ISOLASI DAN IDENTIFIKASI KOMPONEN UTAMA MINYAK ATSIRI BUNGA KENANGA (Cananga odorata (Lmk.) Hook f.) DAN UJI AKTIVITAS ANTIBAKTERIN YANG TERHADAP Staphylococcus aureus

Eka Susanti Hp.¹, Sri Suratiningsih², Ruli Imawati³
¹²STIFAR “Yayasan Pharmasi” Semarang
Jl. Let. Jend. Sarwo Edie Wibowo Km 1 Plamongansari Semarang
Email eka_an219@yahoo.co.id
² Sekolah Tinggi Ilmu Pertanian Farming Semarang

ABSTRACT

Isolation and Identification of the Major Components of the Essential Oil Kenanga Flower (Cananga odorata (Lmk.) Hook f.) and its antibacterial activity against Staphylococcus aureus were had been cunducted. The result of the research showed that TLC the essential oil of kenanga flower using sulfuric acid reagent anisaldehyde spray gave six spots of blue with Rf 0.38; brown with Rf 0.51; pink with Rf 0.72; brown with Rf 0.81; green with Rf 0.86 and purple with brown in the middle with Rf 0.92. The antimicrobial activity test of the essential oil against Staphylococcus aureus using TLC bioautographic method gave only one transparent zone, that was active compound with Rf 0.51. The result of the identification of active compound by Gas Chromatographig - Mass Spectrometry was caryophyllene. From this research, it can be concluded that the active antibacterial compound of essential oil of kenanga flower is Caryophyllene.

Keyword : Essential oil of kenanga flower, TLC bioautographic, Staphylococcus aureus, caryophyllene

PENDAHULUAN

Indonesia merupakan salah satu negara yang terletak di daerah tropis dan mempunyai beraneka ragam tumbuhan yang mempunyai manfaat pangobatan dan hal ini sudah dibuktikan secara turun – temurun. Sekarang ini tumbuh – tumbuhan banyak digunakan sebagai obat tradisional dan kosmetika karena efek sampingnya kecil dan ekonomis. Salah satu tanaman yang banyak dikenal masyarakat dan belum banyak dikenal nilai gunanya adalah kenanga.

Bunga kenanga (Cananga odorata (Lmk.) Hook f.) banyak mengandung minyak atsiri yaitu alkohol – alkohol (linalool, α terpineol) dengan ester – ester (metil benzoat) 52 – 65 %, sesqueripen (33-38 %), fenol, aldehid, dan keton (Ketaren, 1985 : 268). Minyak atsiri bunga kenanga dapat diisolasi dengan penyulingan uap air. Keuntungan dari penyulingan uap air yaitu waktu penyulingan relatif singkat, rendemen minyak lebih besar dan bahan yang disuling tidak gosong (Ketaren, 1985 : 70).

Metode KLT bioautografi langsung dilakukan dengan menempelkan plat kromatogram yang telah dielusi dan sudah terbebaskan dari campuran fase gerak pada permukaan media agar yang telah diinokulasi dengan *S. aureus* dan diinkubasi pada suhu 37°C selama 24 jam. Aktivitas antibakteri bahan uji dapat dilihat dari zona bening yang tampak pada lapisan media. Untuk mengetahui senyawa aktif antibakteri yang terdapat didalam minyak atsiri bunga kenanga maka dilakukan isolasi dengan KLT preparatif dan diidentifikasi dengan Kromatografi Gas – Spektrometri Massa (KG-SM).

**METODE PENELITIAN**

Bahan yang digunakan adalah : bunga kenanga yang masih segar, akuades, Na₂SO₄ anhidrat (technical grade), *Staphylococcus aureus*, *Mueller Hinton Agar* (MHA), (analytical grade), plat silika gel GF254, alkohol 70 % (technical grade), minyak atsiri bunga kenanga, toluene : etil asetat (93 : 7) (analytical grade), silika gel GF 254.

Alat yang digunakan adalah : alat destilasi uap air, alat – alat gelas laboratorium, neraca, bejana pengembang, autoclave, *Laminar Air Flow*, inkubator, neraca analitik, oven, mikropipet, ose dan pinset, petridisk, pipa kapiler, Kromatografi Gas – Spektometer Massa

**Cara Kerja**

Minyak atsiri diisolasi dengan cara destilasi uap air (water and steam distillation). Destilasi dibentuk sampai minyak tidak keluar dan minyak atsiri yang diperoleh dikumpulkan jadi satu dan diberi Na₂SO₄ anhidrat untuk menghilangkan sisa – sisa air.

Identifikasi minyak atsiri dilakukan dengan cara minyak atsiri ditotolkan pada lempeng KLT silika gel GF 254 dan dielusi dalam bejana pengembangan yang berisi fase gerak toluen : etil asetat (93 : 7) dalam keadaan jenuh. Kemudian dielusi dan dideteksi dengan Anisaldehid – asam sulfat dan dipanaskan dengan oven pada suhu 110°C selama 5 - 10 menit. Diamati warna bercak nodu yang terbentuk.

Uji aktivitas antibakteri secara KLT Bioautografi langsung didahului dengan Identifikasi bakteri dengan pewarnaan bakteri dan uji katalase. Pengujian aktivitas antibakteri dengan metode KLT bioautografi dilakukan untuk minyak atsiri dengan cara minyak atsiri ditotolkan pada lempeng KLT silika gel GF254 dan dielusi dalam bejana pengembang berisi fase gerak toluene – etil asetat (93 : 7) dalam keadaan jenuh, hasil KLT dikurangkan hingga tidak berbau pelarut pengembang. Lempeng KLT diletakkan di atas media MHA yang berisi suspensi bakteri *Staphylococcus aureus* selama 20 – 30 menit kemudian diangkat. Media pertumbuhan mikroba diinkubasi selama 24 jam pada suhu 37ºC dan diamati zona hambatannya kontrol positif yaitu penisilin dan kontrol negatifnya yaitu plat KLT silika gel GF 254.


Untuk mengidentifikasi senyawa aktif yang terkandung dalam minyak atsiri bunga kenanga maka dianalisis dengan metode Kromatografi Gas – Spektrometri Massa

**HASIL DAN PEMBAHASAN**

Identifikasi minyak atsiri bunga kenanga dilakukan dengan metode KLT menggunakan fase gerak toluen : etil

<table>
<thead>
<tr>
<th>No</th>
<th>Harga Rf UV</th>
<th>Harga Rf Anisaldehid – asam sulfat pekat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0,38</td>
<td>Biru</td>
</tr>
<tr>
<td>2.</td>
<td>0,51</td>
<td>Coklat</td>
</tr>
<tr>
<td>3.</td>
<td>0,72</td>
<td>Merah muda</td>
</tr>
<tr>
<td>4.</td>
<td>0,81</td>
<td>Coklat</td>
</tr>
<tr>
<td>5.</td>
<td>0,89</td>
<td>Hijau</td>
</tr>
<tr>
<td>6.</td>
<td>0,96</td>
<td>Ungu ditengahnya coklat</td>
</tr>
</tbody>
</table>


Pengujian aktivitas antibakteri dengan metode bioautografi langsung terlebih dahulu dengan melakukan orientasi jarak pengembangan untuk mengetahui bahwa jarak antar senyawa aktif tidak saling berdekatan sehingga memudahkan untuk mengukur diameter zona bening yang terbentuk. Kemudian minyak atsiri (konsentrasi 100 %) ditotolkan pada silika gel GF254 sebanyak 2 µl dengan mikro kapiler dan dengan fase gerak toluen : etil asetat (93 : 7) dengan jarak pengembangan 13 cm. Di atas media Muller Hinton Agar (MHA) yang telah diinokulasi dengan Staphylococcus aureus, ditempel kromatogram yang telah dielusi dan sudah terbebas dari eluen, hal ini dimaksudkan agar eluen yang digunakan tidak mempengaruhi penghambatan pertumbuhan Staphylococcus aureus. Kemudian plat diariakan 30 menit agar senyawa aktif dari minyak atsiri bunga kenanga mampu berdifusi ke dalam media tersebut, setelah itu plat dilepaskan dari permukaan media. Selanjutnya media diinkubasi selama 24 jam pada suhu 37°C. Zona yang terbentuk berupa zona bening. Hasil dari KLT bioautografi tersebut terdapat satu zona bening yang kemudian dibandingkan dengan identifikasi KLT yang dideteksi dengan pereaksi semprot anisaldehid – asam sulfat pekat yang menghasilkan 6 bercak nada. Hasil KLT bioautografi kontak minyak atsiri bunga kenanga terhadap
Staphylococcus aureus dapat dilihat pada Tabel 2.

Tabel 2. Hasil KLT Bioautografi Kontak Minyak Atsiri Bunga Kenanga terhadap Staphylococcus aureus

<table>
<thead>
<tr>
<th>No</th>
<th>Harga Rf</th>
<th>Diameter zona bening (cm)</th>
<th>Replikasi</th>
<th>Rerata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>1.</td>
<td>0,38</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>0,51</td>
<td>1,205</td>
<td>1,225</td>
<td>1,340</td>
</tr>
<tr>
<td>3.</td>
<td>0,72</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>0,81</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>0,86</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>0,92</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Dalam metode KLT bioautografi langsung ini digunakan penisilin sebagai kontrol positif yang dipipet sebanyak 30 μl. Penisilin adalah antibiotik yang dapat menghambat pertumbuhan bakteri Staphylococcus aureus. Silika gel GF 254 sebagai kontrol negatif yang bertujuan untuk memastikan bahwa plat KLT silika gel GF254 tidak memberikan hambatan terhadap pertumbuhan bakteri Staphylococcus aureus. Dari hasil penelitian kontrol positif yaitu penisilin tidak dapat terelusi dengan diameter 1,365 cm. Sedangkan plat KLT silika gel GF254 tidak memberikan hambatan terhadap pertumbuhan bakteri Staphylococcus aureus.


Dari spektrum massa dari fragmentasi senyawa aktif hasil analisis dengan puncak, waktu retensi, kadar (%), dan nama senyawa ditunjukkan pada Tabel 3.
Tabel 3. Data Spektrum Massa dari Senyawa Aktif Minyak Atsiri Bunga Kenanga dari Hasil Analisis KG – SM.

<table>
<thead>
<tr>
<th>Puncak</th>
<th>Waktu retensi</th>
<th>Kadar (%)</th>
<th>Senyawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9,09</td>
<td>34,02</td>
<td>Caryophyllen</td>
</tr>
<tr>
<td>2</td>
<td>9,37</td>
<td>9,74</td>
<td>Alpha- Caryophyllen</td>
</tr>
<tr>
<td>3</td>
<td>9,60</td>
<td>11,48</td>
<td>Germacrene D</td>
</tr>
</tbody>
</table>

Pada m/z = M 204 dengan waktu retensi 9,09. Pemecahan pertama terjadi pada ikatan CH3 dan menghasilkan fragmen pada m/z = 189 yang terurai lebih lanjut lepasnya CH2 sehingga menghasilkan fragmen pada puncak m/z = 175 kemudian pemecahan terjadi pada ikatan CH2 sehingga menghasilkan fragmen pada puncak m/z = 161 dan pemecahan selanjutnya terjadi dengan lepasnya ikatan CH yang menghasilkan puncak pada m/z = 148. Selanjutnya pemecahan terjadi dengan melepaskan ikatan CH3 yang menghasilkan puncak pada m/z = 133 dan pemecahan terjadi dengan melepaskan ikatan C3H4 yang menghasilkan puncak pada m/z = 93. Pemecahan terjadi dengan melepaskan ikatan CH2 yang menghasilkan puncak pada m/z = 79 yang terurai lebih lanjut lepasnya ikatan C3H2 menghasilkan puncak pada m/z = 41 yang merupakan base peak pada spektrum massa caryophyllene.

Gambar 1. Skema Fragmentasi Caryophyllen

Pada m/z = M* 204 dengan waktu retensi 9,37. Pemecahan pertama terjadi pada ikatan CH3 yang menghasilkan puncak pada m/z = 189 yang terurai lebih lanjut
lepasnya CH₂ sehingga menghasilkan fragmen pada puncak m/z = 175. Kemudian pemecahan terjadi dengan lepasnya ikatan CH₂ yang menghasilkan puncak pada m/z = 161. Selanjutnya pemecahan terjadi dengan melepaskan ikatan CH₂ yang menghasilkan puncak pada m/z = 147. Pemecahan terjadi pada ikatan C₃H₄ yang menghasilkan puncak pada m/z = 107 yang terurai lebih lanjut lepasnya CH₂ sehingga menghasilkan fragmen pada puncak m/z = 93 yang merupakan base peak pada spectrum massa alpha.-caryophyllene. Kemudian pemecahan terjadi dengan lepasnya ikatan CH yang menghasilkan puncak pada m/z = 80.

Pada m/z: M⁺ 204 dengan waktu retensi 9,60. Pemecahan pertama terjadi pada ikatan C₃H₇ yang menghasilkan fragmen pada m/z: 161 yang terurai lebih lanjut lepasnya CH₂ sehingga menghasilkan fragmen pada puncak m/z = 147. Kemudian pemecahan terjadi dengan lepasnya ikatan CH₂ yang menghasilkan puncak pada m/z = 133. Selanjutnya pemecahan terjadi dengan melepaskan ikatan CH₂ yang menghasilkan puncak pada m/z = 119 yang terurai lebih lanjut lepasnya CH₂ sehingga menghasilkan fragmen pada puncak m/z = 105. Kemudian pemecahan terjadi dengan lepasnya ikatan CH₂ yang menghasilkan puncak pada m/z = 91. Selanjutnya pemecahan terjadi dengan melepaskan ikatan C yang menghasilkan puncak pada m/z = 79.
SIMPULAN
Minyak atsiri bunga kenanga dapat diisolasi dengan menggunakan penyulingan uap air dan dapat diidentifikasi dengan menggunakan Kromatografi Gas-Spektrometri Massa, mempunyai aktivitas sebagai antibakteri. Komponen utama minyak atsiri bunga kenanga yang mempunyai aktivitas antibakteri adalah caryophyllene, alpha-caryophyllene dan germacrene D.

SARAN
1. Bagi penelitian selanjutnya disarankan untuk mencari konsentrasi yang paling efektif dengan metode KLT bioautografi langsung atau dengan metode yang lain agar dapat diketahui konsentrasi yang paling efektif dari minyak atsiri bunga kenanga sebagai antibakteri.

2. Disarankan pula penelitian sejenis dengan menggunakan minyak atsiri yang berkhasiat sebagai antibakteri.

DAFTAR PUSTAKA