ANALISA KADAR LOGAM Pb (TIMBAL) DAN Zn (SENGL) DALAM RAJUNGAN (Portunus pelagicus) DI PANTAI SLAMARAN PEKALONGAN SECARA SPEKTROFOTOMETER SERAPAN ATOM

Agus Suprijono, Etty Sulistyawati, Suci Dwi Suryani

Sekolah Tinggi Ilmu Farmasi “YAYASAN PHARMASI” Semarang

ABSTRAK

Logam Pb dan Zn merupakan zat yang berbahaya jika masuk ke organ biologis. Zat kimia tersebut dalam konsentrasi rendah bisa menyebabkan toksik, terutama pada hewan air seperti ikan, keping, rajungan dan lain sebagainya. Logam Pb dan Zn mempunyai kecenderungan mengumpul dalam organ biologis, terutama dalam bentuk ion, karena bentuk ion mempunyai kelarutan yang lebih besar dalam lemak. Logam Pb dan Zn dapat menyebabkan kerusakan syaraf pusat, serta gangguan fungsi ginjal dan paru-paru. Penelitian ini bertujuan untuk mengetahui kadar logam berat Pb dan Zn yang terkandung dan terakumulasi dalam rajungan di pantai Slamaran Pekalongan. Pengukuran konsentrasi pada ion logam Pb dan Zn dilakukan dengan menggunakan metode Spektrofotometri Serapan Atom (SSA). Hasil penelitian menunjukkan perbedaan kadar yaitu pada jarak 200 meter kadar logam Pb lebih besar dibandingkan pada jarak 300 dan 100 meter serta melebihi batas maksimum cemaran logam berat dalam makanan untuk rajungan dan hasil olahannya yaitu > 2,0 mg/kg. Pada logam Zn juga terdapat perbedaan kadar, logam yang terbesar didapatkan pada jarak 300 meter, tetapi tidak melebihi batas maksimum cemaran logam berat dalam makanan yaitu rajungan dan hasil olahannya yaitu < 100 mg/kg. Jadi dapat disimpulkan pada pantai Slamaran Pekalongan kandungan logam berat Pb melebihi batas dan Zn tidak melebihi batas.

Kata kunci : Logam Pb dan Zn, Spektrofotometri Serapan Atom, Rajungan (Portunus pelagicus), bio-indikator.

PENDAHULUAN

Dengan meningkatnya perkembangan industri pengolahan pertanian, kehutanan dan sebagainya, maka meningkat pula penggunaan bahan-bahan kimia, seperti : pupuk pestisida demikian juga senyawa-senyawa yang ada hubungannya dengan industri misal : senyawa organik dan anorganik sehingga akan menyebabkan terjadinya peningkatan pencemaran air laut jika tidak dilakukan penangg-

Rajungan sampai saat ini tetap banyak diminati oleh semua lapisan

Air limbah dari industri kimia termasuk kategori limbah bahan beracun berbahaya (B3) dapat mencemari air dan udara, dapat menyebabkan keracunan akut yang menimbulkan penyakit maupun keracunan kronis bahkan kematian akibat masuknya zat-zat kronis ke dalam tubuh dalam dosis kecil tetapi terus menerus dan berakumulasi dalam tubuh (Rozanah, 2004:3).

Oleh karena itu perlu dilakukan pengujian tentang kandungan logam berat Pb (timbal) dan Zn (seng) dalam rajungan di pantai Slamaron Pekalongan dengan menggunakan metode Spektrofotometri Serapan Atom (SSA) karena metode tersebut sangat efektif untuk menentukan ion-ion logam berat meskipun dalam konsentrasi rendah.

METODE PENELITIAN

Obyek penelitian yang diamati adalah kandungan logam berat Pb (timbal) dan Zn (seng) yang terdapat dalam rajungan (Portunus pelagicus) yang hidup di perairan pantai Slamaron Pekalongan.

Alat dan Bahan yang digunakan

Larutan baku Pb 1000 ppm standar solution (Merck), Larutan baku Zn 1000 ppm standar solution (Merck), Aquabidestilata, Asam nitrat pekat 1,0 N, Rajungan (Portunus pelagicus), Spektrofotometer Serapan Atom, Cawan platina/silica, Lampu katoda Pb dan Zn, Muffle furnace, Labu takar, Pipet volume, Krus porselen, dan Timbangan analitik.

Cara Kerja Penetapan Kadar Logam Pb dan Zn dalam rajungan (Portunus pelagicus) dengan pengabuan kering

Ditimbang sekasama 2-5 gram sampel rajungan dihomogenkan dalam cawan platina/silica kemudian dimasukkan sampel yang telah dikeringkan tersebut ke dalam tanur yang telah diatur suhunya yaitu 250°C. Perlahan-lahan dinaikkan suhu (setiap kenaikan 50°C) menjadi 350°C sampai tidak terbentuk asap lagi, lalu dinaikkan suhu menjadi 550°C dengan setiap kenaikan kira-kira 75°C (sampel tidak boleh terbakar) dan diabukan selama 16-24 jam (semalam) kemudian cawan dari dalam tanur dan dibiarankan menjadi dingin. Abu harus putih dan pada dasarnya harus bebas karbon. Jika abu masih mengandung kelebihan partikel-partikel karbon (misalnya abu agak berwarna abu-abu atau keabu-abuan), dibasahkan abu dengan air sedikit mungkin, diikuti penambahan HNO₃ pekat tetes demi tetes (0,5-3,0 ml) lalu dikeringkan di atas lempeng pemanas. Kemudian dimasukkan ke dalam tanur pada suhu 250°C dan perlahan-lahan dinaikkan suhu menjadi 550°C. Dibalutkan pemanasan selama 60-120 menit. Jika perlu penambahan HNO₃ diulangi lagi sehingga didapat residu/abu yang bebas karbon, abu dalam 5,0 ml HNO₃ 1,0 N lalu dihangatkan di atas penagas air atau lempeng plat pemanas selama 2-3 menit. Jika perlu disaring menggunakan kertas Whatman No. 41 ke dalam labu ukur 100,0 ml. Ditulang pencucian residu dengan penambahan 5,0 ml HNO₃ 1,0 N, disaring dan dijadikan satu dengan saringan sebelumnya, diencerkan dengan HNO₃ 1,0 N sampai 100,0 ml. Dilakukan hal yang sama terhadap
blanko pereaksi untuk baku dan sampel, termasuk beberapa ml penambahan air dan HNO₃ lalu ditetapkan konsentrasi logam sampel dari kurva baku menggunakan serapan contoh yang telah dikurangi dengan blanko pereaksi (jika digunakan blanko pereaksi) pada panjang gelombang 217 nm untuk Pb dan 213,9 nm untuk Zn. (Pusat Standarisasi Industri Departemen Perindustrian, 1992). Untuk pembuatan deret standar Pb maka dipipet sekasama 5,0 ml Stock Lead Standard Solution 1000 ppm, dimasukkan labu takar 50,0 ml dan diencerkan dengan aqua destilata ad tanda batas (C= 100 ppm) dari larutan baku 100 ppm, dibuat larutan deret 1,0 ppm; 2,0 ppm; 3,0 ppm, 4,0 ppm dan 5,0 ppm dari larutan standar 100 ppm dipipet 1,0 ml; 2,0 ml; 3,0 ml; 4,0 ml dan 5,0 ml dengan masing-masing ditambah aqua destilata sampai tanda batas 100 ml.

HASIL PENELITIAN DAN PEMBAHASAN

Kurva baku timbal (Pb) menghasilkan persamaan regresi linier y = 0,0135x + 0,0005 dengan nilai R² = 0,9997, untuk larutan baku seng (Zn) menghasilkan persamaan regresi linier y = 0,1652x + 0,006762 dan nilai R² = 0,9998, Persamaan regresi linier diperoleh dari hubungan antara konsentrasi (ppm) dan absorbansi.

Berdasarkan kurva kalibrasi dan persamaan regresi linier yang diperoleh dapat digunakan sebagai evaluasi nilai serapan dari larutan sampel untuk mengetahui kadar unsur dalam cuplikan. Konsentrasi sampel akan terbaca setelah nilai serapan sampel diinterpolasikan kedalam persamaan regresi linier. Konsentrasi yang terbaca, kemudian dihitung konsentrasi sebenarnya menggunakan rumus sebagai berikut:

\[
\text{Kadar (mg/kg)} = \frac{C}{\text{Penimbangan (kg)}} \times \text{vol (ml)}
\]

<table>
<thead>
<tr>
<th>Tabel 1. Kadar timbal (Pb) dalam sampel rajungan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampel</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Rajungan (mg/kg)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>SD</td>
</tr>
</tbody>
</table>
Gambar 1. grafik rata-rata kadar timbal (Pb) dalam rajungan pada jarak 100, 200 dan 300 m

Pada grafik diatas dapat disimpulkan bahwa konsentrasi logam Pb pada jarak pengambilan 100, 200 dan 300m, kadar logam Pb (timbal) pada jarak pengambilan 200 meter lebih tinggi dibandingkan pada jarak 100 dan 300 meter, hal ini disebabkan karena timbal dipakai sebagai zat tambahan pada bensin yaitu tetra ethyl lead (TEL) dan hasil pembakarannya.
Timbal (Pb) juga digunakan sebagai zat pembakar dan sebagai zat tambahan cat pada kapal, sehingga kemungkinan terjadinya pencemaran timbal (Pb) di laut cukup tinggi. Laut sendiri sering terjadi air pasang dan air surut. Pada keadaan pasang air dari tepi pantai akan naik menuju ke tengah laut dan cemaran yang berasal dari tepi akan akan ikut terbawa menuju ke tengah laut. Sedangkan pada keadaan air surut, air yang berasal dari tengah laut akan turun menuju ke tepi pantai dan cemaran-cemaran yang berasal dari tengah laut akan ikut terbawa ke tepi pantai, jadi kesimpulannya kenapa pada jarak 200 meter pencemaran logam Pb (timbal) lebih tinggi dibandingkan jarak 300 dan 100 meter, karena terjadinya air surut yang menyebabkan kadar naik.

Tabel 2. Kadar logam Zn (seng) dalam sampel rajungan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Jarak pengambilan 100 meter</th>
<th>Jarak pengambilan 200 meter</th>
<th>Jarak pengambilan 300 meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajungan (mg/kg)</td>
<td>0,9900</td>
<td>0,9884</td>
<td>0,9943</td>
</tr>
<tr>
<td></td>
<td>0,9944</td>
<td>0,9986</td>
<td>0,9975</td>
</tr>
<tr>
<td></td>
<td>0,9951</td>
<td>0,9992</td>
<td>1,4911</td>
</tr>
<tr>
<td></td>
<td>0,9953</td>
<td>0,9992</td>
<td>1,4992</td>
</tr>
<tr>
<td>X</td>
<td>0,9937</td>
<td>0,9954</td>
<td>1,2455</td>
</tr>
<tr>
<td>SD</td>
<td>0,00249</td>
<td>0,00606</td>
<td>0,2883</td>
</tr>
</tbody>
</table>
Kadar rata-rata Zn (seng) dalam rajungan

![Graph showing the average Zn concentration (mg/kg) at different sampling distances (m).]

Gambar 2. Grafik rata-rata kadar seng (Zn) dalam rajungan pada jarak 100, 200, 300 meter

Pada gambar grafik diatas dapat disimpulkan bahwa pada jarak 100, 200 dan 300 meter, kadar logam seng (Zn) pada rajungan pengambilan 300 meter lebih tinggi dibandingkan pada jarak 100 dan 200 meter, bisa disebabkan karena pada jarak 300 meter ada banyak kapal-kapal besar yang berlalu lalu, seng (Zn) bisa juga terdapat sebagai campuran dengan logam-logam besi yang terdapat pada kapal, dengan adanya kapal yang berlalu lalu pada jarak tersebut yaitu jarak 300 meter menyebabkan pencemaran logam seng (Zn) cukup tinggi dibandingkan pada jarak 100 dan 200 meter.

Kadar logam dalam sampel yang telah diperoleh kemudian dianalisis menggunakan uji analisa varians satu jalan, apabila F hitung lebih besar dari F tabel dilanjutkan dengan uji pasca anava dengan uji sceeffe semua daerah menunjukkan berbeda bermakna pada jarak 100 meter, 200 meter dan 300 meter. Pada jarak 100 meter dengan 200 meter tidak ada perbedaan karena F hitung (6,96) lebih kecil dari F tabel (7,96), pada daerah dengan jarak 200 meter dengan 300 meter juga ada perbedaan karena di dapatkan F hitung (19,38) lebih besar dari F tabel (7,96), dan pada jarak 300 meter dengan 100 meter juga tidak ada perbedaan karena F hitung (3,50) lebih kecil dari F tabel (7,96). Pencemaran logam Pb pada jarak 100 meter didapatkan jumlah kadar yang lebih kecil dibandingkan jarak 200 meter, sedangkan pada jarak 300 meter didapatkan juga kadar yang lebih kecil dari jarak 200 meter, ini menunjukkan bahwa pada jarak 200 meter pencemaran logamnya lebih banyak, padahal pencemaran di lepas pantai mestinya lebih rendah dari pada daerah pantai karena terjadi pengenceran air laut, sedangkan pencemaran logam yang banyak pada pantai bisa disebabkan karena pabrik tersebut proses pengolahan limbahnya kurang baik sehingga mengakibatkan pantai menjadi tercemar, juga bisa disebabkan karena pabrik-pabrik yang
berada didekat pantai tersebut membuat limbahnya langsung ke tengah laut, sehingga pada jarak tersebut pencemarannya lebih banyak.

Sedangkan pada uji anava logam Zn (seng) menunjukkan tidak adanya perbedaan karena F hitung (2,57) lebih kecil dari F tabel (4,46), karena tidak ada perbedaan maka tidak dilanjutkan dengan uji selanjutnya yaitu uji pasca anava.

Dari hasil analisa dengan anava menunjukkan bahwa tidak adanya perbedaan yang proporsional kadar Pb dan Zn terkandung dalam rajungan yang disebabkan perbedaan jarak pengambilan hal ini karena rajungan dapat berpindah tempat sejauh 200 - 900 meter.

Menurut keputusan Direktur Jenderal Pengawasan Obat dan Makanan No.03725/B/SK/VII/89 tentang batas maksimum cemaran logam dalam makanan untuk rajungan dan hasil olahannya. Batas logam Pb adalah 2,0 mg/kg dan Zn adalah 100,0 mg/kg. Dilihat dari hasil penelitian pada tabel 1 kadar logam Pb dalam rajungan pada Pantai Slamaran melampaui batas maksimum cemaran logam dalam makanan untuk rajungan dan hasil olahannya, sedangkan kadar Zn dalam rajungan pada pantai Slamaran Pekalongan tidak melampaui batas maksimum cemaran logam dalam makanan untuk rajungan dan hasil olahannya.

KESIMPULAN
1. Dalam rajungan terkandung logam Pb dan Zn.
2. Konsentrasi logam Pb (timbal) dalam rajungan pada jarak 100 meter 5,3510 mg/kg, pada jarak 200 meter 7,8539 mg/kg sedangkan pada jarak 300 meter adalah 3,6764 mg/kg, sedangkan konsentrasi logam Zn (seng) dalam rajungan pada jarak 100 meter 0,9937 mg/kg, pada jarak 200 meter 0,9954 mg/kg sedangkan pada jarak 300 meter adalah 1,2455 mg/kg. Konsentrasi logam Pb (timbal) dalam rajungan di pantai Slamaran Pekalongan melebihi batas yang ditetapkan oleh pemerintah yaitu > 2,0 mg/kg, dan untuk logam Zn (seng) kadar logamnya tidak melebihi batas yang ditetapkan oleh pemerintah yaitu < 100 mg/kg.
3. Kadar logam Pb (timbal) pada jarak 100, 200 dan 300 meter ada perbedaan dan Zn (seng) pada jarak pengambilan 100, 200 dan 300 meter tidak ada perbedaan bermakna.

SARAN
1. Masih perlu dilakukan penelitian lebih lanjut dengan jangka waktu yang lebih lama, misalnya satu tahun untuk mengetahui pengaruh perbedaan musim, saat musim hujan dan musim kemarau dan saat air laut pasang dan surut.
2. Melihat tingginya kadar logam Pb dalam rajungan maka perlu dilakukan pemberian informasi pada masyarakat mengenai bahaya logam berat.
3. Untuk menanggulangi dampak negatif pencemaran perlu dilakukan pemeliharaan mutu perairan.
4. Perlu diteliti untuk kemungkinan adanya logam berat yang lain yaitu Hg, Cd, Cu, dan sebagainya yang berbahaya bagi kesehatan.
5. Perlu dilakukan penelitian dengan menggunakan sampel biota laut lainnya seperti ikan dan udang.

DAFTAR PUSTAKA
