AUTONOMOUS MOBILE ROBOT BERBASIS PLAYER/STAGE
MENGGUNAKAN PARALLEL SELF-ORGANIZING
FEATURE MAPS UNTUK PEMETAAN LINGKUNGAN
GLOBAL YANG TIDAK DIKETAHUI

Mochamad Hariadi, Muhtadin, Mauridhy Hery Purnomo, Muhammad Rivai
Bidang Studi Teknik Sistem Komputer
Jurusan Teknik Elektro - Fakultas Teknologi Industri
Institut Teknologi Sepuluh Nopember, Surabaya-60111
Email: mochar@ee.its.ac.id

ABSTRAK

Autonomous mobile robot adalah salah satu jenis robot yang dikembangkan dengan kemampuan untuk
mengendalikan dirinya sendiri walaupun dalam lingkungan yang tidak diketahui. Untuk dapat melakukan
pengendalian secara mandiri, bisa dilakukan dengan melalui proses pembelajaran secara mandiri tanpa supervisi
(unsupervised) dengan mempertimbangkan input dari sensor-sensor yang dipakai. Pada saat robot melakukan
pengenalan terhadap lingkungannya, diperlukan perosesan komputasi yang berat dengan waktu yang lama.
Penelitian ini akan membahas tentang penggunaan Kohonen Self-Organizing Feature Maps (SOFM) atau (SOM)
sebagai metode pembelajaran Autonomous mobile robot dalam mengenali lingkungannya. Proses pembelajaran
dilakukan dengan menggunakan parallel processing menggunakan LAM-MPI, Simulasi dilakukan dengan
menggunakan software simulasi Player/ Stage. Hasil simulasi menunjukkan bahwa SOM menampilkan performa
yvang baik dalam memetakan lingkungan yang tidak diketahui tanpa supervisi. Hasil pemrosesan dengan
menggunakan parallel processing juga menunjukkan dicapainya kecepatan yang signifikan dalam proses
pembelajaran robot untuk mengenali lingkungannya. Planning dengan menggunakan A* mampu untuk

memberikan jalur yang efektif bagi robot dalam mencapai titik tujuan.

Kata Kunci: autonomous, pemetaan, path-planning, komputasi parallel, parallel SOM

1. PENDAHULUAN

Autonomous mobile robot biasa digunakan pada
banyak keperluan, misalnya pengendalian otomatis
pada jalan raya, eksplorasi pada lokasi yang
berbahaya, dan lain-lain. Aplikasi ini harus berupa
metode yang mampu bertahan dan mampu beradaptasi
dengan berbagai lingkungan yang berubah-ubah[1].

Agar sebuah robot dapat mempunyai kemampuan
untuk mengendalikan dirinya secara mandiri, maka
robot harus memiliki pengetahuan tentang lingkungan
tempat dia berada. Jika robot tidak mengetahui
keberadaannya dalam lingkungannya, maka robot
tidak dapat menentukan pergerakannya secara efektif
untuk menemukan target yang dituju[3]. Ada banyak
isu yang bisa digunakan untuk menjelaskan tentang
pengendalian secara mandiri pada autonomous mobile
robot. Salah satu isu yang sering digunakan adalah
path planning[1]. Pada path planning, ada dua
kategori yang bisa digunakan, kategori pertama adalah
global path planning, pada kategori ini diperlukan
pengetahuan secara menyeluruh terhadap area terlebih
dahulu, kategori yang kedua adalah local path
planning, pada kategori ini digunakan pada
lingkungan yang belum diketahui. Pada global path
planning, robot harus mempunyai pengetahuan yang
lengkap tentang suatu area terlebih dahulu saat mulai
dijalankan dan planning dilaksanakan secara offline.

64

Pada kategori local path planning, robot akan
mempergunakan sensor, sensor yang dipakai bisa
berupa sensor ultrasonic, sensor laser, ataupun dengan
menggunakan sistem pengamatan dengan kamera
untuk menentukan area yang ditempatinya dan
planning dilaksanakan secara online berdasarkan
sensor-sensor tersebut[1,2].

Pada local path planning, robot tidak perlu
mengetahui seluruh bagian dari lingkungannya, robot
hanya perlu mengetahui keadaan obsracle
disekitarnya saja, oleh karena itu tidak diperlukan
ekplorasi secara menyeluruh terhadap lingkungannya.
Dengan menggunakan metode ini maka proses
pengenalan lingkungan bisa lebih cepat dan dapat
dilakukan pelatihan secara online [4,6]. Metode ini
mempunyai kelemahan yaitu akan kesulitan untuk
menentukan jalur yang efektif menuju titik tujuan, hal
ini disebabkan karena perngetahuan robot yang hanya
terbatas pada bagaimana menghindari obstacle
didekatnya [8].

Metode yang berbeda digunakan pada global path
planning, pada metode ini robot terlebih dahulu
melakukan eksplorasi terhadap semua bagian dari
lingkungannya[9], data hasil eksplorasi disimpan
dalam bentuk kelompok neuron [7]. Metode ini telah
kami gunakan pada penelitian awal kami di [10]
dengan SOM sebagai algoritma pembelajarannya.

Hariadi, Autonomous Mobile Robot Berbasis Player/Stage Menggunakan Parallel Self-Organizing
Feature Maps untuk Pemetaan Lingkungan Global yang Tidak Diketahui

Dengan adanya pengetahuan yang menyeluruh, maka
robot akan mampu menghindari halangan dan mampu
memilih jalur yang paling efektif untuk mencapai titik
tujuan. Kelemahan dari metode ini adalah lamanya
proses eksplorasi sehinga sulit untuk melakukan
eksplorasi secara online.

Penelitian di [10] mempunyai kendala kecepatan
proses. dalam ini menyajikan bagaimana cara untuk
meningkatkan kecepatan proses pembelajaran bagi
robot dalam mengenali lingkungannya. Percepatan
dilakukan dengan cara menjalankan proses
pembelajaran menggunakan komputasi parallel.
Pemrosesan parallel dilaksanakan dilaksanakan
dengan menggunakan Message Passing Interface
(MPI) [13]. Dari hasil yang dicapai, nampak bahwa
diperoleh percepatan pembelajaran yang signifikan
dibandingkan dengan pembelajaran menggunakan
processor tunggal.

2. DASAR TEORI
2.1 Kohonen Self Organizing Feature Maps

Metode SOFM atau SOM memungkinkan untuk
menggambarkan data multidimensi kedalam dimensi
yang lebih kecil, biasanya satu atau dua dimensi.
Proses penyederhanaan ini dilakukan dengan
mengurangi vektor yang menghubungkan
masing-masing node. Cara ini disebut juga dengan
Vector Quantization. Teknik yang dipakai dalam
metode SOM dilakukan dengan membuat jaringan
yang menyimpan informasi dalam bentuk hubungan
node dengan training set yang ditentukan[11].

Salah satu hal yang menarik dalam metode SOM
adalah kemampuannya untuk belajar secara mandiri
(unsupervised learning). Pada metode belajar secara
mandiri, sebuah network akan belajar tanpa adanya
target terlebih dahulu[12]. Hal ini berbeda dengan
beberapa metode neural network yang lain seperti back
propagation, perceptron, dan sebagainya yang
memerlukan adanya target saat proses learning
dilaksanakan.

Q Sampel data IE Neuron

Gambar 1. Jaringan Parallel SOM sederhana

Arsitektur Jaringan Paralel SOM

Pada penelitian ini, jaringan SOM dimodifikasi
sedemikian rupa sehingga memungkinkan untuk
dilakukan proses pembelajaran secara paralel, jaringan

SOM tersebut dimodifikasi menjadi jaringan Paralel
SOM.

Neuron dibentangkan keseluruh bagian
lingkungan yang ingin dikenali, kemudian seluruh area
itu dibagi-bagi menjadi area yang lebih kecil.
Masing-masing area tersebut akan diproses oleh satu
processor. Gambar 1 pembagian 3 area dari satu
lingkungan utuh.

Pada arsitektur paralel menggunakan LAM MPI,
diperlukan sebuah komputer yang berfungsi sebagai
master, master ini akan membagi-bagi tugas ke
beberapa komputer/host lain yang disebut slave, pada
proses pembelajaran dengan menggunakan parallel
SOM, master bertugas untuk melakukan pembagian
lingkungan menjadi area-area yang lebih kecil,
kemudian master mengirimkan area tersebut untuk
diproses pada masing-masing slave, setelah semua
proses dari slave selesai, maka master akan
mengumpulkan kembali hasil pemrosesan dari
masing-masing area dan menggabungkan menjadi satu
lingkungan yang utuh, secara detail pembelajaran
paralel SOM pada saat eksplorasi dapat dijelaskan
dibawabh ini :

a. Inisialisasi weight pada masing-masing node.
Sebelum pembelajaran dimulai, weight masing-
masing node diberikan inisialisasi terlebih
dahulu.

b. Master akan membagi lingkungan menjadi
area-area yang lebih kecil, masing-masing area
akan dikirimkan kepada slave untuk dilakukan
proses pembelajaran.

c. Input berupa sebuah vektor merupakan hasil
deteksi dari salah satu sensor pada robot.

d. Apabila vektor input masuk pada satu area
tertentu, maka proses selanjutnya dikerjakan oleh
komputer slave yang bersankutan.

e. Setiap node dihitung dan dicari weight yang
paling mendekati vektor input. Weight pemenang
disebut dengan Best Matching Unit (BMU).
Untuk menentukan BMU, salah satu metode yang
dipakai adalah dengan menghitung semua node
dan menghitung jarak Euclidean antara weight
masing-masing node dengan vektor input. Node
yang mempunyai vektor paling mendekati vektor
input, maka ditentukan sebagai BMU.[10]

f. Menentukan node tetangga BMU.

Setelah BMU ditentukan, langkah selanjutnya
adalah menentukan node mana saja yang menjadi
node tetangga BMU. Langkah pertama yang
perlu dilakukan adalah menentukan jarak / radius
dari BMU. Radius ini yang akan menjadi penentu
apakah node disekitarnya masuk sebagai node
tetangga atau tidak, jika ada node yang berada
dalam radius tersebut, maka dianggap sebagai
node tetangga, sebaliknya apabila terletak diluar
radius tersebut maka akan dianggap bukan
sebagai node tetangga. Radius ini akan semakin

65

P—Pﬁ Volume 6, Nomor 2, Juli 2007 : 64 — 70

mengecil seiring dengan bertambahnya proses
iterasi pada saat proses learning.[10]

g. Update Weight,

Setelah node tetangga BMU ditentukan, maka
langkah selanjutnya adalah melakukan update
weight pada semua node tetangga BMU termasuk
juga BMU itu sendiri. [10]

h. Setelah proses dari masing-masing komputer
slave selesai, maka Master akan mengumpulkan
hasil dari masing-masing komputer slave dan
menggabungkannya menjadi satu peta yang utuh.

2.2 Player/Stage

Player/Stage adalah simulator robot yang dibuat
berdasarkan sistem operasi /inux. Simulator tersebut
dibuat untuk mensimulasikan robot serta lingkungan
tempat simulasi serta pemrograman interface robot
secara fleksibel dalam lingkungan 2 dimensi.

Player/Stage mengimplementasikan konfigurasi
client/server. Sebuah file world mendefinisikan
lingkungan dan semua obyek didalamnya, termasuk
robot, serta spesifikasi kemampuan hardware dari
masing-masing robot. File ini yang akan digunakan
untuk menyediakan “dunia” tempat robot berinteraksi.
Kemudian client program akan terhubung ke server
pada port tertentu untuk bisa mengontrol robot.

Program client dapat dijalankan pada
mesin/komputer yang sama dengan server ataupun dari
mesin/komputer yang terhubung dengan server
melalui jaringan. Player dapat juga berfungsi sebagai
server untuk real-robot, sehingga program client yang
digunakan untuk menjalankan robot dalam simulator,
dapat juga digunakan untuk menjalankan
real-robot.[10]

3. DESAIN SISTEM

Simulasi yang digunakan adalah Player/Stage
dengan menggunakan player sebagai server dan stage
sebagai simulatornya. Player menyediakan interface,
device dan driver yang akan digunakan untuk
membangun sebuah robot beserta lingkungannya.
definisi interface, device dan driver ini dituliskan
dalam sebuah file konfigurasi player. Interface, device
dan driver yang sudah didefiniskan dalam file
konfigurasi stage akan didefinisikan pula modelnya
yang ditulis dalam file konfigurasi stage.

Pada penelitian ini, robot yang dibangun memiliki
sonar yang sebanyak 10 buah sonar yang disebar di
tepi robot. 7 sonar diletakkan dibagian depan robot,
dari ujung kanan menuju ujung kiri dengan posisi
hadap sonar mempunyai selang 30 derajat dari
masing-masing sonar, 3 sonar berada dibelakang
dengan posisi hadap sonar 30 derajat dari
masing-masing sonar. Pada penelitian ini, sonar
digunakan untuk mengetahui adanya obstacle pada
sudut dan jarak tertentu dari robot.[10]

66

Proses learning dilakukan pada layer SOM. Input
yang digunakan dari pelatihan tersebut berasal dari
data yang dikumpulkan oleh robot dengan
menggunakan sonar yang dipunyai oleh robot.

Hasil data sonar yang didapat, kemudian diproses
secara parallel kedalam beberapa node. Setiap node
akan melakukan proses pada wilayah tertentu dalam
peta lingkungan robot.

Setelah proses learning selesai, neural pada layer
SOM akan membentuk bidang yang mendekati dengan
bentuk peta. Dari kondisi tersebut, neuron dapat
digolongkan sebagai neuron freespace dan neuron
obstacle dengan algoritma seperti ditunjukkan
diagram pada gambar 2. Setelah semua neuron
digolongkan menjadi neuron freespace dan neuron
obstacle , proses selanjutnya adalah membuat blok
dan mengolongkannya menjadi blok freespace dan
blok osbstacle.

r tetangga > r min

4
[Neuron Qbstacle] [Neuron Frespace]

il
<
y

A

1 Selesai j

Gambar 2. Penggolongan neuron

Setelah penggolongan blok selesai, proses
selanjutnya adalah pencarian path menggunakan A*.
Algoritma pencarian jalur yang tepat dengan
menggunakan A* dapat dijelaskan sebagai berikut :

a. Ambil titik awal dan titik tujuan, cari blok
yang sesuai dengan posisi titik awal dan
posisi tujuan tersebut.

. Masukkan blok awal kedalam open c.

c. Cek blok semua blok yang berhubungan
dengan blok awal, abaikan blok tersebut jika
blok tersebut berupa blok obstacle . Dan
masukkan blok-blok tersebut kedalam open

Hariadi, Autonomous Mobile Robot Berbasis Player/Stage Menggunakan Parallel Self-Organizing
Feature Maps untuk Pemetaan Lingkungan Global yang Tidak Diketahui

list, untuk masing-masing blok tadi, set
parent blok tersebut ke blok asal.

Hapus blok asal tadi dari open list dan
masukkan kedalam closed list.

Dari semua blok dalam open list, cari nilai Fn
terkecil, ambil sebagai blok yang aktif.

Jika blok aktif mempunyai nilai Hn lebih
besar dari 0 maka Cek semua blok yang
berhubungan dengan blok aktif
untukmasingmasing blok, jika blok tersebut
adalah blok freespace , lakukan
langkah-langkah sebagai berikut :

i Jika blok tersebut belum ada dalam
open list dan belum ada juga dalam
closed list, masukkan blok tersebut
kedalam open list, dan set parent
blok tersebut ke blok aktif.

ii. Jika blok tersebut sudah ada dalam
open list, Bandingkan nilai Gn dari
parent blok tersebut dengan nilai Gn
dari blok aktif, jika nilai Gn blok
aktif lebih kecil daripada nilai Gn
parent blok tersebut, maka update
parent blok tersebut menjadi blok
aktif.

ii. Jika blok tersebut sudah ada dalam
closed list, abaikan saja blok
tersebut.

Jika blok aktif mempunyai nilai Hn = 0, maka
blok aktif adalah blok tujuan, dan proses
selesai. Jalur yang dapat ditempuh dapat
dirunut kembali melalui parent dari blok
tujuan sampai blok asal.

Jika open list sudah kosong, sementara blok
tujuan belum ditemukan, berarti tidak ada
jalur yang bisa dilewati dari titik awal ke titik
tujuan.

Gambar 3. Robot menjelajah ruangan

4. PENGUJIAN
Pengujian dilakukan dengan mengunakan Stage
sebagai simulator dengan client deprogram

menggunakan C++.

Proses pembelajaran diawali dengan menjalankan
robot menjelajahi seluruh daerah, robot hanya perlu
berjalan dan melakukan scaning terhadap obstacle
yang ada pada lingkungan tersebut. Gambar 3
menunjukkan jalur yang dilalui robot saat robot
menjelajahi ruangan.

Proses pembelajaran dilakukan secara parallel
dengan membagi menjadi beberapa node. Pada
penelitian ini, proses parallel dicobakan pada beberapa
node yang berbeda kemudian dicatat hasilnya.
Pembagian node didasarkan pada kuadran tempat
neuron berada, seperti ditunjukkan gambar 4.

(a) 1 node (b) 2 node (c) 3 node (d) 4 node

(e) 6 node (f) 8 node (2) 9 node

Gambar 4. Pembagian Node

Dengan pengujian berdasarkan pembagian seperti
tersebut diatas didapatkan speed factor seprti
ditunjukkan tabel 1. Dari hasil percobaan, didapatkan
bahwa semakin banyak node yang digunakan, maka
semakin cepat proses pembelajaran dilaksanakan.
Perbandingan jelas terlihat ketika pembelajaran
dilakukan dengan menggunakan single processor,
maka waktu yang diperlukan adalah 445 detik,
sedangkan saat pembelajaran dilaksanakan dengan
menggunakan 9 processor, maka proses pembelajaran
hanya memerlukan waktu 74 detik. Hasil percobaan
secara lengkap ditunjukkan oleh tabel 1 dan grafiknya
ditunjukkan oleh gambar 5.

67

JT]"TI Volume 6, Nomor 2, Juli 2007 : 64 — 70

Tabel 1. Tabel Hasil percobaan

Node Waktu (detik)
1 445
2 258
3 180
4 176
6 116
8 82
9 74
Speed up Factor
500
450 —m
400
t (5)350
300
250 \
200
150 \[77]\\.\
100 —a— g
50
0
1 2 3 4 6 8 9
Jumlah Processor

Gambar 5. Perbandingan Speed up Factor

Setelah proses learning selesai, kemudian
komputer server mengumpulkan hasil proses
pembelajaran dari komputer slave, maka akan
diperoleh sebuah peta utuh seperti ditunjukkan pada
gambar 6.

Gambar 6. Hasil pengenalan lingkungan

Gambar 6 menunjukkan grid neuron yang sudah
mengalami proses pembelajaran dengan menggunakan
sebagian dari peta yang sudah dijelajahi oleh robot,
pada kondisi ini, robot hanya mengalami pembelajaran
terhadap sebagian dari peta saja. Neuron berwarna
merah menunjukkan free space bagian free space dari
peta, sedangkan neuron berwarna hijau menunjukkan
tepi dari obstacle dalam peta.

Kemudian robot diuji dengan meletakkan pada
suatu titik, dan diberi tugas untuk menuju ke titik
target. Jalur yang digunakan untuk robot untuk
mencapai titik tujuannya ditentukan dengan

68

menggunakan algoritma A* dengan memanfaatkan
data hasil pengenalan lingkungan.

Pada ujicoba yang dilakukan, ternyata robot
berhasil mencapai titik tujuannya dengan baik dengan
jalur yang efektif menuju titik tujuan.

Gambar 7. Robot berhasil mencapai titik target

Gambar 8. Robot gagal mencapai titik target

Gambar 7 menunjukkan gerak robot untuk mencapai
titik target dengan memanfaatkan data yang sudah
dipelajari sebelumnya. Dari gambar tersebut nampak
bahwa robot dapat mencapai titik tujuannya dengan
tepat, dari gambar tersebut nampak bahwa robot juga
mampu menentukan lintasan yang efektif sampai ke
tittk tujuan. Sebagai perbandingan, gambar 8§
menunjukkan gerak robot ketika berusaha mencapai
titik tujuan yang sama namun tidak mempergunakan
pembelajaran terhadap lingkungannya, pada gambar
tersebut nampak bahwa mula-mula robot mengambil
garis lurus menuju titik tujuannya, kemudian

Hariadi, Autonomous Mobile Robot Berbasis Player/Stage Menggunakan Parallel Self-Organizing

Feature Maps untuk Pemetaan Lingkungan Global yang Tidak Diketahui

membentur tembok dan akhirnya gagal mencapai titik
tujuannya. Gambar 9 menunjukkan percobaan dengan
mempergunakan titik tujuan yang lain. Pada percobaan
ini robot juga mampu mencapai titik target dengan
benar dan dapat menentukan jalur yang efektif hingga
mencapai titik tujuan.

Gambar 9. Berhasil mencapai titik target yang lain

5. KESIMPULAN & SARAN
Kesimpulan yang dapat diambil adalah :

a)

b)

)

d)

€)

Metode Kohonen SOM dapat dipakai sebagai
algoritma untuk memetakan environment
mapping, dan dengan adanya pemetaan
tersebut, maka robot dapat mengendalikan
diri secara mandiri untuk mencapai titik
tujuan.

Dalam mencapai target, robot bisa sekaligus
untuk mengambil data dan memetakan
lingkungannya.

Algoritma searching A* dapat digunakan
untuk mennentukan jalur yang tepat bagi
robot dari titik asal ke titik tujuan dengan
cepat, namun algoritma ini baru dapat
digunakan jika proses mapping sudah selesai.
Proses pembelajaran dengan
mempergunakan komputasi parallel akan
mempercepat proses pengenalan robot
terhadap lingkungannya.
Player/stage/gazebo dapat digunakan
untukmenguji algoritma-algoritma baru dan
mensimulasikannya seperti pada robot yang
sebenarnya.

Adapun saran yang dapat digunakan untuk penelitian
lebih lanjut adalah :

a.

Dalam menggunakan algoritma A*
hendaknya mengunakan penggunaan struktur

data yang lebih optimal, misalnya
menggunakan quick sort atau binary-heap
dengan struktur data yang baik, maka
kecepatan pencarian menggunakan A* bisa
ditingkatkan.

Sebaiknya menggunakan algoritma searching
yang lain yang berbasis soft computing
seperti Genetic Algorithm.

Neuron yang digunakan dalam layer SOM,
hendaknya memiliki kerapatan yang cukup,
sehingga proses mapping bisa menghasilkan
data yang lebih baik.

Hendaknya dibuat pengaturan data yang baik
dari interface yang digunakan pada player,
dengan adanya pengaturan data yang baik,
memungkinkan untuk dilakukan pelatihan
secara on-line.

6. DAFTAR PUSTAKA

(1]

(2]

(3]

(4]

(5]

(6]

(7]

I J Nagrath, L Behera, K Madhava Krishna
and K D Rajasekhar, "Real-time Navigation
of a Mobile Robot using Kohonen's Topology
Conserving Neural Networks", Proc. Eighth
International Conference on Advanced
Robotics, pp 459-464, Monterey, CA, July
1997.

R. Gutierrez-Osuna, J. A. Janet and R. C.
Luo, "Modeling of Ultrasonic Range Sensors
for Localization of Autonomous Mobile
Robots”, IEEE Transactions on Industrial
Electronics, 45(4), pp. 654-662, 1998.
George Palamas, George Papadaurakis,
Manolis Kavaoussanos, ‘“Mobile Robot
Position Estimation using unsupervised
Neural

Networks”, http://www.e-technik.fh-kiel.de/it
workshop-aveiro/papers/papadourakis.pdf
Arno J. Knobbe, Joost N. Kok, Mark H.
Overmars , “Robot Motion Planning in
Unknown Environments using Neural
Networks”, Proc. ICANN'95, International
Conference on Atrtificial Neural Networks.
Uwe R. Zimmer & Ewald von Puttkamer,
"Realtime-learning on an Autonomous
Mobile Robot with Neural Networks",IEEE,
Real-Time Systems, 1994. Proceedings.,
Sixth Euromicro Workshop on Volume ,
Issue , 15-17 Jun 1994 Page(s):40 - 44

C.R. Weibsin, G. de Saussure, and D.
Kammeer, Self-Controller: "A real-time
expert system for an autonomous mobile
robot", Comp. Mech. Eng., pp.12-19, Sept.
1986.

Bernd Fritzke Growing Cell Structures - A
Self-organizing Network for Unsupervised
and Supervised Learning Technical Report

69

]—rfj’f Volume 6, Nomor 2, Juli 2007 : 64 — 70

70

(8]

(9]

93-026, International Computer Science
Institute, Berkeley, California

J. Borenstein and Y. Koren, "Real-time
obstacle avoidance for fast mobile robots",
IEEE Trans. SMC, vol. 19, no. 5,
pp-1179-1186, Sept./Oct., 1989.

J. A. Janet, R. Gutierrez-Osuna, T. A. Chase,
M. White and J. C. Sutton, III, ”Autonomous
Mobile Robot Global Self-localization using
Kohonen and Region-Feature Neural
Networks”, Journal of Robotics Systems,
14(4), pp. 263-282, 1997.

[10]Mochamad Hariadi, Muhtadin, Mauridhi

Hery, Simulasi Autonomous Mobile Robot
Berbasis Player/Stage Menggunakan
Self-Organizing Feature = Maps untuk
Pemetaan Lingkungan Global yang Tidak
Diketahui, Jurnal Informatika UK Petra,
Nopember 2007. .

[11]“Kohonen Networks” ,

http://www.cs.bham.ac.uk/resources/courses/
SEM2A2/Web/Kohonen.htm

[12]“Kohonen's Self Organizing Feature Maps”,

http://www.ai-junkie.com/ann/som/som1.ht
ml

[13] J_ack J, Dongarra, Steve W. Otto, An

Introduction to the MPI Standard, -, April
1995

