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Abstract 
 

In this study, the limiting maximum drag reduction asymptote for the moment coefficient of an enclosed rotating disk 
with fine spiral grooves in turbulent flow region were obtained analytically. Analysis which were based on an 
assumption for a simple parabolic velocity distribution of turbulent pipe flow to represent relative tangential velocity, 
was carried out using momentum integral equations of the boundary layer. For a certain K- parameter the moment 
coefficient results agree well with experimental results for maximum drag reduction in an enclosed rotating disk with 
fine spiral grooves and drag reduction ratio approximately was 15 %. Additionally, the experimental results for drag 
reduction on a rotating disk can be explained well with the analytical results. 
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1. Introduction 
 
The awareness of energy consumption in 21st century 
promotes innovative studies in various engineering 
fields. One of the studies is efficiency improvement by 
minimizing energy loss due to wall skin friction by 
means of reducing laminar shear stress, delaying 
transition or by controlling turbulent, which is a major 
fundamental issue to be solved in the field of fluid flow. 
To enable reducing energy loss due to wall skin friction 
by those techniques, attempts are being made mainly in 
North America, Europe and East Asia to understand the 
phenomena of skin friction drag reduction. 
 
The problem of disk flows has occupied a central 
position in the field of fluid mechanics in recent years. 
Disk flows have immediate technical applications 
(rotating machinery, lubrications, viscometry, heat and 
mass exchangers, biomechanics, oceanography), but 
quite apart from their intrinsic interest. Relevant 
previous research concerned itself almost entirely with 
infinite-disk flows. The sole reason for this, one suspect, 
is that similarity transformation, available when the 
disks are infinite, reduces the number of spatial 
dimensions of the problem to one. Although it is 
questionable whether the reduced model approximates 
to the physical problem of flow between finite disks, the 
nonlinear ordinary differential equations that define the 

phenomenon have been the subject of intense analytical 
and numerical probing. In spite of this, the nature of the 
basic flow is not well understood and the researchers of 
infinite disk flows are responsible for one of the long 
standing controversies of fluid mechanics, which 
concerns the uniqueness of the basic motion. 
 
It is well known that the problem of reducing energy 
loss due to skin friction can be analyzed by several 
different passive techniques, such as polymer additions, 
surfactant (surface active agent), and compliant walls 
(highly water repellent), riblets (streamwise 
microgrooves), and large-eddy breakup devices 
(LEBUs). From the point of view of the fluid 
characteristic, the drag reduction can be achieved by 
using the Tom’s effect [1], which is to dissolve a high 
molecular polymer in a liquid. In general, one of a 
weakness of this technique is that the additives cannot 
be added continuously when the fluid equipment is 
under operation. Consequently, the effort to reduce drag 
by using another technique, that is, to modify the 
condition of the surface in a solid body, constitutes an 
attractive subject for research. Some researchers have 
studied the use of this technique, namely: with highly 
water repellent wall coatings [2,3], LEBUs [4] and 
riblets [5]. The use of water repellent is sufficiently 
effective for reducing drag in the laminar region, 
however, if it is subjected to a shearing stress in the long 
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period the effect will fade, and this will reduce the 
resistance of that water repellent. Because of that, for 
using the modification the condition of the surface in a 
solid body, it is proposed that a good surface should be 
employed which has better durability and resistance 
characteristics. Surface mounted fine grooves aligned 
with the local flow direction of the boundary layer have 
been most successful in reducing the net drag of 
turbulent boundary layers in spite of a substantial 
increase in the wetted surface area.  
 
Regarding to a previous study by some researchers that 
drag reduction occurred in longitudinal microgrooves 
surface, it is inferred that skin fiction drag also can be 
reduced in a flow induced by rotating disk in transition 
laminar to turbulent and turbulent region. Prediction of 
that condition will happen if a flow angle is alignment 
with curve angle of groove, geometry of groove is of the 
same order of the height (thickness) of a viscous sub-
layer and a structural scale of a turbulence wall streak.  
 
A new geometrical modification on a disk surface with 
certain geometry and grooves which is expected to 
produce a drag reduction effect in an enclosed rotating 
disk was proposed, based on the idea that a flow can be 
controlled by grooves in the disk surface. To look 
whether the drag reduction is occurred or not, study was 
performed experimentally by measuring total skin friction 
moment, the results showed that in transition region for 
Reynolds number 3.3 x 105< Re< 4 x 105 occur the 
maximum drag reduction ratio at about 15 % [6]. 
 
In practical applications it is necessary to estimate the 
minimum moment coefficient of a rotating disk in a 
drag-reducing in an enclosed rotating disk.  The 
analytical method can be used to obtain the minimum 
values of frictional resistance of a rotating disk by using 
momentum integral equation in boundary layer. If the 
velocity profile in pipe flow can be used to obtain the 
moment coefficient of a rotating disk with maximum 
drag reduction, the results using the momentum integral 
equations for a boundary layer on a rotating disk can be 
used to estimate limiting maximum drag reduction 
asymptote for the moment coefficient of an enclosed 
rotating disk with fine spiral grooves 
 
The experimental torque measurement and flow 
visualization results were used to confirm the validity of 
the analytical results, and the experimental results for 
the moment coefficient for maximum drag reduction 
and the flow pattern could be explained well by the 
analytical results. 
 
2. Analysis 
 
Figure 1 shows the flow model used in the analysis.  
The disk is rotated at a constant angular velocity (ω) in a 
fluid of infinite extent, and there is a boundary layer on 

the rotating disk surface. The fluid in the boundary layer 
on the surface of rotating disk will induce or thrown 
outwards due to the viscosity force. If  r , θ and z are 
cylindrical polar coordinates, ur  and uθ are the velocity 
components of the fluid in the directions of  r and θ , 
where τr and  τθ are shearing stress components at the 
surface, δ is the boundary layer thickness, and ρ is the 
fluid density and the axial velocity component is 
neglected, then the momentum integral equations of the 
boundary layer on the rotating disk are: 
 
 
                    (1)
  
 
   
 
                    (2)
       
 
Fig. 2 shows flow model in a enclosed rotating disk 
with two separate boundary layers. It is well known that 
the logarithmic velocity profiles in a circular pipe cover 
a wide range of Reynolds numbers.  The formula of the 
velocity near a smooth wall may be written:  
 
 
                   (3) 
 
 
 
Where v*

 
(friction velocity) = √(τw/ρ), y and τw  are 

distance  and the pipe wall shearing stress respectively 
Calculation for turbulent flow range was based on a 
“one-seventh power law” velocity distribution in the 
assumption. Within the range of Reynolds numbers 
covered in the test this power law should given 
satisfactory result. The velocity profiles are assumed 
effective over the entire disk surface. In a certain range 
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Figure 1.  Flow model of velocity profiles in Boundary 
layer on a rotating disk in a fluid at rest [7] 
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of Reynolds number in the turbulence flow region, 
when velocity profile subject to the ⅟7-th power law 
(Korukawa, 1987), assume that absolute radial velocity 
on a rotating disk and absolute tangential velocity are: 

 
                                                                             (4) 

                      (5) 
 
                   (5) 
 
 

Where z = δ is taken as the edge of the boundary layer 

and α = tan-1 | 
θu

ur  | = -tan φ,  α is a constant related to 

the flow angle φ in the surface of rotating disk. 
 
In Eqns. (4) and (5), the boundary conditions for the no-
slip condition of fluid at the disk wall, are given as 
follows: Radial direction: 
z = 0 , ur = 0 ;  z = δ , ur = 0 

 

 

From Eqn. (4) can obtain: 

 
           (6) 
   
 

From  Eqn. (5) can obtain :            
 
 
 
 
                                                                                      (7) 
 
From Eqns. (4 and 5) can obtain:            
 
                                                                                                                 
                
 
                                                                                      (8) 

 
Goldstein (1935), assume that if  u = U (1-K) (z/δ)1/7 
and U = rω (1+α)1/2 , the velocity profiles close to the 
disk surface is assume same as a velocity distribution in 
a flat plate, thus by using an equation  for the velocity 
distribution that derived from Blasius’s equation 
(Blasius,1913) the wall shear stress (τw), in the surface 
is obtained as follow:  
 
                                                                                      (9) 
 
                                         
τw is taken to be in the same direction as U. Then since  
τr is positive and τθ  negative, each component is given 
as Eqn. (10).         
 
 
                           
 
                                                                                    (10) 
 
 
 
 
By substitusing Eqns. (6, 7, 9, and 10) into Eqn. (1), the 
term of Eqn. (10) is obtained as follow : 

 

Figure 2. Flow Model in a enclosed  rotating disk   
                of a large axial clearance 
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Fifure 3.  The universal velocity-distribution law for 
smooth circular pipes (Schlichting, 1979) 

(1) Laminar; u/v* = (yv*/ν);  
(2) Transition, after Reichardt, 1951;   
(3) Turbulent, all Re, u/v* = 2.5 ln (yv*/ν) + 5.5  
      or  u/v* = 5.75log (yv*/ν) +5.5; 
(4) Turbulent u/v* =  8.74 (yv*/ν) 1/7 Re ≈ 105;  
(5) u/v* = 11.5 (yv*/ν) 1/10; v* = √τo/ρ 
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By substituting . (8, 9, and 10) into Eqn. (2), the term of  
(10) is obtained : 
 

     
                                                        (12)     

                                                                                   
 
By substituting Eqn.(11) into Eqn.(12) can obtain: 
 
                                                                                    (13)                                                         

 
 
By substituting Eqns. (9 and 11) into Eqn. (12) can 
obtain: 
 

                                                                                   
 

 
            (14) 

 
Refer to Eqn. (13), it can be considered that in turbulent 
flow the boundary layer thickness (δ)  and the angular 
velocity ratio of fluid core (K) depend on a disk radius 
(r). 
 
The moment acting on one side of disk in turbulent flow 
region is: 
 

M = -∫
a

0

τθ  dA r =-∫
a

0

τθ 2 π r dr r =- 2 π ∫
a

0

τθ r2dr  

By substituting τθ from Eqn. (2) into above equation, for  
r = a, can obtain : 
 

 
   
   
  

Substitute Eqn. (8) to above equation, 
By entering  α2 and δ into above equation can obtain  
moment coefficient acting on one side of the disk wall 
as follow:  
 

                                     (15) 
 
 
 
 
 

 
 
                                                                           (16) 
 
 
 
 

 
The analytical results, which exhibit the relationship 
between Cm and Re is shown in Fig. 4. In Fig. 4 the 
parameter of K agrees well with the experimental data 
in the range 3x105<Re<7x 105  with the value equals 
0.48.  
 
By substituting the value of K = 0.48 into Eqns (13 and 
14), the value of the flow angle (α) and boundary layer 
thickness (δ) are obtained in turbulent flow region as 
follows: 

        α = 0,681     
                                                
 
 
By inserting   K = 0.48 into Eqn. (16) the moment 
coefficient in the turbulent flow of the boundary layer 
for one side of a disk is given: 
        
                 (17) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results and Discussion 
 
Due to in analytical work was carried out based on the 
logarithmic velocity profile of turbulent pipe flow, 
Goldstein (1935) proposed that for obtaining a value of 
an exponent n for turbulent flow in an enclosed rotating 
disk is using an experimental work. 
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Figure 4.  Comparison of Cm between experimental   
                  and analytical in turbulent flow 
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In general the moment coefficient (Cm) of an enclosed 
rotating disk will decrease at about  half if fluid core in 
the chamber between stator and rotor rotate by a half of  
the disk angular velocity. 
 
Value of K = 0.8  is obtained from the experimental 
work, it is mean that rotation of fluid core (Ω) = 0.48 ω. 
For K = 0.48 value of moment coefficient (Cm) = 
0.0431/Re1/5, compare it with Cm of free disk (K= 0), 
where Cm = 0.0831/Re1/5 . 
 
Eqn. (17) is equation of limiting maximum drag 
reduction asymptote for the moment coefficient of an 
enclosed rotating disk with fine spiral grooves and if it 
formulated in dimensionless form for friction velocity 
(u+=u/v*) and wall distance (y+= yv*/ ν) can obtain: 

 
(u/v*) = 23.3 (yv*/ν)1/9              (18) 

 
Weighardt, K (1946),obtained the value of constant, C 
and exponents, n as follow:      

 
 
 
 

where,  ((u/v*) = C(n) x  (yv*/ν)1/n) 
 
The constant in Eqn. (18) is a quite large, it is mean that 
the slope of asymptote line is large and it is assume 
caused by drag reduction in an enclosed rotating disk 
with fine spiral grooves. 
 
4. Conclusions 
  
The limiting maximum drag reduction asymptote for the 
moment coefficient of an enclosed rotating disk was 
obtained analytically in drag-reducing on disk surface 
with fine spiral grooves. Analysis was carried out using 
momentum integral equations of the boundary layer on 
a rotating disk based on the logarithmic velocity profile 
of turbulent pipe flow. The analytical results agreed 
quantitatively with experimental results of maximum 
drag reduction for disk surface with fine spiral grooves. 
It can be seen that slope of the asymptote is quite 
significant if it compare with the asymptote slope of 
moment coefficient of turbulent pipe flow. 
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n 7 8 9 10 

C(n) 8.74 9.71 10.6 11.5 


