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Abstrak 

Tulisan ini menyajikan usulan fungsi atenuasi terbaru untuk percepatan maksimum gempa di permukaan tanah 
tipe gempa subduksi interface dan intraslab pada moment magnitude lebih besar sama dengan 5 dan jarak 10 
km sampai 500 km di batuan. Fungsi atenuasi telah dikembangkan dengan pendekatan Jaringan Syaraf Tiruan 
(JST) menggunakan algoritma propagasi balik. Studi memperlihatkan bahwa fungsi atenuasi berdasarkan JST 
akurat dan andal untuk memprediksi percepatan maksimum gempa. Studi parameter berbagai faktor input dari 
fungsi atenuasi juga telah dilakukan dan hasilnya akan disajikan di dalam tulisan ini. 

Kata-kata kunci : Persamaan atenuasi, zona subduksi, Jaringan Syaraf Tiruan. 

Abstract  

This paper present proposed new attenuation relations at rock sites for peak ground acceleration for subduction 
zone interface and intraslab earthquakes of moment magnitude M 5 and greater and for distance of 10 to 500 
km. The relations were developed by Artificial Neural Networks (ANN) approach using a back propagation al-
gorithm. Studies show that the ANN-based attenuation relation is reliable and accurate to predict peak ground 
acceleration (PGA) due to earthquakes. Parameters studies of the various input factors of attenuation relations 
were also performed in this study and its results will be presented in this paper. 
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1. Introduction 

In a seismic hazard analysis, one of the critical factors is 
the determination of attenuation relations. There have 
been a number of attenuation relations derived in the last 
two decades by using multi-regression analysis. Most of 
them were derived in a certain region where peak ground 
acceleration records had been available. 

In this paper, the attenuation relationship for subduction 
zone interface and intraslab earthquakes at rock sites will 
be employed based on the Artificial Neural Networks 
(ANN) approach. Artificial Neural Network, a “new” 
computational paradigm, provides a fundamentally 
different approach to predict the ground motion. In this 
approach the attenuation relationship is not obtained by 
developing mathematical models, but it is obtained 
directly from existing record of ground motions data at a 
site using the self-organizing capabilities of the neural 
network. The main benefits in using an ANN approach 
are that all behaviors can be represented within a unified 

environment of a neural network and that the network is 
built directly from existing data. The network is 
presented with the data and “learns” it relationships. 
Therefore, there is no a priori assumption about the 
system behavior.  

2. Artificial Neural Networks 

2.1 Architecture 

Neural networks are massively parallel computational 
models for knowledge representation and information 
processing. As their name implies, neural networks are 
inspired by the neuronal architecture and operation of 
the human brain as shown in Figure 1. Because of 
their fundamental hardware similarity to that of the 
human brain, neural networks have some unique 
capabilities in information processing. Neural 
networks are the first computational models with true 
learning and knowledge acquisition capabilities. 
Neural networks can either learn from examples or 
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they can learn by interacting with their environment. 
Neural networks are capable of learning complex 
nonlinear relationships and associations from a large 
body of data. A neural network consists of a number of 
interconnected processing elements, commonly 
referred to as neurons. The neurons are logically 
arranged into two or more layers as shown in Figure 
2, and interact with each other via weighted 
connections.  

The scalar weights determine the nature and strength 
of the influence between the interconnected neurons. 
Each neuron is connected to all the neurons in the next 
layer. There is an input layer where data are presented 
to the neural network, and an output layer that holds 
the response of the network to the input. It is the 
intermediate layers, also known as hidden layers, 
which enable these networks to represent and compute 
complicated associations between inputs and outputs.  

Figure 1. Biological neural networks 
[Fausett, 1994] 

input layer

Input pattern

output layer

one or more
hidden layers

Ouput pattern

Figure 2. Typical neural networks architecture 

2.2 Back-propagation algorithm 

The neural networks paradigm adopted in the study 
utilizes the back-propagation algorithm by Rumelhart 
et al. [1986]. The basic mathematical concepts of the 
back-propagation algorithm are found in the literature 
[Hertz et al. 1991; Haykin 1994; Fausett 1994]. Neural 
networks are “trained” essentially by the presentation 
of a series of example patterns of associated input and 
target or expected output values. Each hidden and 
output neuron processes its inputs by multiplying each 
input by its weight, summing the product, and then 
processing the sum through a non-linear transfer 
function to produce a result. The sigmoid curve is 
commonly used as the transfer function. The neural 
network “learns” by modifying the weights of the 
neurons in response to the errors between the actual 
output values and the target output values. This is 
carried out through a gradient-descent strategy that 
minimizes the overall error of all the outputs neurons. 
One pass through the set of training patterns along 
with the updating of the weights is called a cycle or 
epoch. Training is performed by repeatedly presenting 
the entire set of training pattern (updating the weights 
at the end of each cycle) until the average sum squared 
error over all the training patterns is minimizes and 
within the tolerance specified for the problem. 

(a) 

(b) 

Figure 3. Back-propagation process 
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At the end of the training phase, the neural network 
should correctly reproduce the target output values for 
the training data, provided that the errors are minimal, 
i.e., that convergence occurs. The associated trained 
weights of the neurons are then stored in the neural 
network memory. In the next phase, the testing phase, 
the trained neural network is fed a separate set of data.  
The neural network predictions (using the trained 
weights) are compared to the target output values to 
assess the ability of the neural network to produce 
(generalize) correct responses for the testing patterns 
that only broadly resemble the data in the training set. 
No additional learning (weight adjustment) occurs 
during this phase. Once the training and testing phases 
are found to be successfully, the neural network can 
then be put to use in practical applications. The neural 
network will produce almost instantaneous results of 
the output for the inputs provided. The predictions 
should be reliable, provided that the input values are 
within the range used in the training set. Part of the 
back-propagation algorithm information in this 
subsection was compiled from Goh [1996]. 

3. Reviews on The Current Attenuation 
Relations 

Several attenuation relations have been proposed by 
many researchers. In general, they are categorized 
according to tectonic environment (i.e. subduction 
zone and shallow crustal earthquakes) and site 
condition. In this paper, several attenuation relations, 
which are commonly used, will be compared and 
described briefly as follows. 

3.1 Crouse [1991] 
This attenuation can be used for magnitude range from 
5.0 to 9.5 and epicenter distance until 200 km. This 
attenuation given by the following expression: 

 

 

Where M = moment magnitude; R = closest distance 
(km); h = focus depth (km). 

3.2 Fukushima & Tanaka [1992] 

This attenuation can be used for both subduction and 
shallow crustal earthquake with short to moderate 
distance (not greater than 300 km) the equation is: 

 

 

Where A = maximum earthquake acceleration (cm/
sec2 or gals). For Japanese data, L = 0, while L = 1 is 
used for non-Japanese data.  

The equation above can be used for medium to hard 
soil according to Japanese soil classification.  

3.3 Youngs et al. [1997] 

This relation considers two types of subduction zone 
earthquakes, i.e. interface earthquake and intraslab 
earthquake. Subduction zone interface earthquakes are 
shallow angle thrust events that occur at the interface 
between the subducting and overriding plates, while 
intraslab events occur within subducting oceanic plate 
and are typically high angle; normal faulting events 
responding to downdip tension in the subducting plate. 
Attenuation relations for rock and deep soil are given 
as follows respectively: 

Where, y is spectral acceleration (g); M, moment 
magnitude; rrup, closest distance to rupture (km); H, 
depth (km); ZT, source type, 0 for interface, and 1 for 
intraslab. 

3.4 McVerry et al. [1998] 

This attenuation has been considering earthquake 
mechanism (i.e. crustal, subduction and dipping slab). 
The equation is: 

Log (PGA) = 0.298.M – 1.56.log (r2+192)0.5 + 0.00619 
hc – 0.365 + 0.107δREV – 0.186 δROCK – 0.124δINTER  

Where d = 19 km is additive constant found by fitting 
the data, h = centroid depth (km), δREV = 1 crustal 
reverse mechanism, 0 for other earthquake, δROCK = 1 
for rock site, 0 for other site condition δINTER = 1 for 
interface event, 0 for other tectonic type. 

3.5 Si & Midorikawa [2000] 

It developed for short to moderate distance (less than 
200 km). The earthquake classified into three kinds, 
i.e. crustal, interplate and intraplate earthquake. The 
equation for soil site is: 

Log A = 0.50MW – log(X+0.0055.100.5Mw) – 0.003.X 
+ 0.0036.h + 0.60 + d 

σlogA = 0.250 

Where A = peak ground acceleration (cm/dt2), X 
closest distance to fault rupture (km), h focus depth 
(km), d = 0 for crustal, 0.09 for interplate and 0.28 for 
intraplate earthquake 

For rock site, divided by 1.4.  
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4. Ann-Based Attenuation Relationships 

4.1 Data collation and normalization 

In this phase, the data was used in this study were 
drawn from actual peak ground acceleration compiled 
by Youngs [1997] for subduction zone earthquakes at 
the rock sites. The data was also used by Youngs to 
derive his attenuation relation. Ninety-nine of these 
PGA records were used as input in the study, ninety 
data for interface earthquakes and nine data for 
intraslab earthquakes. Details of the range of the data 
are summarized in Table 1. All of PGA data were 
used as shown in Figure 5. 

To normalize inputs the preprocessing function was 
used in this neural network analysis. This enhances the 
fairness of training by preventing an input with large 
magnitudes from swamping out another, equally 
important, but smaller, input. For all iteration of the 
network the input is modified by the following 
formula. 

xi'  =  (xi - (maxi + mini) / 2) / (maxi - mini). 

This form of preprocessing calculates the maximum 
and minimum values for each of the inputs over the 
training set. The maximum and minimum for each 
input are stored as weights for the input layer of the 
network.   

4.2 Derivation of attenuation relation 

Since the relationships between input-output in the 
ANN is represent by weights, ANN-based attenuation 
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Figure 4. Source to site distance measures for 
attenuation models 

Table 1. Summary of range of values 

Parameters 
(1) 

Symbol 
(2) 

Range of 
Values 

(3) 
Moment Magnitude M 5.0 – 8.0 

Focal depth (km) H 11 - 105 

Distance (km) R 12.9 – 473.4 
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Figure 5. Distribution of PGA data set, (a) Interface, 
(b) Intraslab 
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relation in ANN equation form could be represented 
by the following equation: 

PGA = PGA NN (H, M, R : 3 ⎢3 ⎢1), for intraslab 
 earthquakes, and 

PGA = PGA NN (H, M, R : 3 ⎢20 ⎢⎢20 ⎢1), for 
 interface earthquakes. 

The symbol NN is introduced by Ghaboussi [1990] to 
denote the output of a multi layer feed forward ANN, 
and second argument field in the parentheses describes 
the network architecture that includes the number of 
neurons in each layer and the training history of the 
hidden layers. H is focal depth in km, M is moment 
magnitude and R is distance in km.  

From this equation, we can see that network 
architecture for intraslab earthquake have 3 (three) 
input nodes, 3 (three) hidden nodes in one layer, and 1 
(one) output node. And for interface earthquake, the 
network architecture have 3 (three) input nodes, 20 
(twenty) hidden nodes in two layers, and 1 (one) 
output node. The network architecture was determined 
by trial and error method and several training process 
until specified tolerance of 0.001 reached. 

In mathematical equation, proposed attenuation 
relation for intraslab earthquakes can be written in the 
following equation, i.e.: 

 

 

with 

A = -0.889416-0.007106H+0.445802M-0.006015R 

B = 1.064208+0.025430H-0.491388M+0.004162R 

C = -3.011306-0.006236H+1.000046M-0.046827R 

Mathematical form of interface earthquakes being 
developed. 

4.3 Comparison with other attenuation relations 

The proposed attenuation relation is compared with 
other attenuation relations. The results in Figure 5 and 
Figure 7(a) to Figure 7(g) show less scatter in data 
points in comparison to other attenuation relations. 
The root of residual mean square, σ2 (i.e the sum of 
squares of the differences between the observed and 
the predicted ln PGA or Log PGA divided by degree 
of freedom number of equation) is also taken to 
evaluate variability and fitness the proposed 
attenuation compared with the other ones. The result is 
shown in the Table 2. 
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Figure 6. Comparison of PGA predicted by several 
attenuation relations for intraslab earthquakes 
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Figure 7. Comparison of PGA predicted by several 
attenuation relations for interface earthquakes  
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Table 2. Summary of root of RMS 

Mw Crouse
Fukushima & 

Tanaka
Youngs McVerry Si &  

Midorikawa Apriadi & 
Susila

5.0 - 5.2 0.40 0.71 0.35 0.25 0.75 0.34
5.3 - 5.7 0.94 1.15 1.05 1.06 1.12 0.27
5.8 -6.2 1.10 1.31 1.06 0.93 1.24 0.34
6.3 -6.7 1.14 0.69 0.81 0.45 0.75 0.49
6.8 -7.2 0.87 0.76 0.70 0.75 0.76 0.51
7.3 -7.7 1.00 1.08 0.83 0.99 1.00 0.38
7.8 -8.2 0.74 0.73 0.48 0.88 0.73 0.18

Root of residual mean square of attenuation relations 
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They indicate that the ANN-based attenuation relation 
predictions are more consistent than the other. 

4.4 Interpreting connection weights 

Parameters study of the various input factors from the 
attenuation relations could be assessed by examining 
the input-hidden-output connection weights. This is 
carried out by partitioning the hidden-output node 
weights into components connected with each input 
node weights [Garson, 1991]. Table 3 shows the 
weights of the input-hidden and hidden-output layer 
connections and also percentage of Relative Important 
for the ANN-based attenuation relation.  

The results show that the most important input factor 
for the attenuation relations are the earthquakes 
distance (R) is about 66.4%, Magnitude (M) is about 
17.8 %, and Focal Depth (H) is about 15.8%, 
respectively. 

5. Conclusions and Recommendations 

An ANN-based attenuation relation was employed to 
predict strong ground motion of subduction zone 
earthquakes. The results show that the proposed 
attenuation relation is reliable and accurate to predict 
peak ground acceleration (PGA) due to earthquakes. 
In the next study, we would like to develop ANN-
based attenuation relation for the strike-slip 
earthquakes and implement this attenuation relation to 
the EQRISK computer program for seismic hazard 
analysis. 
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Table 3. Connection weights and % Relative 
Importance 

Hidden 
neuron (1) 

H 
(2) 

M 
(3) 

R 
(3) 

1 -0.58 -0.35 4.16 

2 0.45 -1.63 0.40 

3 -0.76 0.84 -1.70 

4 1.05 -0.73 8.19 

% RI 15.8 17.8 66.4 
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