 

[12] M. Cornea, 19th IEEE International Symposium on 
Computer Arithmetic, Portland, Oregon, USA, 
2009, p.225. 

[13] IEEE, IEEE 754 Standard for Floating-Point 
Arithmetic, IEEE Xplore Digital Library,  
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumb
er=4610935, 2008. 

[14]  K. Karuri, R. Leupers, G. Ascheid, H. Meyr, M. 
Kedia, Proceeding of Conference on Design, 
European Design and Automation Association 
3001 Leuven, Belgium, Belgium, 2006, p.221. 

[15]  A.P. Stamatakis, H. Meier, T. Ludwig, 
Proceedings of 18th IEEE/ACM International 
Parallel/Distributed Processing, New York, USA, 
2004, p.456. 

[16] M.A. Erle, M.J. Schulte, B.J. Hickmann, IEEE 
Symposium on Computer Arithmetic, Montpellier, 
France, 2007, p.46-55. 

[17] M. Cornea, C. Anderson, J. Harrison, P. Tang, E. 
Schneider, E. Gvozdev, C. Tsen. Proceedings of 
the 18th IEEE Symposium on Computer 
Arithmetic, Montpellier, France, 2007, p.29. 

[18] T. Lang, A. Nannarelli, IEEE Trans. Comput. 56/6 
(2007) 727. 

[19] M. Burtscher, P. Ratanaworabhan. IEEE Trans. 
Comput. 58/1 (2009) 18. 

[20] S. Graillat, V. Ménissier-Morain, Proceedings of 
the 21st International Symposium on Nonlinear 
Theory and its Applications, Vancouver, Canada, 
2007, p.341. 

[21] M. Hiromoto, H. Ochi, Y. Nakamura, IPSJ 
Transactions on System LSI Design Methodology, 
Information and Media Technologies 4/2 (2009) 
250. 

[22] A. Kaivani, A.Z. Alhosseini, S. Gorgin, M. Fazlali, 

Presence and usage of 
large integral register 

Width offraction 

Sophistication 
of algorithm 

Accuracy



MAKARA, TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 68-74 
 

 

74

Proceeding of the 9th International Conference on 
Information Technology, IEEE Computer Society, 
Washington DC, USA, 2006, p.273. 

[23] G.R. Morris, V.K. Prasanna, Proceedings of the 9th 
Annual High Performance Embedded Computing 
Workshop, Lexington, USA, 2005, p.420. 

[24]  S. Oishi, K. Tanabe, T. Ogita, S.M. Rump, J. 
Comput. Appl. Math. 205/1 (2007) 533. 

[25] S.M. Rump, P. Zimmermann, S. Boldo, G. 
Melquiond, BIT Numerical Mathematics 49/2 
(2009) 419.  

[26] H.B. Shah, C. Gorg, M.J. Harrold, IEEE 
Transactions on Software Engineering, IEEE 
Computer Society Digital Library, 2010, p.150. 

DOI:http://doi.ieeecomputersociety.org/10.1109/T
SE.2010.7. 

[27] C. Tsen, M.J. Schulte, S.G. Navarro, Proceedings 
of the IEEE International Conference on 
Application-Specific Systems, Architecture, and 
Processors, Montreal, Canada, 2007, p.115. 

[28] C. Tsen, M.J. Schulte, S.G. Navarro, Proceedings 
of the 25th IEEE International Conference on 
Computer Design, Lake Tahoe, CA, 2007, p.288. 

[29] C. Tsen, S.G. Navarro, M. Schulte, B. Hickmann, 
K. Compton, Proceedings 20th IEEE International 
Conference on Application-Specific Systems, 
Architectures and Processors, Boston, USA, 2009, 
p.8. 

 


