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Abstract 
 
Variable Rate Technology (VRT) offers an opportunity to improve production efficiency by allowing input applications 
to fluctuate in response to spatial variations in soil characteristics and nutrient levels.  Society may also benefit from 
reduced negative externalities, such as surface and groundwater contamination, from input applications.  Using a 
dynamic spatial model, this study examines how the interaction among variability, spatial autocorrelation, and mean 
level of soil fertility affects optimal sampling density and the economic gains from VRT.  VRT was found to be 
profitable under selected conditions, and the optimal grid size will vary with these conditions.  In the case where 
variability and mean fertility levels are significantly high associated with low spatial autocorrelation, VRT produces 
greater net returns than Uniform Rate Technology (URT), even with the smallest grid size to base the input application 
decisions.  Results also demonstrate that optimal grid size increases with increased spatial autocorrelation. 
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1.  Introduction 
      
Global Positioning Systems (GPS) and Geographical 
Information Systems (GIS) are two key technologies 
that enable the emergence of Site-Specific Management 
(SSM) technology.  While GPS allows producers to 
identify field locations so that inputs can be applied 
appropriately to individual field locations, GIS 
technology allows users to store field input and output 
data as separate layers in a digital map and to retrieve 
and utilize these data for future input allocation 
decisions [1].  With the availability of supporting 
technologies, SSM allows producers to (1) capture 
detailed field spatial data, (2) interpret and analyze that 
data, and (3) implement an appropriate management 
response based on the information.   

 
Variable Rate Technology (VRT) is a central 
component of the much-touted Site-Specific 
Technologies.  VRT allows producers to allocate inputs 
more efficiently by exploiting spatial variations in soil 
type, fertility levels, and other field characteristics.  A 
potential consequence of VRT for the producer is 
greater profit arising from higher yield and/or reduced 
variable input costs.  Society may also benefit from 
reduced negative externalities such as surface and 
groundwater contamination from fertilizers and 
pesticides.   

Variation in soil attributes is a necessary condition for 
the profitable application of VRT.  That is, if a field is 
homogenous, then the optimal input application will not 
vary across the field and VRT creates no value.  If the 
field is not homogenous, however, VRT has potential 
value provided that appropriate input recommendations 
for each part of the field can be derived. 

 
Accurate estimation of field characteristics is key to the 
successful implementation of VRT. Increased sampling 
density allows the input application to be better tailored 
to the individual site characteristics. However, increased 
sampling also comes at higher cost.  Grid Soil Sampling 
(GSS) involves dividing a field into square sections of 
certain acreage and gathering soil samples from each 
section.  With the aid of DGPS as a positioning system, 
producers can identify the location of each grid.  In 
general, the optimal soil sampling density depends on a 
number of factors, including: (1) the smallest possible 
area that can be managed under current technology, (2) 
the expected variability in soil fertility, and (3) costs of 
soil sampling.  

 
Another factor that affects optimum grid sampling 
density is the spatial autocorrelation of soils and other 
field characteristics, and ultimately, crop yields.  A 
positive spatial autocorrelation is commonly found in 
agronomic studies, where neighboring areas are more 
similar than those farther apart.  Similarity in soil type 
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and other field characteristics in neighboring areas may 
cause those areas to have the same yield-limiting 
factors.  For the same variability in soil fertility, the 
more spatially correlated the soil nutrients, the larger the 
economically optimum grid size will be. In other words, 
if neighboring areas have similar soil and field 
characteristics, then aggregation errors will be relatively 
small and a small grid size may not be warranted. 

 
A number of studies have examined the economic 
feasibility of VRT. These studies have produced mixed 
findings, leaving the profitability issue unresolved.  This 
divergence of findings may result from the use of 
different rules to allocate the variable resource or from 
differences in the mean level or variability of nutrients 
within the field.  Differences in spatial autocorrelation 
of field characteristics also may partially explain the 
contradictory results.  Indeed, it is quite likely that all of 
the above conditions combine to explain the differences 
observed. This study will address the inconsistent 
results in the literature by jointly considering the impact 
of level, variability, and spatial autocorrelation of soil 
nutrients within a field on the economic performance of 
VRT fertilizer applications.   

 
The primary objective of this study is to examine the 
economic gains from VRT Phosphorus (P) and 
Potassium (K) applications in a corn-soybean rotation.  
Alternative fertility distributions with different 
variability and spatial autocorrelation profiles will be 
generated to analyze their effect on optimum grid size 
and the economic performance of VRT.  A dynamic 
spatial model will be used to capture the temporal and 
spatial variations in soil nutrients.  The dynamic 
features of the model allow us to capture the carry-over 
process of soil nutrients; the spatial features of the 
model allow us to capture interconnections of soil 
nutrients among neighboring grids. 
 
2.  Methods 
 
Spatial autocorrelation of the data may exist if observed 
values display a non-random pattern in space.  While 
variability in soil fertility is commonly expressed in 
terms of the coefficient of variation (CV), spatial 
autocorrelation is generally expressed in terms of a 
correlation coefficient, such as the Moran statistic, 
which indicates the degree of similarity between 
association in value and association in space. The 
Moran (I’) statistic can be written as [2]: 
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where n is the number of zones, xi is the value of 
variable x in zone i, and wij is the weight.  The Moran 
statistic can take on values between –1.0 and +1.0.  The 
weights usually take the form of a binary contiguity 
matrix, where the elements of the wij matrix take on 
values of 1 if observations i and j are neighbors, and 
zero values otherwise [3-4].   

 
This study uses dynamic simulation with hypothetical 
data to examine how the interaction among variability, 
spatial autocorrelation, and mean level of soil fertility 
affects optimal sampling density and the economic 
gains from VRT.  The soil P and K values generated for 
the hypothetical field will display alternative mean 
levels, variability and spatial autocorrelation of soil 
fertility.  The simulated soil fertility data will be treated 
as ‘truth’. The performance of VRT of P and K, 
assuming different grid sizes, will be examined in this 
hypothetical universe.   
 
For the purpose of this study, a hypothetical 90-acre 
field of corn-soybean rotation under northwest Ohio 
conditions will be used as the basis of analysis.  The 
hypothetical field will be divided into 144 grids with an 
area of 0.625-acre each in the base scenario.  In 
alternate scenarios, larger grid sizes of 2.50, 5.625, 10, 
22.50, and 90 acres are considered.  The 90-acre grid 
corresponds to one management zone per field, and thus 
represents the case of Uniform Rate Application.  Soil P 
and K values for each of these grids is obtained by 
taking the average of the soil test values from the base 
model (i.e., soil P and K values from the 0.625-acre grid 
size).  Thus, soil P and K values for each of the larger 
grids is given by: 
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where Si is the ‘true’ nutrient level for each 0.625-acre 
grid contained in the larger grids, S is the blended 
(average) nutrient level for the larger grid, and g is the 
number of small cells within each larger grid. Empirical 
soil test data for P and K in northwest Ohio is used as 
guidance in the generation of soil P and K values.   
 
A multivariate lognormal distribution of soil nutrient 
values with correlation coefficient of 0.40 is generated 
for the 0.625-acre grid.  Different soil fertility 
distributions will be generated by varying three 
parameter values:  (1) the mean of the soil nutrient 
values, (2) the CV of the soil nutrient values that 
captures the degree of variability, and (3) the spatial 
autocorrelation coefficient that capture the association 
in value and space of the soil nutrients.  Two values are 
assumed for each of these three parameter values.  
Additionally, a high mean fertility scenario is included, 
resulting in 20 fertility distribution scenarios.  Parameter 
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values for coefficient of variation are 30 and 80 percent, 
and the spatial autocorrelation coefficients (Moran 
statistic) are 0.25 and 0.75. 
 
In this study, spatial autocorrelation is represented by 
the Moran statistic, which is expressed in equation (1).  
A first order binary contiguity matrix based on the 
Queen criterion is used for the weight.  Using a 
simulation algorithm developed by Goodchild [5], a 
fertility distribution with a specific Moran coefficient 
can be obtained by doing a spatial rearrangement of the 
soil nutrient values.   
 
Specifications for the production and carry-over 
functions are obtained from Schnitkey et al. [6].  The 
production function has the following form: 
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where Yi, j is crop yield in bushels per acre from grid i 
for crop j (j = corn when t is even and soybeans 
otherwise), X i,P and X i,K represent the amount of P and 
K applied per acre, Si,P,t  and Si,K,t represent the amount 
of P and K per acre in the soil at the beginning of 
growing season t,  αj and βj are parameters of the 
production function.  For corn, α0,j = 164, α1,j = 0.0091, 
α2,j = 0.043, α3,j = 0.008, and α4,j = 0.0064.  For 
soybeans, α0,j = 45, α1,j = 0.0071, α2,j = 0.0540, α3,j = 
0.157, and α4,j = 0.0038. 
 
The carry-over function is specified as follow: 
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where Si, f, t+1 is the amount of soil nutrient f (f = P, K) at 
the beginning of growing season t+1 in grid i, and  βf, j 
are carry-over function parameters.  For P carry-over in 
corn, βf, j,1 = 0.1, βf, j,2 = 0.037, βf, j,3 = 0.0.  For P carry-
over in soybeans, βf, j,1 = 0.1, βf, j,2 = 0.08, βf, j,3 = 0.0.  
For K carry-over in corn, βf, j,1 = 0.25, βf, j,2 = 0.0675,  
βf, j,3 = 5.0.  For K carry-over in soybean, βf, j,1 = 0.25,  
βf, j,2 = 0.35, βf, j,3 = 5.0. 

 
With VRT, input applications for each grid depend only 
on that grid’s soil nutrient values.  Therefore, the 
optimal rates for each grid are found independently of 
other grids.  By assuming that the producer wishes to 
maximize expected profits, the optimum rates of P and 
K are obtained using dynamic programming, that is, by 
solving the following Bellman equation: 
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where Vi(.) is the value function for grid i, Pj is per 
bushel price of crop j, WP is per pound price of P2O5, 
WK is per pound price of K2O, δ is a discount factor 
(i.e., δ = 1/(1+d) and d is the discount rate).  The 
optimization is solved using a $1.85 per bushel corn 
price, a $4.30 per bushel soybean price, a $0.24 per 
pound P2O5 price, a $0.13 per pound K2O price, and a 
discount rate of 5 percent. 

 
Return for a field under VRT application is equal to the 
sum of the discounted gross returns from all grids, 
which is given by: 
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Estimation of the returns is obtained using simulation 
[7].  The estimated gross margins are annualized using 
the following formula: 
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where V is the sum of discounted returns per acre, d is 
the discount rate, n is the number of years, 

 
The process of calculating returns from VRT is repeated 
for each grid size, starting from the smallest size (0.625 
acres) to the largest size (90 acres).  Under uniform rate 
application, the whole field (90 acres) is treated 
identically with fertilizer applications based on the 
average soil nutrient levels for the entire field.  This will 
be considered as Uniform Rate Technology (URT) with 
full information.   
 
3.  Results and Discussion 
 
The steady states of soil P and K are shown in Figure 1 
and 2, and demonstrate that P reaches the steady state 
level more rapidly than K.  The estimated annualized 
gross margins from alternative fertility distributions are 
summarized in Table 1.   

 
The estimated annualized gross margin is shown to 
increase with increased mean fertility levels.  Increases 
in estimated annualized gross margins are more evident 
with  higher  mean  soil P levels than for similarly high 
levels of K.  One possible reason is that yield penalties 
for being below the steady state level are more severe 
for P than for K.  In addition, more P is removed per 
unit of yield than is K.   
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Figure 1:   Soil P steady state levels 
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Figure 2:  Soil K steady state levels 
 

 
 
 

Table 1: Estimated Annual per Acre VRT Gross Returns from Alternative Fertility Distributions and Grid Sizes 
 

            

P  K  Grid Size 
            

Mean 
(lb/ac) 

CV 
(%) 

I’ 
(P & K) 

Mean 
(lb/ac) 

CV 
(%) 

 0.625 
(acre) 

2.50 
(acre) 

5.625 
(acre) 

10.00 
(acre) 

22.50 
(acre) 

90.00 
(acre) 

 
Scenario 

            
        

       Annual Gross Returns ($/Acre) 
             

1 25 30 0.25 75 30  208.192 207.974 207.898 207.853 207.832 207.805 
2   0.75    208.192 208.126 208.075 208.031 207.939 207.805 
3  80 0.25  80  207.560 206.224 206.151 205.816 205.799 205.685 
4   0.75    207.560 207.192 206.779 206.500 206.369 205.685 
             

5 25 30 0.25 150 30  209.317 209.004 208.904 208.808 208.789 208.770 
6   0.75    209.317 209.232 209.148 209.058 208.814 208.770 
7  80 0.25  80  208.724 206.815 206.336 206.396 206.100 206.050 
8   0.75    208.724 208.038 207.759 207.259 206.707 206.050 
             

9 50 30 0.25 75 30  210.990 210.464 210.416 210.283 210.276 210.239 
10   0.75    210.990 210.885 210.730 210.690 210.497 210.239 
11  80 0.25  80  210.329 206.983 206.177 206.010 206.214 206.307 
12   0.75    210.329 209.728 209.073 208.859 207.583 206.307 

             

13 50 30 0.25 150 30  212.120 211.582 211.378 211.292 211.261 211.211 
14   0.75    212.120 211.945 211.829 211.660 211.500 211.211 
15  80 0.25  80  211.496 207.860 207.359 206.729 207.023 206.706 
16   0.75    211.496 210.350 209.891 209.538 208.273 206.706 

             

17 75 30 0.25 225 30  215.062 214.031 213.777 213.599 213.557 213.538 
18   0.75    215.062 214.774 214.614 214.341 214.088 213.538 
19  80 0.25  80  214.387 209.888 208.083 207.212 207.292 206.899 
20   0.75    214.387 213.362 212.011 210.832 209.864 206.899 
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Figure 3: Estimated Annualized Gross Returns for Alternative Fertility Distributions and Grid Sizes 
 
 
 
For a given mean fertility level and with spatial 
autocorrelation constant, the estimated annualized 
gross margins are lower with higher soil fertility 
variation. This effect is associated with the nature of 
the yield plateau of the Mitscherlich-Baule production 
function.  The value of yield gains for grids with soil 
nutrient values above the steady state levels are smaller 
than the increased cost of applied P and K in grids with 
soil nutrient values below the steady state levels. 
 
For a given mean fertility level and with spatial 
autocorrelation constant, gross margins increase with 
decreased grid sizes, however, this effect is less 
pronounced with lower soil fertility variation.  As the 
soil fertility is less homogeneous, treating each grid 
independently results in more gain, because grids with 
soil nutrient levels below and above the steady state 
levels can be identified. 
 
As grid size increases, the aggregation effect becomes 
more prominent with decreased spatial autocorrelation.  
Even for the same degree of variability, gross margins 
decrease more rapidly with increased grid sizes as the 

spatial autocorrelation decreases.  In general, the 
benefit of breaking up the hypothetical field into 
smaller grid size is much more prominent with 
increased spatial variability associated with decreased 
spatial autocorrelation. 
 
Figure 3 compares variation in gross margin for 
alternative grid sizes for three selected scenarios. 
Those scenarios have same mean fertility levels with 
different degrees of variability and spatial 
autocorrelation coefficients.  It shows that given the 
same variability and mean fertility levels, aggregation 
effect is weaker for higher spatial autocorrelation 
(scenario 16) than that of lower spatial autocorrelation 
(scenario 15).  Weak aggregation effect results in 
higher gross margins.  However, given the same mean 
fertility values and spatial autocorrelation coefficient, 
gross margins are higher for lower CV (scenario 14) 
than that of higher CV (scenario 16).  Low variation 
associated with high mean fertility levels may imply 
that the hypothetical field has more grids with soil 
nutrient values close to the steady state levels.  As a 
result, reduced input costs can be expected.
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Table 2: Estimated Annual per Acre VRT Net Returns with Grid Soil Sampling Every Third Year 
 

            

P  K  Grid Size 
            

Mean 
(lb/ac) 

CV 
(%) 

I’ 
(P & K) 

Mean 
(lb/ac) 

CV 
(%) 

 0.625 
(acre) 

2.50 
(acre) 

5.625 
(acre) 

10.00 
(acre) 

22.50 
(acre) 

90.00 
(acre) 

 
Scenario 

            

             

       Annual Net Returns ($/Acre) 
       

      

1 25 30 0.25 75 30  202.992 205.174 205.543 205.653 205.743 207.782 * 

2   0.75    202.992 205.326 205.719 205.831 205.850 207.782 * 

3  80 0.25  80  202.360 203.424 203.796 203.616 203.710 205.663 * 

4   0.75    202.360 204.392 204.423 204.300 204.280 205.663 * 
             

5 25 30 0.25 150 30  204.117 206.204 206.548 206.608 206.700 208.748 * 

6   0.75    204.117 206.432 206.792 206.858 206.725 208.748 * 

7  80 0.25  80  203.524 204.015 203.981 204.196 204.011 206.028 * 

8   0.75    203.524 205.238 205.403 205.059 204.619 206.028 * 
             

9 50 30 0.25 75 30  205.790 207.664 208.061 208.083 208.187 210.217 * 

10   0.75    205.790 208.085 208.374 208.490 208.408 210.217 * 

11  80 0.25  80  205.129 204.183 203.821 203.810 204.125 206.284 * 

12   0.75    205.129 206.928 * 206.717 206.659 205.494 206.284 
             

13 50 30 0.25 150 30  206.920 208.782 209.022 209.092 209.172 211.189 * 

14   0.75    206.920 209.145 209.473 209.460  209.411 211.189 * 

15  80 0.25  80  206.296 205.060 205.003 204.529 204.934 206.683 * 

16   0.75    206.296 207.550 * 207.535 207.338 206.184 206.683 
             

17 75 30 0.25 225 30  209.862 211.231 211.421 211.399 211.469 213.516 * 

18   0.75    209.862 211.974 212.258 212.141 211.999 213.516 * 

19  80 0.25  80  209.187 * 207.088 205.727 205.012 205.203 206.877 

20   0.75    209.187 210.562 * 209.655 208.632 207.775 206.877 
            

* Highest Net Return 
 
 
In general, variation and spatial autocorrelation in soil 
attributes are key factors in analyzing the optimum grid 
size.  That is, if the field is not homogeneous and less 
spatially correlated, then applying VRT in smaller grid 
size has a potential value for significant profit relative to 
URT. 
 
In spite of its benefit, there are some costs associated 
with VRT (i.e., sampling costs and application fee). By 
assuming cost of grid soil sampling of $6.00 per sample 
and VRT application fee $2.00 per acre surcharge over 
URT, table 2 shows the net economic gains of VRT.  
Soil samples are assumed to be taken every three years 
with sampling costs amortized over that period.   

After adjusting for the application fee and grid sampling 
costs, VRT becomes less promising, particularly for 
scenarios with low variability and low mean fertility 
levels.  Increase in crop yield from treating each 
management zone independently might not cover the 
extra costs associated with VRT. 
 
In scenarios with low variation of fertility levels (CV = 
30%), URT was the optimal strategy in all scenarios.  
Generally, VRT was identified as the optimal strategy 
only in scenarios that displayed both high variability 
and high mean fertility level.  In the case where 
variability and mean fertility level are significantly high 
associated with low spatial autocorrelation, VRT 
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produces greater net return than URT, even with the 
smallest grid size to base the input application 
decisions, as in scenario 19.  As the soil attributes are 
less homogeneous in value and less spatially correlated 
in space, treating the field in smaller grid size results in 
more gain.  On the other hand, as the spatial 
autocorrelation increases, soil attributes that are close in 
space become more similar; in this case, larger grid size 
result in higher net return, as in scenario 20.   
 
The analyses in Table 2 highlight the importance of data 
collection and application fees in the economics of 
VRT.  Clearly, VRT is only profitable under selected 
conditions, and the optimal grid size will vary with 
these conditions.  It is worth noting that, if sampling 
costs per acre per year were reduced, or if these costs 
were spread over other variable rate input decisions 
each of which could produce a small improvement in 
gross crop value, then the optimal decision would more 
frequently include VRT and the optimal grid size would 
be smaller. For instance, if the sampling/analysis costs 
were cut in half (from $6 to $3 per sample) from those 
used in Table 2, VRT would become optimal 50 percent 
more often; scenarios 11, 12, 15, 16, 19 and 20 would 
be best with VRT under this reduced cost assumption.  
These results underscore the potential positive impact 
on profitability of VRT of any new technology that will 
reduce the costs of soil sampling and analysis or VRT 
application services. 
 
4.  Conclusions 
 
It is well understood that variation in soil attributes is a 
necessary condition for the profitable application of 
VRT.  That is, if a field is homogenous, then the optimal 
input application will not vary across the field and VRT 
creates no value.  The results of this study demonstrate 
that not only is variation important, but there is an 
important interaction among variation, spatial 
autocorrelation, and mean level of soil attributes such as 
fertility.   

 
In general, the benefit of breaking up the field into 
smaller grid size is much more prominent with 
increased variability associated with decreased spatial 
autocorrelation.  This is the case where VRT has a 
potential for significant profit relative to URT.  
However, the application fee and grid soil sampling 
costs associated with it may cause VRT only profitable 
under selected conditions. 
 
In the case where variability and mean fertility levels 
are significantly high associated with low spatial 
autocorrelation, VRT produces greater net return than 

URT, even with the smallest grid size to base the input 
application decisions.  As the soil attributes are less 
homogeneous in value and less spatially correlated in 
space, treating the field in smaller grid size results in 
more gain.  On the other hand, as the spatial 
autocorrelation increases, soil attributes that are close in 
space become more similar; in this case, VRT with 
larger grid size result in higher net return than URT.   
 
Intensive grid soil sampling is the primary method used 
today to determine VRT fertilization rates.  However, 
intensive soil sampling is relatively costly.  It may be 
possible for producers to utilize a GPS-equipped yield 
monitor to generate yield maps.  Although they will not 
get information about soil nutrients from yield 
monitoring, yield patterns may be a useful indicator of 
spatial autocorrelation of key field characteristics.  This 
may allow the producer to make an informed judgment 
about whether an investment in intensive soil sampling 
might be warranted, and what grid size might be 
appropriate.  This suggests that a fruitful area of further 
research may be techniques to identify appropriate 
management zones using yield data. 

 
Study results also suggest that new technologies or 
practices that lower soil sampling/analysis costs will 
substantially increase the likelihood that VRT will be 
profitable.  A halving of the soil sample costs resulted in 
an increase of more than one-third in the number of 
scenarios where VRT was profitable.  It also resulted in 
smaller optimal grid sizes in a number of scenarios. 
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