PENGEMBANGAN PROTOKOL MEDIA UNTUK KULTUR EMBRIO KELAPA KOPYOR (COCOS NUCIFERA L.) DI JAWA TIMUR

Sukendah

Laboratorium Bioteknologi Agronomi, Fakultas Pertanian, UPN “Veteran” Jawa Timur, Surabaya 60294, Indonesia
Email: keken2@yahoo.com

ABSTRAK

Dalam usaha untuk mendapatkan kelapa Kopyor yang true-to-type, satu-satunya cara adalah dengan menginokulasi embrio dalam media buatan pada kondisi in-vitro. Ada lima (5) protokol media dengan dengan media dasar Y3 (Eeuwens) dan MS (Murashige & Skoog) yang dicoba yaitu M1 (Protokol UPLB/Philippines) sebagai kontrol, M2 (Protokol I) dengan rangkaian Y3 cair; Y3 cair; Y3 cair (media Y3 cair pada tahap inisiasi; Y3 cair sub kultur I dan Y3 cair sub kultur II); M3 (Protokol II) dengan rangkaian media MS padat; Y3 padat; Y3 padat, M4 (Protokol III) dengan rangkaian media MS padat; MS padat; MS padat, M5 (Protokol IV) dengan rangkaian media Y3 cair; MS padat; Y3 cair, Mx (Protokol V) dengan rangkaian media MS cair; Y3 padat; Y3 cair. Pertumbuhan embrio kelapa Kopyor sangat cepat pada Protokol media II (serangkaian Y3 padat pada tahap inisiasi, subkultur I dan II), sehingga menjadi plantlet yang sempurna. Sebaliknya pada protokol media I (serangkaian Y3 cair) embrio hanya membesar tetapi tidak dapat berkekambah. Pada Protokol III embrio memberikan respon yang positif meskipun perkembangan embrio tidak secepat seperti pada protokol II. Pertumbuhan embrio terhenti atau mengalami stagnasi pada serangkaian media protokol IV.

Kata kunci: Protokol Media, Kultur Embrio, Kelapa Kopyor

ABSTRACT

In effort to get the true-to-type Kopyor coconut, the only way is inoculate the embryo in synthetic media in in-vitro condition. There were five media protocol tried with basal medium Y3 (Eeuwens) and MS (Murashige & Skoog). They were UPLB/Philippines Protocol as a control, Protocol I with a series of liquid media Y3; liquid Y3; liquid Y3 (liquid Y3 in initiation phase; liquid Y3 in subculture I and II), Protocol II with a series of solid media Y3; solid Y3; solid Y3, Protocol III with a series of solid media MS; solid MS; solid MS, Protocol IV with a series of liquid media MS; solid MS; liquid Y3, and Protocol V with a series of liquid media MS; solid Y3; liquid Y3. The growth of Kopyor coconut embryo was very fast in media Protocol II (a series of solid media Y3), so forming prefect plantlet. On the other hand, in Protocol I (a series of liquid media Y3) embryos only swelled but they did not germinate. In Protocol III, embryos gave positive response although their growth was not as fast as Protocol II. The growth of embryos stopped or got stunted in a series of media Protocol IV.

Key words: Medium Protocol, Embryo culture, Kopyor coconut

I. PENDAHULUAN

Kelapa kopyor merupakan buah yang tergolong langka sehingga harganya menjadi 10-15 kali lebih mahal dari kelapa biasa. Keistimewaan kelapa kopyor terletak pada daging buahnya yang bertekstur lembut dan rasanya gurih serta renyah. Di alam sulit ditemukan kelapa kopyor yang true-to-type karena sifat gen kopyor yang menyebabkan daging buah kelapa atau endosperm sangat lunak, sehingga tidak bisa dimanfaatkan oleh embrio untuk berkekambah. Satu-satunya cara untuk menyelamatkan dan menumbuhkan kelapa kopyor tersebut adalah dengan teknik kultur
embryo, yaitu menginokulasi embryo kelapa kopyor ke dalam media buatan yang mengandung unsur makro-mikro, vitamin, sucrose dan bahan aditif pada kondisi in-vitro (Toruan, 1978; Catibog, 2001 (lihat pada website: http://www.sttii.dost.gov.ph)).

Selama tahap pengkultur, embryo membutuhkan beberapa tahapan pergantian media. Maksud dari pergantian media tersebut adalah untuk mengganti unsur hara yang hilang teresap embryo untuk proses pertumbuhan dan untuk mengarahkan pertumbuhan embryo pada tahap fisiologis berikutnya sampai menjadi plantlet/tibit yang sempurna. Rangkaian baku kegiatan pergantian media tersebut disebut protokol media.


II. METODA PENELITIAN


Isolasi dan Sterilisasi Embrio

Embrio disolasi berupa silinder endosperm dari buah kelapa kopyor umur 11-12 bulan dengan bantuan alat cork borer berdiameter 1-2 cm. Silinder endosperm dimasukkan kedalam erlenmeyer yang benis aquadest, siap untuk disterilisasi. Sterilisasi endosperm dilakukan dengan menggunakan klorok 100% selama 10 menit dan dibilas dengan aquadest steril. Di dalam Laminar Air Flow embrio diekstrak dari silinder endosperm. Sterilisasi embrio menggunakan klorok 10% selama 5 menit yang dilakukan dua kali. Sebelum diinokulasi embrio dibilas dengan aquadest steril sebanyak tiga kali.

Inokulasi dan Inkubasi Embrio

Embrio yang sudah steril diinokulasi ke dalam media sesuai dengan perlakuan protokol medinya, yaitu ada 6 macam perlakuan protokol media untuk tahap inisiasi. Jika embrio sudah berkecambah, embrio dipindah ke protokol media berikutnya yaitu tahap subkultur 1. Perpindahan plantlet kelapa kopyor pada periode berikutnya dilakukan diserangkaian media protokol untuk subkultur II (Tabel I).

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Protokol Media</th>
<th>Media yang Digunakan</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>UPLB/kontrol</td>
<td>Y2 Cair Y3 Padat</td>
</tr>
<tr>
<td>M2</td>
<td>Protokol I</td>
<td>Y2 Cair Y3 Padat</td>
</tr>
<tr>
<td>M3</td>
<td>Protokol II</td>
<td>Y3 Padat Y3 Padat</td>
</tr>
<tr>
<td>M4</td>
<td>Protokol III</td>
<td>MS Padat MS Padat</td>
</tr>
<tr>
<td>M5</td>
<td>Protokol IV</td>
<td>MS Cair MS Padat</td>
</tr>
<tr>
<td>M6</td>
<td>Protokol V</td>
<td>MS Cair Y1 Padat</td>
</tr>
</tbody>
</table>

III. HASIL

Tabel II. Pembentukan akar dan tunas pada masing-masing protokol media

<table>
<thead>
<tr>
<th>Protokol Media</th>
<th>Akar</th>
<th>Tunas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protokol UPLB (kontrol)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Protokol I (Y3C.Y3C.Y3C)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Protokol II (Y3P.Y3P.Y3P)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Protokol III (MSP:MSP:MSP)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Protokol IV (Y3C.MSP.Y3C)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Protokol V (MSC.Y3P.Y3C)</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Keterangan: + = terbentuk akar/dan tunas
- = tidak terbentuk akar/dan tunas

Pembentukan tunas kelapa kopyor terjadi hampir pada semua protokol media, kecuali protokol I. Sedangkan pembentukan akar terjadi pada protokol II, III dan V serta protokol UPLB (Tabel II). Pada protokol I (embrio diokulasi pada serangkaian media Y3 cair), embrio hanya menunjukkan gejala-gejala akan berkecambah yaitu embrio membesar dan permukaan kulit embrio merekah. Di lain pihak embrio yang diokulasi pada serangkaian media MS padat (Protokol IV) dapat membentuk tunas tetapi tidak membentuk akar.

Tabel III. Rata-rata panjang akar primer, jumlah akar lateral, panjang tunas dan jumlah daun pada masing-masing protokol media

<table>
<thead>
<tr>
<th>Protokol Media</th>
<th>Panjang akar primer (cm)</th>
<th>Jumlah akar lateral</th>
<th>Panjang tunas (cm)</th>
<th>Jumlah daun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protokol UPLB/Kontrol</td>
<td>2.0</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Protokol II</td>
<td>4.0</td>
<td>7.0</td>
<td>5.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Protokol III</td>
<td>2.0</td>
<td>-</td>
<td>2.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Protokol IV</td>
<td>4.5</td>
<td>3.5</td>
<td>4.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Keterangan: - = belum terbentuk akar

Pada Tabel III tampak bahwa Protokol media II dan V membentuk plantlet sempurna. Pada Protokol UPLB dan Protokol III tidak terbentuk akar lateral. Pada Protokol IV bahkan tidak terbentuk akar, sedangkan daun sudah terlihat tetapi belum membuka sempurna. Embrio pada Protokol II menunjukkan pertumbuhan yang sangat cepat dengan terbentuknya akar dan tunas yang lebih panjang serta akar lateral dan jumlah daun yang lebih banyak dari pada protokol media lainnya.

IV. PEMBAHASAN

Komposisi dan rangkaian protokol media disesuaikan dengan kondisi kultur yang akan dikembangkan. Untuk genotype kelapa kopyor yang ada di Kabupaten Sumenep (sentra kelapa kopyor di Jawa Timur), protokol media yang paling sesuai adalah media dasar Eeweuns (Y3) baik pada fase awal (tahap inisiasi) maupun fase berikutnya (tahap subkultur I dan II). Hal yang menarik adalah embrio tidak dapat berkembang pada serangkaian media cair, meskipun komposisi media yang digunakan sama yaitu Eeweuns. Meskipun banyak ahl kultur jaringan berpendapat bahwa media cair lebih mendukung pertumbuhan ekspan yang dikulturkan karena ekspan lebih mudah menyerap unsur hara dalam kondisi media cair dan dapat dilakukan di seluruh permukaan ekspan, tetapi untuk embrio kelapa hal tersebut tidak terjadi. Embrio adalah bakal calon tanaman yang
sempurna sehingga secara fisiologis mungkin cara penyierapan unsur hara untuk rangkaian pertumbuhannya agak berbeda dengan ekspian dari bagian tanaman (organ atau jaringan). M. Kubunbo et al. (1996) membuktikan bahwa embrio yang terlalu lama dalam media cair daya kecambahnya menurun, bahkan umumnya tidak berkecambah sama sekali dan apabila berkecambah embrio tumbuh dengan lambat dan klorofil mengalami defisiensi. Bukti lainnya adalah pada tingkat pemberian sukrosa 60 g/l persentase perkecambah dan tingkat survival embrio dalam media Y3 pada jauh lebih baik dibandingkan dengan media Y3 cair (Karun et al., 1998).

Setelah fase perkecambahan, embrio dipindah ke media baru (subkultur I dan II) guna menunjang proses pertumbuhan akar dan tunas. Tampaknya penangant media ini sangat berpengaruh pada pertumbuhan embrio pasca perkecambahan. Pada protokol IV dimana embrio dipindah dari media Y3 cair ke media MS padat, embrio mengalami shock fisiologis dengan perubahan media yang drastis sehingga sulit membentuk akar dan daun, meskipun hal tersebut tidak terjadi jika susunan protokol media dibalik yaitu dari MS cair ke Y3 padat seperti pada Protokol V. Kesulitan pembentukan akar lateral dialami oleh embrio yang dipindah dari MS padat ke MS padat (Protokol III). Jadi apapun bentuk media awal (tahap ini), embrio lebih sesuai tumbuh pada media Y3 padat pada fase pertumbuhan berikutnya (subkultur I) yaitu fase pembentukan akar dan tunas. Untuk fase pendewasaan bibit (subkultur II) media kultur dapat berbentuk padat maupun cair.


V. UCAPAN TERIMA KASIH

Karya ini tidak akan terwujud jika tidak ada uluran tangan banyak orang. Pada kesempatan ini penulis menyampaikan rasa terima kasih yang dalam kepada Hari Prasetyo, Nanang, Adi Rachmat, Ftri dan Ellysa atas segala bantuan yang mereka berikan selama penelitian. Rasa penghargaan kepada semua anggota tim kelapa kopyor atas motivasinya. Rasa terima kasih tak terhingga kepada Dekan dan Fakultas Pertanian UPN "Veteran" Jawa Timur yang telah memberi dukungan moral dan bantuan dana penelitian. Terakhir kepada semua pihak yang telah banyak membantu pada proses sampai selesainya penelitian kelapa kopyor yang tidak bisa penulis sebutkan satu per satu.
VI. DAFTAR PUSTAKA


