PENGARUH BAHAN PENGERING LAKTOSA, DEKSTROSA, SUKROSA TERHADAP KARAKTERISTIK FISIK GRANUL EFFERVESCENT EKSTRAK BUAH NANAS (Ananas comosus L. Merr)

T.N. Saifullah 1, Elot Syarifah 2, Eni Mastruriati 3
1Fakultas Farmasi UGM, Jl. Sekip Utara, Yogyakarta
2,3Sekolah Tinggi Ilmu Farmasi "YAYASAN PHARMASI" Semarang

ABSTRACT

The aim of this research is to know the physical characteristics of effervescent granul produced from pineapple extract with different drying material, there were formula I (lactose), formula II (dextrose), and formula III (sucrose). Physical characteristics test of effervescent granul from pineapple extract, moisture content, bulk volume, flow time, angle of repose, absorbance capacity and solubility time of effervescent granul were held. The data examined was analyzed statistically by one way anava, non parametric data was tested by Kruskal-Wallis test and Manh-Whitney test using SPSS programme. Based on this research, it is concluded that formula II with dextrose material has the best physical characteristics of effervescent granul, it was shown by the parameter tested of moisture content (1.60%), bulk (48.10 g/100ml), flow time (5.76 sec), angle of repose (34.64°), absorbance capacity (3.48%) and solubility time (0.28 minute). Microbiological test also qualified for the minimum value of Total Plate Count. There is significant difference of formulas with lactose, dextrose, and sucrose as drying materials.

Key word: Physical characteristic, effervescent granul, pineapple fruit

PENDAHULUAN

Pengolahan bahan alam dapat bermanfaat untuk kesehatan, misalnya buah nanas (Ananas comosus L. Merr) sebagai produk minuman instan Khasiat dari buah nanas yang utama adalah dapat melancarkan pencernaan, membantu mengobati peradangan atau pembengkakan di tulang persendian, memperlancar penyembuhan luka, mencegah gangguan mulut, menekan rasa lapar dan sebagai komponen anti tumor. Granul effervescent ekstrak buah nanas menghasilkan larutan jernih dengan gelembung gas CO₂ bila dimasukkan dalam air dan memberikan rasa segar sehingga diharapkan dapat menambah daya tarik masyarakat untuk mengkonsumsinya sebagai minuman penyegar yang berkhasiat untuk kesehatan guna memperoleh sediaan granul effervescent yang baik dalam arti memenuhi syarat maka perlu dipertimbangkan rancangan formulasi dari sediaan yang tepat, salah satunya adalah bahan tambahan yang dipakai sebagai bahan pengeriting dari ekstrak kental buah nanas. Bahan pengeriting
tersebut sekaligus sebagai bahan pengisi yang terdiri dari laktosa, dekstrosa, sukrosa yang digunakan dalam formulasi effervescent untuk menghasilkan suatu granul effervescent dengan karakteristik fisik baik, yang akan berpengaruh pada kandungan air, volume bulk, waktu alir, sudut diam, daya sorap air dan waktu larut dari granul effervescent Agar menjamin produk tersebut memenuhi syarat dan layak untuk dikonsumsi perlu dilakukan uji tambahan yaitu uji mikrobiologi (ALT) yang merupakan syarat utama untuk sediaan dari bahan alam dan dilakukan uji tanggapan rasa pada masing-masing formula.

Berdasarkan uraian tersebut diatas, maka dalam penelitian ini akan diteliti ada tidaknya perbedaan karakteristik fisik granul effervescent dari ekstrak buah nanas dengan berbagai bahan pengering laktosa, dekstrosa dan sukrosa sehingga diperoleh sediaan granul effervescent ekstrak buah nanas yang mempunyai karakteristik fisik yang baik dan memenuhi syarat.

METODOLOGI PENELITIAN

Sampel yang digunakan adalah granul effervescent ekstrak buah nanas dengan berbagai formula menggunakan teknik sampling acak. Variabel Bebas : formula dari granul effervescent ekstrak buah nanas. Variabel Terikat : karakteristik fisik granul effervescent ekstrak buah nanas yang digambarkan dengan parameter Variabel terkendali : alat yang digunakan, metode pembuatan granul, suhu pengeringan dan lama pengeringan.

Bahan yang digunakan adalah Buah nanas (diperoleh dari Daerah Kudus), akuades natrium bikarbonat, asam sitrat, asam tartrat, laktosa, dekstrosa, sukrosa, amyllum manihot, aspartame, essence nanas, media Plate Count Agar (PCA), media Potatoes Dextrose Agar (PDA), NaCl, etanol.

Alat yang digunakan penangas air (waterbath), panci, pisau, juice extractor type COSMOS-J 355, viscosimeter Rion VT-04, cawan porselin, mortir dan stamper, loyang, ayakan, almari pengering, oven type Binder GmbH Bergstr. 14 D-78532 Tuttingen, corong stainless steel, flow meter, moisture meter type G-WON HITECH LTD/GMK-508-IL, stop watch, neraca digital, kertas payung, lampu spiritus, autoklaf, laminar air flow (LAF), erlenmeyer, inkubator, paleous ball, alat-alat gelas

Cara Kerja

Buah nanas yang telah dipotong-potong dan dimasukkan ke dalam juice extractor Ekstrak cair yang diperoleh
diuapkan sampai diperoleh ekstrak kental sampai kurang lebih setara dengan 11% dari bobot buah nanas segar, kemudian dilakukan uji sifat fisik ekstrak kental yang meliputi uji organoleptis, viskositas, kadar air dan uji mikrobiologi (ALT). Kemudian dikeringkan dengan bahan pengerining yang berbeda (laktosa, dekstrosa, sukrosa) sampai diperoleh ekstrak kering pada kandungan air 3%.

Granul dibuat dengan cara: ekstrak kering yang diperoleh ditambah dengan bahan-bahan pada formula diatas, sisa bahan pengerining (laktosa, dekstrosa, sukrosa) sebagai bahan pengisi kemudian ditambah bahan pengikat musilago amyli 1%, semua bahan digranulasi sampai terbentuk granul. Granul basah dikeringkan dalam almari pengerining pada suhu 40° C selama 24 jam. Granul yang telah kering diayak menggunakan ayakan No. 20 dan 24 dan dikeringkan kembali dalam almari pengerining pada suhu 40° C selama 24 jam, kemudian dilakukan pengujian karakteristik fisik granul.

Uji organoleptis granul meliputi bentuk atau tekstur, warna, bau dan rasa. Viskositas diukur dengan menggunakan alat Viscotester Rion VT-04 Kadar air dilakukan dengan alat pengukur kadar air Hallogen Moisture Analyzer Mettler Toledo HB tipe 43.

Kandungan air ditetapkan dengan alat pengukur Hallogen Moisture Analyzer Mettler Toledo HB tipe 43 (Lachman, et al., 1994 : 655). Volume bulk: diambil 100 ml granul, dimasukkan ke dalam gelas ukur 100 ml kemudian ditimbang.

<table>
<thead>
<tr>
<th>Tabel 1. Formula Granul Effervescent Ekstrak Buah Nanas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Ekstrak kental nanas</td>
</tr>
<tr>
<td>Bahan</td>
</tr>
<tr>
<td>Pengering</td>
</tr>
<tr>
<td>Pada MC 3%</td>
</tr>
<tr>
<td>Asam sitrat</td>
</tr>
<tr>
<td>Asam tartrat</td>
</tr>
<tr>
<td>Natrium bikarbonat</td>
</tr>
<tr>
<td>Aspartame</td>
</tr>
<tr>
<td>Essence nanas</td>
</tr>
<tr>
<td>Musilago amyli 1%</td>
</tr>
<tr>
<td>Bahan</td>
</tr>
<tr>
<td>Pengisi</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Uji Mikrobiologi (ALT): ditimbang masing-masing sampel sebanyak 5,0 g secara aseptis. Dimasukkan dalam labu erlenmeyer steril, dilarutkan dalam NaCl fisiologis secara aseptis sampai diperoleh pengenceran \(10^{-1}, 10^{-2}\) dan \(10^{-3}\). Masing-masing pengenceran dipipet 1,0 ml dimasukkan ke dalam cawan petri steril dan dituangkan ±20 ml media PCA dan pada cawan yang lain dituangkan media PDA yang masing-masing masih mencair pada suhu ±45°C. Dibiarkan hingga isi cawan memadat. Diinkubasi pada suhu 37°C selama 24 jam untuk PCA dan suhu 25°C selama 48 jam untuk PDA. Setelah diinkubasi, diamati pertumbuhan mikroba tiap sampel (Departemen Kesehatan RI, 1995 : 852).

Uji Tanggapan rasa: uji tanggapan rasa dilakukan dengan cara teknik sampling acak dengan populasi heterogen sejumlah 20 responden umur lebih dari 17 tahun dan jumlah keseluruhan responden dianggap 100%. Responden memilih formula mana yang paling disukai.

Analisis Data
Pendekatan secara teoritis: data yang diperoleh dari pengujian, dibandingkan dengan persyaratan-persyaratan pada Farmakope Indonesia dan pustaka lainnya. Analisis data: data yang diperoleh dianalisis menggunakan metode statistika anava satu jalan, data non parametrik diuji dengan Kruskal-Wallis.
dan uji Mann-Whitney program SPSS. Data tanggapan rasa dianalisis secara diskriptif Kesimpulan diambil berdasarkan hasil rata-rata persentase formula pilihan responden terhadap skor masing-masing rasa.

HASIL DAN PEMBAHASAN

Ekstrak kental yang diperoleh dilakukan uji sifat fisik yang meliputi uji organoleptis, viskositas, kandungan air dan uji mikrobiologi. Pengujian tersebut bertujuan sebagai kontrol kualitas dari bahan dasar sehingga nantinya dapat menghasilkan sediaan granul *effervescent* yang mempunyai karakteristik fisik yang baik

<table>
<thead>
<tr>
<th>Tabel 2. Uji Sifat Fisik Ekstrak Kental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uji Ekstrak Kental</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Tekstur</td>
</tr>
<tr>
<td>Warna</td>
</tr>
<tr>
<td>Bau</td>
</tr>
<tr>
<td>Rasa</td>
</tr>
<tr>
<td>Viskositas</td>
</tr>
<tr>
<td>Kadar Air</td>
</tr>
<tr>
<td>Uji Mikrobiologi (ALT)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kapang</td>
</tr>
</tbody>
</table>

Hasil pengujian menunjukkan viskositas dari ekstrak mempunyai tingkat kekentalan cukup tinggi. Kadar air yang diperoleh memenuhi syarat sediaan dari bahan alam yaitu kurang dari 10%. Uji mikrobiologi (ALT) memenuhi syarat batas uji mikrobiologi (ALT), angka bakteri kurang dari 10⁶ CFU/ml dan angka kapang kurang dari 10⁴ Propagul/ml (Permenkes RI, 1994), sehingga dapat menghasilkan sediaan granul *effervescent* ekstrak buah nanas yang mempunyai karakteristik yang baik. Ekstrak kental yang diperoleh dikeringkan dengan menggunakan bahan pengering yang berbeda yaitu formula I (laktosa), formula II (deksstroza), dan formula III (sukroza). Parameter uji ekstrak kering berdasarkan kandungan lembab sebesar 3%.

<table>
<thead>
<tr>
<th>Tabel 3. Jumlah Bahan Pengering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
</tbody>
</table>
Dekstrosa dan sukrosa cenderung lebih higroskopsis dan lebih mudah larut dalam air dibandingkan dengan lactosa, sehingga kebutuhan dekstrosa dan sukrosa sebagai bahan pengerings lebih besar.

Ekstrak kering yang dihasilkan secara organoleptis berupa serbuk, berwarna kuning kecoklatan, bau khas nanas, dan mempunyai rasa asam manis, kemudian diproses lebih lanjut untuk menjadi granul effervescent.

Dari ketiga formula granul effervescent yang telah jadi kemudian diuji karakteristik fisiknya. Waktu dan suhu pengerengan yang sama dapat menghasilkan granul effervescent yang berwarna kuning kecoklatan pada formula II (dektrosa) dan formula III (sukrosa) sedangkan formula I (laktosa) berwarna kuning. Hal ini disebabkan karena panas mempengaruhi granul effervescent yang dihasilkan lebih higroskopsis dibandingkan granul effervescent dengan bahan pengereng suskrosa yang lebih higroskopsis dibandingkan granul effervescent dengan bahan pengereng dektrosa maupun laktosa. Demikian juga untuk granul effervescent dengan bahan pengereng dektrosa yang secara fisik sedikit lebih higroskopsis dibandingkan granul effervescent.

<table>
<thead>
<tr>
<th>Tabel 4. Uji Karakteristik Granul effervescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uji granul</td>
</tr>
<tr>
<td>Kandungan lembab (MC)</td>
</tr>
<tr>
<td>Volume bulk (100 ml)</td>
</tr>
<tr>
<td>Waktu air</td>
</tr>
<tr>
<td>Sudut diam</td>
</tr>
<tr>
<td>Daya serap air</td>
</tr>
<tr>
<td>Waktu larut</td>
</tr>
</tbody>
</table>

Hal tersebut dapat ditunjukkan pada saat penambahan bahan pengikat musilago amyli 1% dalam jumlah yang sama menghasilkan massa granul yang lebih higroskopsis pada formula III (sukrosa) dan formula II (dektrosa) sedangkan pada formula I (laktosa) terbentuk massa granul yang sedikit lebih kering. Grafik rata-rata kandungan air granul effervescent dapat ditunjukkan pada Gambar 1.
Gambar 1. Grafik Rata-Rata Kandungan Lembab Granul *Effervescent*

Hasil uji statistika probabilitas kesalahan 0,001 < 0,05 maka dapat disimpulkan bahwa terdapat perbedaan kandungan air yang signifikan antar formula.

Volume bulk merupakan volumetotal yang diduduki oleh serbuk yang menempati suatu ruang, dipengaruhi oleh berat jenis, ukuran partikel dan distribusi ukuran partikel. Hasil pemeriksaan volume bulk menunjukkan bahwa formula I (laktosa) mempunyai volume bulk paling besar dibandingkan formula II (dekstroza) dan formula III (sukrosa). Grafik rata-rata volume bulk granul *effervescent* dapat ditunjukkan pada Gambar 2.

Gambar 2. Grafik Rata-Rata Volume Bulk Granul *Effervescent*

Hasil uji statistika probabilitas kesalahan 0,002 < 0,05 maka dapat disimpulkan bahwa terdapat perbedaan volume bulk yang signifikan antar formula. Waktu alir granul dapat dipengaruhi oleh ukuran partikel dan kandungan air, semakin tinggi kandungan air waktu alir semakin lama karena partikel-partikel menggumpal maka akan sulit untuk mengalir melalui lubang corong (*hopper*). Syarat waktu alir yang baik adalah kurang dari 10 detik. Waktu alir berbanding lurus dengan kandungan lembab tetapi hal ini berbeda pada formula I (laktosa) oleh karena secara fisik ukuran partikel dari granul *effervescent* formula I dengan bahan pengering laktosa lebih halus berupa serbuk granul maka akan memperlambat waktu alirnya meskipun kandungan airnya relatif kecil akan tetapi pada formula I (laktosa) massa granul secara fisik tampak lebih halus berupa serbuk granul sehingga jelas akan mempengaruhi waktu alirnya, karena semakin halus ukuran partikel maka akan menyebabkan partikel saling
mengunci pada saat melewati corong (hopper) sehingga akan memperlambat waktu alir dari granul effervescent tersebut. Grafik rata-rata waktu alir granul effervescent dapat ditunjukkan pada Gambar 3.

Gambar 3. Grafik Rata-Rata Waktu Alir Granul Effervescent

Hasil uji statistika probabilitas kesalahan $0.001 < 0.05$ maka dapat disimpulkan bahwa terdapat perbedaan waktu alir yang signifikan. Sudut diam granul juga dipengaruhi oleh kandungan air dan ukuran partikel seperti halnya waktu alir. Persyaratan sudut diam yang baik adalah kurang dari 40°, bila sudut diam lebih kecil atau sama dengan 30° menunjukkan bahwa granul mengalir bebas. Ketiga formula memenuhi persyaratan yaitu mempunyai sudut diam kurang dari 40° sehingga dapat dikatakan granul mengalir baik. Hasil uji statistika probabilitas kesalahan $0.001 < 0.05$ maka dapat disimpulkan bahwa terdapat perbedaan sudut diam yang signifikan antar formula. Grafik rata-rata sudut θ dapat ditunjukkan pada Gambar 4.

Gambar 4. Grafik Rata-Rata Sudut Diam Granul Effervescent

Dari hasil pemeriksaan menunjukkan bahwa daya serap air formula II (dekstroza) dan formula III (sukroza) lebih tinggi dibanding formula I (laktosa). Hal ini disebabkan karena kandungan air formula I (laktosa) lebih rendah. Dekstroza mempunyai kemampuan menyerap air paling tinggi 7,5% - 9,5% (Weller, et al., 2001). Grafik rata-rata
daya serap granul *effervescent* dapat ditunjukkan pada Gambar 5.

Gambar 5. Grafik Rata-Rata Daya Serap Air Granul *Effervescent*

Hasil uji statistika probabilitas kesalahan 0,002 < 0,05 maka dapat disimpulkan bahwa terdapat perbedaan daya serap air yang signifikan antar formula. Waktu larut adalah waktu yang dibutuhkan oleh granul *effervescent* dalam larutan untuk menjadi partikel-partikel yang lebih kecil. Waktu larut yang baik untuk *effervescent* adalah kurang dari 1 atau 2 menit. Hasil uji waktu larut memunjukkan bahwa ketiga formula mempunyai waktu larut kurang dari 1 menit, sehingga memenuhi persyaratan waktu larut sediaan *effervescent*. Kandungan air dan daya serap air yang kecil seperti pada formula I (laktosa) menyebabkan waktu larut lebih lama. Kandungan air seperti pada formula III (sukrosa) yang tinggi serta daya serap air seperti pada formula II (dekstrosa) yang tinggi menyebabkan waktu larut akan lebih cepat. Grafik rata-rata waktu larut granul *effervescent* dapat ditunjukkan pada Gambar 6.

Gambar 6. Grafik Rata-rata Waktu Larut Granul *Effervescent*
Hasil uji statistika probabilitas kesalahan 0,001 < 0,05 maka dapat disimpulkan bahwa terdapat perbedaan waktu larut yang signifikan antar formula. Uji mikrobiologi (ALT) pada granul *effervescent* bertujuan untuk mengetahui jumlah mikroba yang terdapat dalam sediaan. Batas mikroba yang diperbolehkan adalah angka bakteri tidak lebih dari 10^6 CFU/ml sampel dan angka kapang tidak lebih dari 10^4 Propagul/ml sampel.

Tabel 5. Uji Mikrobiologi (ALT) Granul *effervescent*

<table>
<thead>
<tr>
<th>Uji granul</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I (laktosa)</td>
</tr>
<tr>
<td>Bakteri (CFU/ml)</td>
<td>6,8x10^7</td>
</tr>
<tr>
<td>Kapang (Propagul/ml)</td>
<td>3,4x10^7</td>
</tr>
</tbody>
</table>

Tabel 6. Persentase Formula Pilihan Responden

<table>
<thead>
<tr>
<th></th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10%</td>
</tr>
<tr>
<td>II</td>
<td>40%</td>
</tr>
<tr>
<td>III</td>
<td>50%</td>
</tr>
</tbody>
</table>

Dari angka yang dilaporkan menunjukkan bahwa semua formula granul *effervescent* memenuhi persyaratan batas uji mikrobiologi.

Uji tanggapan rasa dilakukan dengan cara random sampling dengan populasi heterogen sejumlah 20 responden umur lebih dari 17 tahun dan jumlah keseluruhan responden dianggap 100%. Masing-masing responden diminta untuk membandingkan rasa *ketiga* formula Responden memilih formula mana yang paling disuka.

Tabel 7. Persentase Formula Pilihan Responden

<table>
<thead>
<tr>
<th>Formula</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10%</td>
</tr>
<tr>
<td>II</td>
<td>40%</td>
</tr>
<tr>
<td>III</td>
<td>50%</td>
</tr>
</tbody>
</table>

Persentase uji tanggapan rasa menunjukkan bahwa formula III (sukrosa) mempunyai rasa yang paling enak, diikuti formula II (dekatrosa) dan formula I (laktosa). Grafik rata-rata tanggapan rasa granul *effervescent* dapat ditunjukkan pada Gambar 9.
Gambar 7. Grafik Persentase Formula Pilihan Responden

Simpulan
Berdasarkan hasil penelitian dapat disimpulkan bahwa terdapat perbedaan yang signifikan antar formula dengan bahan pengering laktosa, dekstrosa, sukrosa terhadap karakteristik fisik granul effervescent ekstrak buah nanas.

Karakteristik fisik granul effervescent yang paling baik adalah formula II dengan bahan pengering dekstrosa. Formula pilihan responden pada uji tanggapan rasa yang paling enak adalah formula III dengan bahan pengering sukrosa.

Saran
Pembuatan ekstrak buah nanas menggunakan metode yang lebih baik, dilakukan optimasi menggunakan kombinasi bahan pengering yang baik, pembuatan sediakan effervescent ekstrak buah nanas dalam bentuk tablet.

DAFTAR PUSTAKA

