

## Tinjauan Nilai Faktor Modifikasi Respon (R) dan Faktor Kuat Lebih ( $\Omega_0$ ) pada Struktur Gabungan Rangka Baja dan Rangka Beton Bertulang dengan Analisis *Pushover*

### Andy Prabowo

Jurusan Teknik Sipil, Fakultas Teknik, Universitas Tarumanagara Jl. Let. Jend. S. Parman No. 1 - Jakarta 11440. E-mail: andyprabowo.2011@gmail.com

#### Yuskar Lase

Departemen Teknik Sipil, Fakultas Teknik, Universitas Indonesia Kampus Baru UI - DEPOK, E-mail: yuskar@eng.ui.ac.id

#### Abstrak

Adanya peningkatan kebutuhan ruang yang semakin tinggi serta didukung oleh regulasi yang berlaku khususnya di daerah padat, memungkinkan perluasan vertikal bangunan. Perluasan vertikal seringkali dilakukan dengan menambah struktur rangka baja yang berdiri di atas struktur eksisting dari rangka beton bertulang. Sistem pemikul beban lateral pada struktur yang diperluas dapat menggunakan kinerja gabungan rangka momen baja dan rangka momen beton bertulang sebagai kesatuan sistem rangka momen. Adanya perbedaan material struktur mempengaruhi pemilihan nilai R (faktor modifikasi respon) untuk perhitungan beban gempa. Nilai R untuk kategori sistem rangka pemikul momen gabungan baja dan beton belum secara eksplisit diatur oleh SNI 1726:2012. Maka dari itu, tulisan ini bertujuan untuk meninjau nilai R serta  $\Omega_o$  (faktor kuat lebih) pada struktur gabungan rangka momen baja sebagai struktur atas dan struktur rangka beton bertulang sebagai struktur bawah. Tinjauan yang dilakukan terbatas pada struktur yang berada pada kondisi kegempaan seperti di Kota Jakarta dengan kondisi Tanah Lunak (SE). Nilai R pada struktur gabungan ditetapkan terlebih dahulu untuk melakukan perancangan elemen struktur. Kemudian dilakukan analisis pushover sehingga diperoleh kurva gaya terhadap deformasi struktur untuk memverifikasi nilai R dan  $\Omega_o$  yang mampu dicapai. Konsep yang dipakai dalam menghitung nilai R dan  $\Omega_o$ mengacu ATC-19 dan ATC-34 serta FEMA P-695.

Kata-kata Kunci: Faktor modifikasi respon, Faktor kuat lebih, Analisis pushover, Struktur gabungan.

#### Abstract

A significant increasing of the space demand and supported by the applicable regulation especially in the congested areas, give the possibility to extend the building vertically. The extention can be done by adding the steel frame structures above the existing reinforced concrete structures. Thus, the lateral force resting system of the steel and reinforced concrete hybrid structures relies on the acting performance of the steel and concrete moment frames concurrently. This structural material distinction implies the selection of R (Response Modification Factor) value. The R value for hybrid steel-concrete moment resisting frame system has not been stipulated on SNI 1726:2012. Therefore, this paper aims to review the R and  $\Omega_o$  (overstrength factor) value of the hybrid steel-concrete moment resisting frame systems where the steel frames stands above the concrete frames. The review is limited to the structures having similar seismic condition as Jakarta with soft soil condition (Site Class SE). The R value on the hybrid structures is determined prior to structural elements design. Pushover analysis is then performed in order to obtain the load versus deformation curve for the recalculation of R and  $\Omega_o$ . The calculation concept of R and  $\Omega_o$ follows ATC-19 and ATC-34 including FEMA P695.

Keywords: Response modification factor, Overstrength factor, Pushover analysis, Hybrid structures.

### 1. Pendahuluan

Kebutuhan ruang yang semakin tinggi di beberapa pusat kota besar mendorong terjadinya perluasan bangunan ke arah vertikal dengan menambah jumlah lantai. Penambahan jumlah lantai mengakibatkan terjadinya peningkatan koefiesien lantai bangunan sebagaimana didukung oleh regulasi yang berlaku khususnya di Kota Jakarta. Seringkali perluasan vertikal ini dilakukan dengan menambah struktur baja di atas struktur bangunan eksisting yang kebanyakan dari struktur beton bertulang bertingkat rendah (< 10 lantai). Perluasan bangunan menggunakan struktur baja dikarenakan relatif ringan dan mudah dibangun.

Sistem struktur yang umumnya dipakai pada struktur bangunan bertingkat rendah yaitu Sistem Rangka Pemikul Momen (SRPM). Penambahan struktur baja di atas struktur beton eksisting menghasilkan sistem rangka pemikul momen gabungan beton dan baja. Faktor daktilitas struktur dari sistem gabungan ini belum diatur secara eksplisit pada SNI 1726:2012. Faktor daktilitas struktur yang terkait dengan kriteria kekuatan struktur terdiri dari faktor modifikasi respon (R) dan faktor kuat lebih ( $\Omega_o$ ). Besarnya nlilai R dan W<sub>o</sub> dipengaruhi oleh Kategori Desain Seismik (KDS) dimana stuktur akan dibangun.

Untuk Kota Jakarta yang memiliki KDS D, besarnya nilai faktor daktilitas SRPM dari beton bertulang maupun baja bernilai sama. Menurut SNI 1726:2012, SRPM yang terletak pada KDS D harus dirancang memenuhi kriteria Sistem Rangka Pemikul Momen Khusus (SRPMK). Apabila struktur rangka beton pada struktur rangka gabungan didesain sebagai SRPMK, apakah struktur rangka baja yang berdiri di atas struktur beton harus didesain sebagai SRPMK juga? Berapakah nilai R sesungguhnya dari struktur rangka gabungan tersebut?

Untuk struktur yang belum diatur besarnya nilai faktor daktilitas struktur pada SNI 1726:2012, maka digunakan nilai estimasi R dan  $\Omega_o$  untuk melakukan perancangan struktur. Besarnya nilai R dan  $\Omega_o$  yang sebenarnya dimiliki struktur dapat diketahui dengan melakukan evaluasi terhadap hasil perancangan struktur menggunakan analisis *pushover*. Apabila nilai R dan  $\Omega_o$  dari hasil evaluasi relatif dengan estimasi awal maka perancangan struktur relatif akurat. Dengan demikian, dari hasil evaluasi yang dilakukan mampu menunjukkan besarnya nilai R dan  $\Omega_o$  yang realistis pada perancangan struktur gabungan yang dimaksud dalam studi ini.

### 2. Kajian Nilai R dan $\Omega_0$ Menurut ATC-19 dan ATC-34

Sesuai dengan peraturan desain tahan gempa pada umumnya, besarnya beban gempa yang timbul dari inersia massa struktur dapat direduksi menggunakan nilai R menjadi beban gempa rencana. Semakin besar nilai R mengakibatkan semakin kecil beban gempa rencana. Nilai R yang besar perlu dijamin oleh kemampuan struktur untuk berperilaku daktail saat terjadi beban gempa yang lebih besar dari yang direncanakan.

Sejak akhir 1970an, faktor R pertama kali dikenalkan melalui ATC-3-06 (1978). Besarnya faktor R yang termuat di peraturan seringkali hanya didasarkan pengalaman empiris dan hanya memberikan pema-

haman kualitatif mengenai respon struktur yang diharapkan oleh peraturan. Sejak pertengahan 90an hingga saat ini, para peneliti terus melakukan studi akan kelayakan dan pembuktian nilai R yang terdapat di peraturan serta beberapa parameter kunci yang mempengaruhi serta membentuk nilai R.

Menurut ATC-19 (1995a) dan ATC-34 (1995b) nilai R merupakan hasil perkalian dari 3 faktor, yaitu:

$$R = R_s R_{\mu} R_R \tag{1}$$

Dimana  $R_s$  merupakan faktor kekuatan (*strength factor*),  $R_{\mu}$  merupakan faktor daktilitas (*ductility factor*), dan  $R_{R}$  merupakan faktor redundansi (*redundancy factor*). Ketiga faktor tersebut dipengaruhi oleh periode getar struktur.

Efek ketidakberaturan horisontal dan vertikal serta torsi pada struktur belum menjadi pertimbangan pada **Persamaan** (1). Adanya ketidakberaturan ini mengakibatkan nilai R menjadi lebih kecil dibandingkan struktur yang beraturan sehingga beban gempa menjadi lebih besar dan mengurangi ketidakpastian dari respon non linier struktur yang tidak beraturan.

Faktor  $R_s$  serupa dengan faktor kuat lebih struktur ( $\Omega_o$ ) seperti pada ASCE 7-10. Faktor  $R_s$  yang lebih besar dari 1 menunjukkan bahwa struktur mampu menyerap beban gempa hingga keseluruhan elemen struktur mencapai pelelehan ( $V_{max}$ ) dan melebihi beban gempa rencana ( $V_d$ ). Besarnya faktor  $R_s$  dihitung dari **Persamaan (2).** 

$$R_s = \frac{V_{max}}{V_d}$$
(2)

ATC-19 (1995a) dan ATC-34 (1995b) memberikan simbol  $V_0$  sebagai pengganti  $V_{max}$ .

Untuk memperoleh nilai gaya geser dasar pada saat struktur mengalami leleh pertama  $(V_y)$  dilakukan penyederhanaan kurva gaya terhadap perpindahan menjadi kurva bilinier. Kurva gaya terhadap perpindahan ini dapat diperoleh dengan bantuan analisis *pushover*. Proses idealisasi kurva bilinier menggunakan teori *equal energy* yaitu dengan mengasumsikan bahwa luas daerah tertutup di atas kurva bilinier sama dengan di bawah kurva bilinier. **Gambar 1** memberikan contoh kurva gaya geser dasar terhadap perpindahan atap sebagaimana hasil analisis *pushover*.

Nilai  $R_{\mu}$  merupakan fungsi dari rasio daktilitas perpindahan ( $\mu$ ). Besarnya  $\mu$  lebih dipengaruhi oleh nilai  $\delta_{maks}$ dari pada nilai  $\delta_u$  seperti terlihat pada **Persamaan 3**. Nilai  $\delta_{maks}$  merupakan batas maksimal perpindahan struktur sebagaimana diijinkan oleh peraturan (FEMA 356, FEMA 440, ASCE 7-10). Sedangkan nilai  $\delta_u$ merupakan nilai perpindahan *ultimate* yang dicapai oleh struktur sesaat sebelum runtuh.

$$\mu = \frac{\delta_{\text{maks}}}{\delta_{\text{v}}} \tag{2}$$



Gambar 1. Contoh kurva gaya geser dasar versus perpindahan atap (Whittaker, et al., 1999)

ATC-19 (1995a, 1995b) memberikan beberapa persamaan untuk mencari nilai  $R_{\mu}$ . Persamaan yang diberikan menggunakan asumsi apabila struktur gedung berlantai dapat dimodelkan sebagai sistem dengan 1 derajat kebebasan (SDOF). Salah satu persamaan yang dapat digunakan untuk meperoleh nilai  $R_{\mu}$  dengan memperhatikan kondisi tanah pada lokasi struktur (Miranda dan Bertero, 1994) yaitu:

$$R_{\mu} = \frac{\mu - 1}{\Phi} + 1 \tag{4}$$

Besarnya nilai  $\Phi$  pada **Persamaan (4)** bergantung dari jenis kondisi tanah pada lokasi struktur.

untuk kondisi tanah batuan:

$$\Phi = 1 + \frac{1}{10T - \mu T} - \frac{1}{2T} e^{-1.5(\ln(T) - 0.6)^2}$$
(5)

untuk kondisi tanah aluvial:

$$\Phi = 1 + \frac{1}{12T \cdot \mu T} - \frac{2}{5T} e^{-2(\ln(T) - 0.2)^2}$$
(6)

untuk kondisi tanah lunak:

$$\Phi = 1 + \frac{T_g}{3T} - \frac{3T_g}{4T} e^{-3(\ln(T/T_g) - 0.25)^2}$$
(7)

Dimana: T = waktu getar fundamental struktur dan  $T_g$  = waktu getar *predominant* gerakan tanah.

Faktor redundansi ( $R_R$ ) dipengaruhi oleh jumlah struktur pemikul beban gempa yang dipakai pada masing-masing arah. Rekomendasi Whittaker, et al. (1999) mengatakan jika redundansi minimum pada bangunan tercapai apabila terdapat minimal 4 buah sistem rangka penahan gempa pada setiap arahnya (ATC-19, 1995a; ATC-34, 1995b; Whittaker, et al., (1999). Seluruh rangka penahan gempa pada struktur yang memiliki kontribusi yang hampir sama dalam menahan gempa (*strength and deformation compatible*) menjadikan seluruh rangka penahan gempa tersebut memiliki kontribusi terhadap derajat redundansi struktur (Whittaker, et al., 1999).

Tabel 1. Usulan faktor redundansi (ATC-19, 1995a)

| Jumlah rangka penahan gempa | Usulan nilai R <sub>R</sub> |
|-----------------------------|-----------------------------|
| 2                           | 0.71                        |
| 3                           | 0.86                        |
| <sup>3</sup> 4              | 1                           |

ATC-19 (1995a) memberikan rekomendasi nilai  $R_R$  seperti pada **Tabel 1** seperti juga pada ATC-34 (1995b) dan Whittaker, et al. (1999). Semakin sedikit jumlah rangka penahan gempa pada struktur maka faktor  $R_R$  akan semakin kecil yang berakibat semakin tingginya beban gempa yang akan diberikan pada struktur.

Baik ATC-19 (1995a), ATC-34 (1995b), maupun Whittaker, et al. (1999) menyadari masih ada faktor lain yang mempengaruhi nilai R secara kualitatif dan tidak secara langsung mempengaruhi **Persamaan** (1). Beberapa faktor seperti ketinggian bangunan, denah bangunan, faktor resiko bangunan, serta zona gempa hendaknya perlu disertakan saat melakukan evaluasi menyeluruh terhadap nilai R yang dimuat di peraturan.

# 3. Kajian Nilai R dan $\Omega_0$ Menurut FEMA P-695

Sampai dengan keluarnya ASCE 7-10, nilai faktor daktilitas struktur masih didasarkan pada *judgement* akan perilaku bangunan yang didesain secara daktail dari pengalaman gempa-gempa di masa lampau. ASCE 7-10 menjelaskan perlunya penelitian dan kajian mengenai nilai faktor daktilitas struktur. Perhitungan ulang besarnya faktor daktilitas struktur seperti yang dimaksud pada bagian penjelasan ASCE 7-10 menujuk pada FEMA P-695 (2009). Definisi dari faktor daktilitas struktur yang terdapat pada ASCE 7-10 memiliki kesamaan dengan FEMA P-695 (2009) sehingga metodologi yang diberikan cukup relevan dengan desain struktur tahan gempa saat ini.



Gambar 2. Definisi faktor daktilitas struktur dari kurva V-& (FEMA P-695, 2009)

Sama seperti ATC-19 dan ATC-34, untuk dapat melakukan perhitungan ulang faktor daktilitas struktur menggunakan FEMA P-695 (2009) maka diperlukan kurva gaya terhadap perpindahan struktur (V- $\delta$ ) yang dapat diperoleh dari analisis *pushover*. Adanya kurva V- $\delta$  seperti pada **Gambar 2**, dapat menggambarkan perilaku struktur mulai kondisi elastik hingga mencapai kondisi inelastik saat struktur hampir runtuh. Apabila struktur belum menunjukkan kondisi inelastik maka akan sulit dilakukan perhitungan faktor daktilitas struktur karena kurva V- $\delta$  masih berupa garis lurus diagonal dan belum menjadi kurva dengan garis parabolik.

Berdasarkan **Gambar 2** yang diambil dari FEMA P-695 (2009), besarnya faktor modifikasi respon (R) dapat diperoleh dari **Persamaan (8)** berikut ini:

$$R = \frac{V_E}{V}$$
(8)

Nilai  $V_E$  merupakan besarnya gaya gempa pada struktur agar berperilaku elastik penuh yaitu terjadi ketika nilai R = 1. Sedangkan V merupakan beban gempa rencana yang diberikan pada perancangan struktur. Selain kurva V- $\delta$ , pada **Gambar 2** juga terdapat kurva *design earthquake ground motion* yang menunjukkan kurva *demand*.

Nilai  $\Omega_o$  pada **Gambar 2** dapat dihitung dari persamaan:

$$\Omega_0 = \frac{V_{max}}{V} \tag{9}$$

 $V_{max}$  merupakan besarnya gaya gempa maksimum yang mampu dipikul oleh struktur hingga seluruh elemen struktur mengalami pelelehan. Semakin besar nilai  $\Omega_o$  menunjukkan struktur memiliki kapasitas lebih yang semakin besar sehingga menghasilkan gaya gempa yang diperlukan agar keseluruhan elemen struktur mengalami pelelehan juga semakin besar. Nilai  $\Omega_o$  digunakan dalam mengamplifikasi gaya-gaya dari struktur atas ke struktur bawah guna perancangan basemen/fondasi. Tujuannya untuk menjamin agar struktur bawah tidak mengalami kegagalan lebih awal dibanding struktur di atasnya.

Sementara nilai faktor pembesar perpindahan  $(C_d)$  dapat diperoleh dengan persamaan:

$$C_{\rm d} = \frac{\delta}{\delta_{\rm E}/R} \tag{10}$$

Nilai  $\delta$  merupakan merupakan nilai perpindahan saat struktur mulai mencapai kondisi leleh. Sedangkan nilai  $\delta_E/R$  merupakan besarnya perpindahan saat struktur dikenakan beban gempa rencana sebesar V.

Nilai keseluruhan faktor daktilitas struktur pada **Gambar 2** baru dapat secara langsung diperoleh apabila kita mempunyai kurva *demand* yang digambar bersamaan dengan kurva V- $\delta$  (kurva kapasitas). Kurva *demand* diperoleh dari grafik respon spektrum percepatan gempa pada struktur yang selalu dinyatakan sebagai fungsi spektral percepatan (S<sub>a</sub>) terhadap waktu getar (T). Dengan demikian kurva *demand* memiliki pendekatan yang berbeda dengan kurva kapasitas sehingga timbul masalah apabila kedua kurva digambar secara bersama.

FEMA P-695 (2009) memberikan alternatif agar kurva demand dan kapasitas dirubah ke dalam format ADRS (Acceleration Displacement Respon Spectra). Kurva ADRS dinyatakan sebagai fungsi Spectral Acceleration,  $S_a$  (ordinat) terhadap Spectral Displacement,  $S_{-d}$  (absis). Kurva demand dan kapasitas dalam format ADRS yang digambarkan pada satu grafik dapat dilihat pada Gambar 3.

Kurva kapasitas dari hasil *pushover* dalam fungsi V- $\delta$  dapat diubah secara otomatis ke dalam fungsi S<sub>a</sub>-S<sub>d</sub> apabila analisis *pushover* menggunakan *software* seperti ETABS. Konversi ke dalam format ADRS didasarkan pada asumsi apabila 100% berat efektif seismik, W, berpartisipasi pada waktu getar fundamental struktur, T sesuai dengan persamaan 12.8-1 dari ASCE 7-05 (FEMA, 2009). Kurva *demand* (*MCE* 



Gambar 3. Definisi faktor daktilitas struktur dari kurva ADRS

*Ground Motions*) merupakan kurva respon spektrum yang secara otomatis dapat di-*generate* oleh *software*. Kurva ini dibuat dengan memasukkan nilai Ca dan Cv yang bersesuaian dengan grafik respon spektrum gempa dengan periode ulang 2500 tahunan.

Nilai  $S_{MT}$  pada **Gambar 3** merupakan nilai  $S_a$  dari gempa dengan periode ulang 2500 tahun pada periode struktur sebesar, T. Nilai  $S_{max}$  berhubungan dengan besarnya gaya geser dasar maksimum yang dicapai oleh struktur saat mengalami pelelehan sepenuhnya ternormalisasi terhadap W. Sedangkan nilai  $C_s$  berasal dari koefisien respon seismik desain.

Berdasarkan Gambar 3, maka nilai faktor daktilitas struktur dapat diperoleh dari Persamaan (11) dan (12) berikut ini:

$$1.5R = \frac{S_{MT}}{C_s}$$
(11)

$$\Omega_0 = \frac{S_{max}}{C_s} \tag{12}$$

Faktor 1.5 pada **Persamaan 11** dapat diartikan apabila keruntuhan bangunan dimungkinkan terjadi apabila terjadi gempa sebesar 1.5 kali nilai *design ground* motion (ICC, 2012).

Besarnya nilai  $C_d$  pada **Gambar 3** mungkin saja sama besar dengan nilai R. Menurut teori *equal displacement*, hal ini dapat terjadi pada struktur yang memiliki redaman efektif sebesar 5% yang dipakai untuk memperoleh respon *spectral acceleration* dan *spectral* 

*displacement* (FEMA, 2009). Struktur dengan redaman lebih dari 5% maka akan memiliki nilai  $C_d$  kurang dari nilai R akibat dari faktor pengali nilai R seperti pada bab 18 di ASCE 7-10.

#### 4. Perancangan Struktur Gabungan

Struktur gedung yang digunakan untuk melakukan kajian faktor daktilitas struktur gabungan baja-beton terdiri dari 6 lantai. Struktur berada di kota Jakarta dengan kondisi tanah lunak (SE). Kategori desain seismik (KDS) struktur masuk ke dalam kategori D. Apabila digunakan sistem rangka pemikul momen, maka baik pada struktur baja maupun struktur beton harus menggunakan Sistem Rangka Pemikul Momen Khusus (SRPMK) menurut ASCE 7-10/SNI 1726:2012. Respon spektrum pada struktur diambil dari website http://puskim.pu.go.id dan digunakan untuk melakukan analisis beban gempa. Analisis struktur dilakukan menggunakan ETABS versi 9.6.0

Simulasi numerik dilakukan dengan memvariasikan jumlah lantai yang menggunakan rangka baja serta variasi terhadap jenis hubungan baja-beton. Untuk model yang hubungan tipe rigid dinotasikan Ri sedangkan untuk hubungan tipe semi rigid dinotasikan SRi. Model dengan hubungan tipe sendi dinotasikan Si. Notasi "i" menunjukan jumlah lantai yang menggunakan rangka baja. Sehingga secara total terdapat 9 variasi pemodelan dengan rincian seperti **Tabel 2**.

| Tabel 2. Varia | si pemodelan |
|----------------|--------------|
|----------------|--------------|

| Model                         | R3    | SR3           | <b>S</b> 3 | R2    | SR2           | <b>S2</b> | R1    | SR1           | <b>S1</b> |
|-------------------------------|-------|---------------|------------|-------|---------------|-----------|-------|---------------|-----------|
| Jumlah Lantai Beton           | 3     | 3             | 3          | 4     | 4             | 4         | 5     | 5             | 5         |
| Jumlah Lantai Baja            | 3     | 3             | 3          | 2     | 2             | 2         | 1     | 1             | 1         |
| Hubungan Kolom Baja dan Beton | Rigid | Semi<br>Rigid | Sendi      | Rigid | Semi<br>Rigid | Sendi     | Rigid | Semi<br>Rigid | Sendi     |

Denah struktur beton dan struktur baja serta portal arah pendek bangunan dapat dilihat pada **Lampiran 1, 2,** dan **3**. Untuk struktur beton, dimensi yang dipakai tetap sama pada seluruh model sedangkan untuk struktur baja ada perbedaan. Perbedaan dimensi struktur baja dipengaruhi oleh pemodelan sambungan antara baja dan beton.

Sambungan tipe rigid dimodelkan dengan memberikan moment restrained di bagian dasar kolom baja sedangkan tipe sendi dimodelkan dengan memberikan moment release. Untuk sambungan tipe semi rigid, dimodelkan dengan menggunakan non-linear link (seperti pegas) menghubungkan kolom baja dan kolom beton. Kekakuan pegas dihitung berdasarkan desain sambungan menggunakan gaya-gaya dalam kolom baja dari model dengan sambungan rigid. Faktor  $\Omega_o$ untuk desain sambungan yaitu 1.5. Faktor sebesar 1.5 dianggap nilai yang optimal dari segi desain dan kinerja mengacu pada penelitian Prabowo (2015). Desain sambungan mengikuti *AISC design guide* seri 1 dan perhitungan kekakuan sambungan *base plate* mengikuti Kavinde, et al. (2012)

Perancangan struktur gabungan didasarkan pada nilai R = 6 dengan rangka beton dirancang sebagai SRPMK dan rangka baja sebagai SRPMM (Sistem Rangka Pemikul Momen Menengah). SRPMK beton berada di setiap as bangunan. Kolom baja hanya menerima momen memutari sumbu kuat profil sehingga hanya terjadi momen uniaksial di kolom dan sambungan. Perbedaan sistem pemikul beban gempa yang dipakai pada rangka beton dan baja didasarkan pada alasan berikut:

- 1. Struktur beton sebagai struktur bawah didesain lebih daktail dari struktur baja. Hal ini juga didasarkan pada nilai deformasi maksimal pada pemodelan sendi plastis di elemen rangka beton yang lebih kecil dibanding rangka baja. Apabila rangka baja didesain secara daktail penuh, rangka baja sulit mengalami pelelehan sementara rangka beton sudah mengalami pelelehan signifikan.
- 2. Keterbatasan profil H sebagai kolom baja untuk memenuhi syarat penampang kompak elemen daktail khusus serta ketentuan *strong column weak beam* sesuai ketentuan AISC 341-10.

Untuk nilai  $C_d$  ditentukan sebesar 5.0 lebih kecil sedikit dari nilai  $C_d$  untuk SRPMK. Sifat struktur rangka baja yang lebih fleksibel akan sulit memenuhi kriteria simpangan antar lantai SRPMK apabila menggunakan nilai  $C_d$  sebesar 5.5. Faktor  $\Omega_o$  dipakai untuk perancangan kolom baja dan diasumsikan sebesar 3.0. Setelah perancangan struktur yaitu berupa pemeriksaan dimensi struktur, maka selanjutnya dapat dilakukan analisis *pushover*.

# 5. Analisis Pushover Struktur Gabungan dan Evaluasi Kinerjanya

Untuk melakukan analisis *pushover* menggunakan ETABS maka terlebih dahulu ditentukan pola beban lateral yang akan dipakai, yaitu: Pola akselerasi merata sebagai Pola 1 dan Pola ragam tinggi sebagai Pola 2. Pola ragam tinggi mengikuti pola beban lateral dari hasil analisis dinamik di ETABS menggunakan 18 ragam getar.

Sendi plastis momen (M3) dimodelkan pada balok sedangkan pada kolom dimodelkan sendi plastis aksial momen (PMM). Pemodelan sendi plastis mengacu pada tabel yang terdapat pada FEMA 356 dimana untuk rangka baja mengikuti tabel 6-7 serta 6-8 sedangkan untuk struktur beton mengikuti tabel 5-6. Sendi plastis momen sama untuk keseluruhan balok sedangkan untuk kolom bisa berbeda karena dipengaruhi oleh gaya aksial yang bekerja. Pada model yang memiliki hubungan semi rigid antara baja dan beton, pegas (*link*) dimodel-kan hingga berperilaku non linier serta inelastik. Pemodelan non linier pada elemen *link* seperti yang dilakukan oleh Prabowo (2015).

Evaluasi kinerja dilakukan dengan terlebih dahulu memeriksa nilai perpindahan target (*target displace-ment*). Nilai perpindahan target berturut-turut dari yang terbesar hingga yang terkecil adalah yang dihitung menurut FEMA 356, FEMA 440, SNI 1726:2012, dan terakhir ATC-40 (1996). Perpindahan target menurut SNI 1726:2012 dihitung dengan cara mengalikan nilai perpindahan elastik struktur dengan faktor C<sub>d</sub>. Nilai perpindahan target dari keempat peraturan dapat dilihat pada **Tabel 3**.

| Variasi | FEM    | A 356  | FEM    | A 440  | SNI 172 | 26:2012 | ATC-4  | 0 Pola 1 | ATC-4  | 0 Pola 2 |
|---------|--------|--------|--------|--------|---------|---------|--------|----------|--------|----------|
| Model   | Arah X | Arah Y | Arah X | Arah Y | Arah X  | Arah Y  | Arah X | Arah Y   | Arah X | Arah Y   |
| R3      | 0,346  | 0,349  | 0,288  | 0,290  | 0,268   | 0,271   | 0,208  | 0,202    | 0,248  | 0,252    |
| SR3     | 0,343  | 0,347  | 0,286  | 0,289  | 0,266   | 0,270   | 0,208  | 0,201    | 0,249  | 0,252    |
| S3      | 0,428  | 0,458  | 0,357  | 0,382  | 0,297   | 0,314   | 0,228  | 0,247    | 0,263  | 0,268    |
| R2      | 0,296  | 0,294  | 0,247  | 0,245  | 0,248   | 0,248   | 0,208  | 0,188    | 0,250  | 0,236    |
| SR2     | 0,295  | 0,294  | 0,246  | 0,245  | 0,246   | 0,247   | 0,207  | 0,187    | 0,249  | 0,236    |
| S2      | 0,348  | 0,344  | 0,290  | 0,286  | 0,275   | 0,277   | 0,213  | 0,207    | 0,250  | 0,260    |
| R1      | 0,279  | 0,278  | 0,232  | 0,232  | 0,214   | 0,221   | 0,205  | 0,184    | 0,253  | 0,218    |
| SR1     | 0,278  | 0,278  | 0,232  | 0,232  | 0,212   | 0,218   | 0,204  | 0,184    | 0,252  | 0,218    |
| S1      | 0,284  | 0,287  | 0,236  | 0,239  | 0,239   | 0,258   | 0,202  | 0,192    | 0,247  | 0,240    |

#### Tabel 3. Perpindahan target struktur

Untuk melakukan evaluasi kinerja diambil nilai perpindahan maksimal target, yaitu perpindahan target menurut FEMA 356. Namun demikian, nilai perpindahan target menurut SNI 1726:2012 juga dipakai untuk mengevaluasi kinerja struktur terhadap peraturan gempa yang sedang berlaku saat ini. Hasil analisis *pushover* menunjukan apabila keseluruhan model mampu mencapai perpindahan inelastik sebesar 150% dari nilai perpindahan target kecuali model S3. Besarnya nilai perpindahan di titik kontrol dari hasil evaluasi perpindahan target dipengaruhi pola beban lateral yang dipakai dapat dilihat pada **Tabel 4.** 

Berdasarkan **Tabel 4**, dapat diketahui apabila nilai perpindahan *ultimate* terbesar diakibatkan oleh hubungan sendi (model Si) pada setiap variasi jumlah lantai rangka baja pada struktur gabungan. Pada model S3 tidak diperoleh nilai perpindahan ultimit di sekitar perpindahan target FEMA 356 dikarenakan nilai perpindahan maksimal dari analisis *pushover* model S3 masih di bawah nilai perpindahan target. Kecuali model S3, keseluruhan model memenuhi memiliki target perpindahan melebihi nilai maksimum perpindahan inelastik yang diijinkan oleh peraturan.

Setelah dilakukan evaluasi terhadap perpindahan target, maka berikutnya dilakukan evaluasi level kinerja struktur saat mencapai nilai perpindahan seperti pada **Tabel 4**. Level kinerja struktur yang ditampilkan pada **Tabel 5** adalah menurut FEMA 356 dan SNI 1726:2012.

Dari **Tabel 5**, diperoleh level kinerja struktur melampaui *collapse prevention* (CP) yaitu level **C-D** dan **D-E** dari hasil evaluasi menurut FEMA 356. Hal ini dikarenakan nilai target perpindahan dari FEMA 356 yang cukup besar. Namun demikian, akibat pola 2 level kinerja struktur pada hampir keseluruhan model menunjukkan kinerja yang cukup baik, maksimal berada di level CP. Level kinerja melampaui level CP menunjukan apabila struktur mengalami keruntuhan sehingga memiliki kinerja yang kurang memuaskan.

Pengaruh pola beban lateral pada level kinerja struktur terlihat di **Tabel 5**. Hasil evaluasi dengan menggunakan pola 2 lebih menunjukkan kinerja yang memuaskan ketimbang pola 1. Hal ini dikarenakan pada pola 1 sulit untuk memperoleh informasi kondisi struktur di sekitar target perpindahan. Nilai perpindahan yang diperoleh dari kurva *pushover* berada cukup jauh dengan nilai target perpindahan sehingga level kinerja yang diperoleh menjadi kurang akurat. Dengan demikian, penentuan evaluasi kinerja struktur lebih tepat apabila menggunakan pola 2.

Level kinerja struktur gabungan pada setiap model menurut SNI 1726:2012 akibat pola 2 berada di *life* safety (LS) baik portal arah X maupun portal arah Y. Hal ini memenuhi kriteria level kinerja struktur SNI 1726:2012. Untuk evaluasi menurut FEMA 356, kinerja struktur gabungan berada di level LS kecuali untuk model S3 akibat pola 2. Setelah mengetahui level kinerja struktur yang cukup memuaskan, maka selanjutnya perlu dilakukan pemeriksaan terhadap nilai estimasi dari faktor daktilitas struktur.

| Variasi            | ŀ      | Evaluasi Menu | irut FEMA 35 | 56     | Ev     | Evaluasi Menurut SNI 1726:2012 |        |        |  |  |
|--------------------|--------|---------------|--------------|--------|--------|--------------------------------|--------|--------|--|--|
| v ar iasi<br>Modol | Arah X |               | Ara          | Arah Y |        | ıh X                           | Arah Y |        |  |  |
| Model              | Pola 1 | Pola 2        | Pola 1       | Pola 2 | Pola 1 | Pola 2                         | Pola 1 | Pola 2 |  |  |
| R3                 | 0,377  | 0,345         | 0,396        | 0,342  | 0,325  | 0,304                          | 0,396  | 0,289  |  |  |
| SR3                | 0,377  | 0,352         | 0,399        | 0,399  | 0,324  | 0,303                          | 0,399  | 0,291  |  |  |
| S3                 | -      | -             | 0,452        | 0,466  | 0,347  | 0,312                          | 0,347  | 0,365  |  |  |
| R2                 | 0,306  | 0,327         | 0,326        | 0,287  | 0,306  | 0,327                          | 0,326  | 0,287  |  |  |
| SR2                | 0,306  | 0,327         | 0,326        | 0,292  | 0,306  | 0,327                          | 0,321  | 0,284  |  |  |
| S2                 | 0,383  | 0,413         | 0,379        | 0,355  | 0,325  | 0,311                          | 0,279  | 0,319  |  |  |
| R1                 | 0,363  | 0,323         | 0,345        | 0,362  | 0,241  | 0,273                          | 0,269  | 0,253  |  |  |
| SR1                | 0,403  | 0,323         | 0,323        | 0,444  | 0,284  | 0,272                          | 0,323  | 0,254  |  |  |
| S1                 | 0,298  | 0,302         | 0,354        | 0,340  | 0,298  | 0,252                          | 0,260  | 0,340  |  |  |

#### Tabel 4. Hasil evaluasi perpindahan target

Tabel 5. Evaluasi level kinerja struktur

| Variasi           | ŀ      | Evaluasi Menu | irut FEMA 35 | 6      | Ev     | Evaluasi Menurut SNI 1726:2012 |        |        |  |  |  |
|-------------------|--------|---------------|--------------|--------|--------|--------------------------------|--------|--------|--|--|--|
| v ariasi<br>Modol | Ara    | Arah X        |              | Arah Y |        | uh X                           | Arah Y |        |  |  |  |
| wiodei            | Pola 1 | Pola 2        | Pola 1       | Pola 2 | Pola 1 | Pola 2                         | Pola 1 | Pola 2 |  |  |  |
| R3                | C-D    | IO-LS         | LS-CP        | IO-LS  | LS-CP  | IO-LS                          | LS-CP  | IO-LS  |  |  |  |
| SR3               | C-D    | IO-LS         | C-D          | IO-LS  | LS-CP  | IO-LS                          | LS-CP  | IO-LS  |  |  |  |
| S3                | -      | -             | IO-LS        | IO-LS  | C-D    | IO-LS                          | IO-LS  | IO-LS  |  |  |  |
| R2                | IO-LS  | IO-LS         | IO-LS        | IO-LS  | IO-LS  | IO-LS                          | IO-LS  | IO-LS  |  |  |  |
| SR2               | IO-LS  | IO-LS         | IO-LS        | IO-LS  | IO-LS  | IO-LS                          | IO-LS  | IO-LS  |  |  |  |
| S2                | C-D    | IO-LS         | LS-CP        | IO-LS  | LS-CP  | IO-LS                          | IO-LS  | IO-LS  |  |  |  |
| R1                | LS-CP  | IO-LS         | C-D          | IO-LS  | IO-LS  | IO-LS                          | IO-LS  | IO-LS  |  |  |  |
| SR1               | C-D    | IO-LS         | IO-LS        | LS-CP  | IO-LS  | IO-LS                          | IO-LS  | IO-LS  |  |  |  |
| S1                | IO-LS  | IO-LS         | D-E          | IO-LS  | IO-LS  | IO-LS                          | IO-LS  | IO-LS  |  |  |  |

# 6. Hasil Verifikasi Nilai R dan $\Omega_0$ Menurut ATC-19 dan ATC-34

Dari analisis *pushover* yang dilakukan pada 9 variasi model maka diperoleh 9 kurva kapasitas seperti **Gambar 1** untuk masing-masing pola beban lateral. Kurva kapasitas tersebut perlu disederhanakan menjadi kurva bilinier untuk memperoleh nilai  $V_y$ ,  $\delta_y$ , dan  $\delta_{maks}$ seperti didefinisikan pada **Gambar 1**. Besarnya ketiga parameter tersebut disajikan pada **Tabel 6** dan **7**. Nilai  $V_d$  tidak dipengaruhi oleh pola beban lateral karena merupakan hasil analisis linier. Besarnya  $\delta_{maks}$  diambil dari nilai target perpindahan menurut SNI 1726:2012.

Nilai  $R_m$  diperoleh dengan menggunakan persamaan yang diberikan oleh Miranda dan Bertero (1994)

dengan asumsi kondisi tanah lunak. Persamaan mencari  $R_m$  dapat dilihat pada **Persamaan 4** dan **5**. **Tabel 8** menunjukkan nilai parameter yang diperlukan untuk mencari nilai  $R_m$  beserta hasil perhitungan  $R_m$  untuk 9 variasi pemodelan. Nilai  $R_m$  pada ATC-19 memiliki posisi yang sama dengan  $R_d$  pada FEMA P-695 (2009).

Faktor ketiga yang mempengaruhi nilai R yaitu R<sub>R</sub> yang dapat ditentukan nilainya sebesar 1. Hal ini dikarenakan terdapat 4 sistem pemikul beban gempa pada setiap arahnya dimana masing-masing sistem memiliki kontribusi yang sama dalam menahan beban gempa akibat aksi diafragma kaku dari lantai. Dengan demikian, besarnya nilai R hanya ditentukan dari hasil perkalian R<sub>s</sub> dan R<sub>m</sub>. Faktor  $\Omega_o$  diambil dari nilai R<sub>s</sub>. Hasil verifikasi nilai R dan  $\Omega_o$  menurut ATC-19 dan ATC-34 disajikan pada **Tabel 9**.

Tabel 6. Nilai V<sub>y</sub>, V<sub>d</sub>, dan R<sub>s</sub> untuk setiap variasi pemodelan

|               |        | V <sub>v</sub> ( | (kN)   |        | V. (             | I-NI)  |        | ŀ      | R <sub>s</sub> |        |  |
|---------------|--------|------------------|--------|--------|------------------|--------|--------|--------|----------------|--------|--|
| Variasi Model | Pol    | la 1             | Pola 2 |        | V <sub>d</sub> ( |        |        | Pola 1 |                | Pola 2 |  |
|               | Arah X | Arah Y           | Arah X | Arah Y | Arah X           | Arah Y | Arah X | Arah Y | Arah X         | Arah Y |  |
| R3            | 5800   | 6900             | 5040   | 6080   | 2903             | 2910   | 2,00   | 2,37   | 1,74           | 2,09   |  |
| SR3           | 5900   | 7000             | 5000   | 5900   | 2917             | 2915   | 2,02   | 2,40   | 1,71           | 2,02   |  |
| S3            | 5600   | 7000             | 5000   | 5800   | 2910             | 2940   | 1,92   | 2,38   | 1,72           | 1,97   |  |
| R2            | 6100   | 7600             | 4800   | 6400   | 3064             | 3088   | 1,99   | 2,46   | 1,57           | 2,07   |  |
| SR2           | 6200   | 7600             | 4800   | 6800   | 3089             | 3100   | 2,01   | 2,45   | 1,55           | 2,19   |  |
| S2            | 6000   | 7400             | 5400   | 6240   | 3042             | 3054   | 1,97   | 2,42   | 1,78           | 2,04   |  |
| R1            | 6400   | 7600             | 5100   | 6600   | 3153             | 3137   | 2,03   | 2,42   | 1,62           | 2,10   |  |
| SR1           | 6600   | 7600             | 5100   | 6560   | 3159             | 3151   | 2,09   | 2,41   | 1,61           | 2,08   |  |
| S1            | 6400   | 7500             | 5100   | 6400   | 3188             | 3240   | 2,01   | 2,31   | 1,60           | 1,98   |  |

Tabel 7. Nilai  $\delta_v$  dan  $\delta_{maks}$  untuk setiap variasi pemodelan

|               |        | δ <sub>y</sub> | (m)    |        |        | δ <sub>mal</sub> | <sub>cs</sub> (m) |        |
|---------------|--------|----------------|--------|--------|--------|------------------|-------------------|--------|
| Variasi Model | Pola 1 |                | Pol    | Pola 2 |        | la 1             | Pola 2            |        |
|               | Arah X | Arah Y         | Arah X | Arah Y | Arah X | Arah Y           | Arah X            | Arah Y |
| R3            | 0,110  | 0,125          | 0,150  | 0,176  | 0,268  | 0,271            | 0,268             | 0,271  |
| SR3           | 0,110  | 0,130          | 0,140  | 0,176  | 0,266  | 0,270            | 0,266             | 0,270  |
| S3            | 0,150  | 0,190          | 0,170  | 0,210  | 0,297  | 0,314            | 0,297             | 0,314  |
| R2            | 0,080  | 0,095          | 0,100  | 0,128  | 0,248  | 0,248            | 0,248             | 0,248  |
| SR2           | 0,080  | 0,100          | 0,100  | 0,128  | 0,246  | 0,247            | 0,246             | 0,247  |
| S2            | 0,110  | 0,130          | 0,150  | 0,192  | 0,275  | 0,277            | 0,275             | 0,277  |
| R1            | 0,070  | 0,080          | 0,070  | 0,096  | 0,214  | 0,221            | 0,214             | 0,221  |
| SR1           | 0,070  | 0,080          | 0,072  | 0,096  | 0,212  | 0,218            | 0,212             | 0,218  |
| S1            | 0,070  | 0,080          | 0,090  | 0,132  | 0,239  | 0,258            | 0,239             | 0,258  |

Tabel 8. Hasil Perhitungan R<sub>m</sub> untuk setiap variasi pemodelan

|         | T <sub>fund</sub> | amental   | Etopol    | hundr     |           |           | μ         |           | <u>R</u> μ |           |           |           |
|---------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
| Variasi | (de               | tik)      | r tallal  | пипак     | Po        | la 1      | Pol       | la 2      | Pol        | la 1      | Pol       | a 2       |
| Model   | Arah<br>X         | Arah<br>Y | Arah<br>X | Arah<br>Y | Arah<br>X | Arah<br>Y | Arah<br>X | Arah<br>Y | Arah<br>X  | Arah<br>Y | Arah<br>X | Arah<br>Y |
| R3      | 1,479             | 1,491     | 0,806     | 0,811     | 2,43      | 2,16      | 1,78      | 1,54      | 2,78       | 2,43      | 1,97      | 1,66      |
| SR3     | 1,466             | 1,484     | 0,799     | 0,808     | 2,42      | 2,08      | 1,90      | 1,53      | 2,78       | 2,33      | 2,13      | 1,66      |
| S3      | 1,832             | 1,960     | 0,956     | 0,993     | 1,98      | 1,65      | 1,75      | 1,49      | 2,03       | 1,65      | 1,78      | 1,50      |
| R2      | 1,268             | 1,260     | 0,705     | 0,702     | 3,10      | 2,61      | 2,48      | 1,94      | 3,98       | 3,29      | 3,10      | 2,34      |
| SR2     | 1,261             | 1,256     | 0,702     | 0,701     | 3,08      | 2,47      | 2,46      | 1,93      | 3,95       | 3,10      | 3,08      | 2,33      |
| S2      | 1,487             | 1,470     | 0,809     | 0,801     | 2,50      | 2,13      | 1,83      | 1,44      | 2,85       | 2,41      | 2,03      | 1,55      |
| R1      | 1,191             | 1,191     | 0,678     | 0,678     | 3,05      | 2,76      | 3,05      | 2,30      | 4,02       | 3,59      | 4,02      | 2,91      |
| SR1     | 1,190             | 1,189     | 0,678     | 0,677     | 3,03      | 2,73      | 2,94      | 2,27      | 3,99       | 3,55      | 3,87      | 2,88      |
| S1      | 1,214             | 1,228     | 0,685     | 0,690     | 3,41      | 3,23      | 2,65      | 1,95      | 4,51       | 4,23      | 3,41      | 2,38      |

| Variasi           |        | J      | R      |        |        | S      | <b>D</b> <sub>o</sub> |        |
|-------------------|--------|--------|--------|--------|--------|--------|-----------------------|--------|
| v ariasi<br>Madal | Pola 1 |        | Pol    | la 2   | Po     | la 1   | Pola 2                |        |
| Model             | Arah X | Arah Y | Arah X | Arah Y | Arah X | Arah Y | Arah X                | Arah Y |
| R3                | 5,55   | 5,77   | 3,42   | 3,47   | 2,00   | 2,37   | 1,74                  | 2,09   |
| SR3               | 5,61   | 5,60   | 3,65   | 3,36   | 2,02   | 2,40   | 1,71                  | 2,02   |
| S3                | 3,90   | 3,94   | 3,06   | 2,95   | 1,92   | 2,38   | 1,72                  | 1,97   |
| R2                | 7,92   | 8,11   | 4,85   | 4,84   | 1,99   | 2,46   | 1,57                  | 2,07   |
| SR2               | 7,94   | 7,60   | 4,82   | 4,70   | 2,01   | 2,45   | 1,57                  | 2,02   |
| S2                | 5,63   | 5,84   | 3,60   | 3,46   | 1,97   | 2,42   | 1,78                  | 2,23   |
| R1                | 8,17   | 8,70   | 6,51   | 6,13   | 2,03   | 2,42   | 1,62                  | 2,10   |
| SR1               | 8,34   | 8,56   | 6,25   | 5,84   | 2,09   | 2,41   | 1,61                  | 2,03   |
| S1                | 9,06   | 9,78   | 5,45   | 4,83   | 2,01   | 2,31   | 1,60                  | 2,02   |

Tabel 9. Hasil verifikasi nilai R dan  $\Omega_o$  menurut ATC-19 dan ATC-34

**Tabel 9** menunjukkan apabila besarnya nilai R dipengaruhi oleh pola pembebanan lateral pada analisis *pushover*. Nilai R akibat pola 1 yang lebih besar dari pola 2 menunjukkan apabila nilai daktilitas struktur beton yang lebih besar dari struktur baja ketika bekerja sebagai struktur gabungan. Hal ini dapat diterima karena struktur beton didesain untuk memenuhi kriteria yang lebih daktail dibandingkan desain struktur baja.

Komposisi jumlah rangka baja dan rangka beton juga mempengaruhi nilai R. Semakin banyak jumlah rangka baja mengakibatkan nilai R semakin kecil begitu pula  $R_s$  dan  $R_m$ . Asumsi R sebesar 6 untuk kedua arah beban gempa hanya mampu dipenuhi oleh struktur dengan komposisi jumlah rangka baja sebanyak 1 lantai untuk setiap pola beban lateral. Berdasarkan ATC-19 nilai R estimasi sebesar 6 tidak dapat dicapai. Perlu dicatat apabila nilai R pada arah X dan Y hanya sedikit berbeda nilainya.

Sama seperti nilai R, nilai  $\Omega_{o}$  juga dipengaruhi oleh pola beban lateral. Komposisi jumlah rangka baja dan beton berpengaruh tidak signfikan. Berbeda dengan nilai R pada setiap arah, nilai  $\Omega_{o}$  pada arah X dan Y berbeda sekitar 25%. Nilai  $\Omega_{o}$  pada seluruh variasi pemodelan menunjukkan nilai yang lebih kecil dari estimasi. Dengan demikian ada kecenderungan apabila nilai  $\Omega_{o}$  pada struktur gabungan lebih kecil dari 3.

# 7. Hasil Verifikasi Nilai R dan $\Omega_0$ Menurut FEMA P-695

Kurva kapasitas yang dipakai untuk mencari nilai R dan  $\Omega_o$  dapat dirubah ke dalam format ADRS secara otomatis oleh ETABS. Kurva *demand* yang berupa kurva respon spektrum gempa 2500 tahunan perlu dibuat pada grafik bersamaan kurva kapasitas dengan menginput nilai  $C_a$  dan  $C_v$ . Nilai S<sub>MS</sub> setara dengan 2.5  $C_a$  dan untuk nilai  $C_v$  setara dengan S<sub>M1</sub>. Hasil plot kurva *demand* dan kurva kapasitas dapat dilihat seperti **Gambar 3**. Pada **Gambar 3**, terdapat garis lurus diagonal yang bermula dari titik asal dan menyinggung kurva kapasitas serta memotong kurva *demand* yang merupakan nilai waktu getar fundamental struktur.

Dari hasil plot kurva kapasitas dan *demand* secara bersamaan, maka diperoleh nilai  $S_{MT}$  dan  $S_{maks}$ . Nilai  $C_s$ diperoleh dari nilai gaya geser dasar desain ( $V_d$ ) dibagi dengan berat struktur (W). Besarnya  $C_s$  untuk 9 variasi model hampir sama yaitu berkisar 0.07. Adanya variasi pemodelan sambungan tidak berpengaruh signifikan terhadap besarnya  $V_d$  seperti juga ditemukan pada Prabowo (2015). Nilai  $S_{MT}$  dan  $S_{maks}$  dari setiap pola beban lateral 9 model dapat dilihat di **Tabel 10** sedangkan besarnya R dan  $\Omega_o$  dapat dilihat pada T**abel 11.** 

| Tabel 10. Nilai S <sub>M</sub> | ⊤ dan S <sub>maks</sub> untul | k setiap variasi | pemodelan |
|--------------------------------|-------------------------------|------------------|-----------|
|--------------------------------|-------------------------------|------------------|-----------|

| <b>X</b> 7       |        | S      | мт     |        |        | Sn     | naks   |        |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Variasi<br>Model | Pola 1 |        | Po     | Pola 2 |        | la 1   | Pola 2 |        |
| Widdei           | Arah X | Arah Y |
| R3               | 0,70   | 0,71   | 0,60   | 0,60   | 0,20   | 0,22   | 0,18   | 0,22   |
| SR3              | 0,71   | 0,70   | 0,62   | 0,61   | 0,19   | 0,22   | 0,18   | 0,22   |
| S3               | 0,62   | 0,60   | 0,55   | 0,55   | 0,00   | 0,26   | 0,00   | 0,30   |
| R2               | 0,77   | 0,77   | 0,66   | 0,67   | 0,19   | 0,21   | 0,18   | 0,20   |
| SR2              | 0,76   | 0,76   | 0,68   | 0,68   | 0,19   | 0,22   | 0,17   | 0,20   |
| S2               | 0,72   | 0,72   | 0,63   | 0,64   | 0,18   | 0,22   | 0,17   | 0,22   |
| R1               | 0,78   | 0,78   | 0,70   | 0,70   | 0,18   | 0,22   | 0,17   | 0,20   |
| SR1              | 0,78   | 0,78   | 0,70   | 0,70   | 0,18   | 0,22   | 0,18   | 0,20   |
| S1               | 0,77   | 0,78   | 0,70   | 0,68   | 0,18   | 0,22   | 0,16   | 0,20   |

| Variari           |        | I      | R      |        | Ω      |        |        |        |  |  |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
| v ariasi<br>Modol | Pol    | la 1   | Pol    | la 2   | Pol    | a 1    | Pola 2 |        |  |  |
| wiouei            | Arah X | Arah Y |  |  |
| R3                | 6,67   | 6,76   | 5,71   | 5,71   | 2,86   | 3,14   | 2,57   | 3,14   |  |  |
| SR3               | 6,76   | 6,67   | 5,90   | 5,81   | 2,71   | 3,14   | 2,57   | 3,14   |  |  |
| S3                | 5,90   | -      | 5,24   | 5,24   | -      | 3,71   | -      | 4,29   |  |  |
| R2                | 7,33   | 7,33   | 6,29   | 6,38   | 2,71   | 3,00   | 2,57   | 2,86   |  |  |
| SR2               | 7,24   | 7,24   | 6,48   | 6,48   | 2,71   | 3,14   | 2,43   | 2,86   |  |  |
| S2                | 6,86   | 6,86   | 6,00   | 6,10   | 2,57   | 3,14   | 2,43   | 3,14   |  |  |
| R1                | 7,43   | 7,43   | 6,67   | 6,67   | 2,57   | 3,14   | 2,43   | 2,86   |  |  |
| SR1               | 7,43   | 7,43   | 6,67   | 6,67   | 2,57   | 3,14   | 2,57   | 2,86   |  |  |
| S1                | 7,33   | 7,43   | 6,67   | 6,48   | 2,57   | 3,14   | 2,29   | 2,86   |  |  |

Tabel 11. Hasil verifikasi nilai R dan Ω₀ menurut FEMA P-695

Dari **Tabel 11**, dapat dilihat apabila nilai R hasil perhitungan menggunakan metode di FEMA P-695 mendekati nilai R estimasi. Hal yang sama juga terjadi pada  $\Omega_0$ . Kesimpulan tersebut berlaku apabila kita mengabaikan hasil perhitungan pada model S3. Nilai faktor daktilitas struktur akibat pola pembebanan lateral yang berbeda menghasilkan nilai R yang berbeda pula namun tidak sebesar metode ATC-19. Adanya pemodelan semi rigid pada sambungan menggunakan faktor amplifikasi  $\Omega_0 = 1.5$  untuk mendesain sambungan tidak menghasilkan perbedaan perilaku yang cukup jauh dengan model rigid. Hal ini sesuai dengan hasil penelitian Prabowo (2015).

Pola penurunan nilai R dan  $\Omega_o$  akibat berkurangnya komposisi jumlah lantai beton pada struktur gabungan juga terlihat pada **Tabel 11**. Perbedaan nilai R dan  $\Omega_o$  akibat perubahan jumlah lantai beton tidak sebesar yang terlihat pada **Tabel 9**. Semakin banyak jumlah lantai baja pada struktur gabungan menjadikan faktor daktilitas sesungguhnya dimiliki menjadi lebih kecil dan menjauhi estimasi. Namun selama jumlah rangka beton pada struktur gabungan masih lebih banyak dari rangka baja serta rangka beton didesain untuk memenuhi kriteria SRPMK, maka struktur gabungan memiliki faktor daktilitas yang relatif tinggi.

### 8. Kesimpulan

Dari hasil kajian nilai R dan  $\Omega_0$  yang dilakukan pada 9 variasi pemodelan dapat disimpulkan beberapa hal sebagai berikut:

- Nilai R struktur gabungan baja-beton menurut FEMA P-695 yaitu 6.0 sedangkan menurut ATC-19 lebih kecil dari 6 untuk model dengan jumlah lantai baja lebih dari 1 lantai.
- 2. Nilai  $\Omega_0$  struktur gabungan baja-beton menurut FEMA P-695 yaitu 3.0 (sesuai dengan estimasi) sedangkan menurut ATC-19 maksimal 2.5.
- 3. Nilai R dan  $\Omega_0$  pada kesimpulan 1 dan 2 diperoleh dengan melakukan pendetilan SRPMK pada struktur beton dan SRPMM pada struktur baja

- 4. Nilai R dan  $\Omega_o$  dipengaruhi komposisi jumlah rangka momen baja dan rangka momen beton. Selama rangka momen beton lebih dominan dan dirancang sebagai SRPMK, perilaku struktur gabungan relatif daktail.
- 5. Nilai R dan  $\Omega_o$  yang mampu dicapai oleh struktur gabungan dipengaruhi oleh hubungan kolom baja dan rangka beton. Model hubungan sendi memiliki perilaku yang kurang baik dibandingkan dengan model rigid dan semi rigid.
- 6. Nilai R dan  $\Omega_o$  dari hasil analisis *pushover* dipengaruhi oleh pola pembebanan lateral. Akibat pola beban lateral mengikuti pola beban dinamik diperoleh nilai R dan  $\Omega_o$  yang lebih kecil dibanding pola beban merata.

### **Daftar Pustaka**

- ACI, 2011, Building Code Requirements for Structural Concrete (ACI318M-2011) and Commentary, Farmington Hills, MI, American Concrete Institute.
- AISC. 2010, Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-10, Chicago, IL: American Institute for Steel Construction.
- ATC-3-06, 1978, *Tentative Provisions for The Development of Seismic Regulations for Buildings*, USA: National Science Foundation and The National Bureau of Standards.
- ATC-19, 1995a, Structural Response Modification Factors, Redwood City, CA: Applied Technology Council.
- ATC-34. 1995b, A Critical Review of Current Approaches to Earthquake-Resistant Design, Redwood City, CA: Applied Technology Council.

- ATC-40, 1996, Seismic Evaluation and Retrofit of Concrete Buildings, Redwood City, CA: Applied Technology Council.
- ASCE, 2010, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10. Reston, VA: American Society of Civil Engineers.
- CSI, 2005,. *CSI Analysis Reference Manual*, Berkeley, California.: Computers and Structures, Inc.
- Desain Spektra Indonesia, diakses 1 November 2014, http://puskim.pu.go.id/Aplikasi/ desain\_spektra\_indonesia\_2011/.
- FEMA 440, 2005, *Improvement of Nonlinear Static* Seismic Analysis Procedures, Washington, DC: Department of Homeland Security Federal Emergency Management Agency.
- FEMA P 695, 2009, *Quantification of Building Seismic Performance Factors*, Washington, DC: Federal Emergency Management Agency.
- FEMA 356, 2005, Improvement of Nonlinear Static Seismic Analysis Procedures, Washington, DC: Federal Emergency Management Agency.
- FEMA 356, 2000, Pre standard and Commentary for the Seismic Rehabilitation of Buildings, Washington, DC: Federal Emergency Management Agency.
- ICC, 2012, International Building Code and Commentary, Chicago: International Code Council, Inc.
- Kavinde, A.M., Grilli, D.A., Zareian, F., 2012, *Rotational Stiffness of Exposed Column Base* Connections: Experiments and Analytical Models, *Journal of Structural Engineering*, 138, 549-560.
- Lase, Y. & Prabowo, A., 2015, *Tinjauan Nilai*  $\Omega_o$ pada Perancangan Sambungan Dasar Kolom Rangka Baja di Atas Rangka Beton Bertulang Dengan Analisis Pushover, Prosiding Seminar dan Pameran HAKI 2015, Jakarta: Himpunan Ahli Konstruksi Indonesia.
- Miranda, E. & Bertero, V.V., 1994, Evaluation of Strength Reduction Factors for Earthquake-Resistant-Design, Earthquake Spectra, EERI, 10 (2), pp. 57-379.
- Prabowo, A., 2015, Evaluasi Perancangan Sambungan Rigid Kolom Dasar Rangka Baja di Atas Rangka Beton Bertulang Menggunakan Analisis Pushover, Master Thesis, Departemen Teknik Sipil Universitas Indonesia.

- SNI 1726, 2012, Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung, Badan Standarisasi Nasional Indonesia.
- Whittaker, A., Hart, G., Rojahn, C., 1999. Seismic Response Modification Factors, *Journal of Structural Engineering*, 125, 438-444.



#### LAMPIRAN 1: Data Struktur Gabungan untuk Rangka Baja 1 Lantai dan Rangka Beton 5 Lantai

PORTAL AS 1,2,6, DAN 7

Beban Mati di luar berat sendiri = 1,4 kPa di lantai tipikal dan 1,8 kPa di lantai atap.

|                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                     | 8000                                                                                                                                                                                             | 2                                                                                                              | 80                                                                                                                                   | 00                                                                    | 3                                                                  | 8000                                                                                    | 0          | 4 s                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                                                                         | (           | 6                                         | 8                                            | 000                                                                | (                                                    | 9            |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|-------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------|
| 0-                              | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1                    | B3                                                                                                                                                                                               | TC1                                                                                                            | B3                                                                                                                                   | 1                                                                     |                                                                    | B3                                                                                      |            | C1 B3                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I.                                                                          |             | 1101                                      | 83                                           | 3 <u>1</u>                                                         |                                                      |              |
| 6000                            | and the second sec | 23                    | 18                                                                                                                                                                                               | 82                                                                                                             |                                                                                                                                      | 81                                                                    | 82                                                                 | 2                                                                                       | 19         | 24                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                          |             | 53                                        |                                              | 81                                                                 |                                                      | 82           |
| <u>_</u>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1                    |                                                                                                                                                                                                  | C1                                                                                                             |                                                                                                                                      |                                                                       | C1                                                                 | l                                                                                       |            | C1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |             | C1                                        |                                              | Ц.,                                                                |                                                      | C1           |
| 3000                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                    | B3 25                                                                                                                                                                                            | 83                                                                                                             | B3                                                                                                                                   | 81                                                                    | 82                                                                 | 83                                                                                      | 5          | B3<br>덞                                                                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                          |             | 82                                        | 83                                           | 6                                                                  |                                                      | 8            |
| 9                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1                    | B3                                                                                                                                                                                               | C1                                                                                                             | B3                                                                                                                                   |                                                                       | C1                                                                 | B3                                                                                      |            | C1 B3                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ī                                                                           |             | C1                                        | 83                                           | 1                                                                  |                                                      | C1           |
| 6000                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                    | 18                                                                                                                                                                                               | 82                                                                                                             |                                                                                                                                      | 81                                                                    | 82                                                                 | 2                                                                                       | 19         | 28                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18                                                                          |             | B2                                        |                                              | 8                                                                  |                                                      | 83           |
| <                               | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1                    |                                                                                                                                                                                                  | C1                                                                                                             |                                                                                                                                      |                                                                       | C1                                                                 |                                                                                         |            | C1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                    |             | C1                                        |                                              | <u></u>                                                            |                                                      | C1           |
| 0                               | 景                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENAH ST               | B3<br>RUKTUR B                                                                                                                                                                                   | ETON                                                                                                           | B3                                                                                                                                   |                                                                       |                                                                    | 83                                                                                      |            | — вз                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |             |                                           | 83                                           | 5                                                                  |                                                      | т            |
|                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                     | 8000                                                                                                                                                                                             | 2                                                                                                              | 80                                                                                                                                   | 000                                                                   | 3                                                                  | 8006                                                                                    | , (        | 4 8                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                                                                         | (           | ē                                         | 8                                            | 000                                                                | (                                                    | 2<br>7       |
| 0-                              | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SC1                   | SB3                                                                                                                                                                                              | so                                                                                                             | 1                                                                                                                                    | SB3                                                                   | SC2                                                                | s                                                                                       | 82         | SC2                                                                                                                                                                         | SB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB3                                                                         | 1           | SC1                                       | 1                                            | SB3                                                                | T                                                    | SC1          |
| 6000                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 581<br>58             | 88                                                                                                                                                                                               | 58<br>581                                                                                                      | SB                                                                                                                                   | 58 S8                                                                 | 88                                                                 | 99 9                                                                                    | 28 29      | SB<br>SB                                                                                                                                                                    | 88 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SB                                                                          | <u>38</u>   | SB1                                       | SB                                           | SB                                                                 | SB                                                   | SB1<br>SB1   |
| <u>_</u>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC1                   | SB3                                                                                                                                                                                              | s                                                                                                              | 1                                                                                                                                    | SB3                                                                   | SC2                                                                | s                                                                                       | 82         | SC2                                                                                                                                                                         | SB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SB3                                                                         |             | SC1                                       |                                              | SB3                                                                |                                                      | SC1          |
| 3000                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | छ<br>ऽc1              | 99<br>SB3                                                                                                                                                                                        | 8 88<br>8 8                                                                                                    | :1 89                                                                                                                                | 第 第<br>5B3                                                            | 99<br>SC2                                                          | 99 9<br>S                                                                               | 8 89<br>82 | 99 199<br>SC2                                                                                                                                                               | න න<br>582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99<br>SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 贸<br>SB3                                                                    | 8           | 99<br>9501                                | 8                                            | 99<br>583                                                          | 8                                                    | 99<br>2 SC 1 |
| 9                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                                                                                                  |                                                                                                                | 1                                                                                                                                    |                                                                       |                                                                    |                                                                                         |            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [                                                                           |             | 0000                                      |                                              | Ĩ                                                                  | 1                                                    | 897C 88      |
| 6000                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S8<br>S8              | 88                                                                                                                                                                                               | S8 58                                                                                                          | SB                                                                                                                                   | 88 89                                                                 | 88                                                                 | 89 99                                                                                   | 98<br>88   | 88 88                                                                                                                                                                       | 88 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SB                                                                          | S8          | SB1                                       | SB                                           | 8                                                                  | 88                                                   | S81          |
|                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SC1                   | SB3                                                                                                                                                                                              | 2 sc                                                                                                           | 1                                                                                                                                    | SB3                                                                   | SC2                                                                | ll lls                                                                                  | 82         | SC2                                                                                                                                                                         | SB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 582                                                                         |             | 8001                                      |                                              | IISB3                                                              | 1                                                    | Beer         |
| $\sim$                          | ¶-+<br>⊒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ENAH ST               | RUKTUR B                                                                                                                                                                                         | BAJA                                                                                                           |                                                                                                                                      |                                                                       | .1.                                                                | Alamar willin                                                                           |            | η                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lanar a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                         | Ř           | T                                         |                                              | d house a                                                          | <b>A</b>                                             | T            |
| 3800                            | +_ <b>₽</b><br>₽<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 6000<br>3 SB1                                                                                                                                                                                    | SB3_<br>SC1                                                                                                    | SB1                                                                                                                                  | ©<br>SB3<br>1                                                         | 6000<br>3 SB1                                                      | SB3_<br>SC1                                                                             |            | $\frac{Mutu B}{fc' = 29}$ fy <sub>tulangan</sub><br>fy <sub>profil ba</sub>                                                                                                 | $\frac{ahan:}{2}$ MPa ( $\frac{1}{2}$<br>= 400 1<br>$\frac{1}{2}$ = 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K-350)<br>MPa<br>MPa<br>MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )<br>(BJ-3<br>on (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37)                                                                         | <u>U</u>    | <u>+</u> 201-                             | inn.                                         |                                                                    |                                                      | 12501<br>T   |
| 3800 3800 (                     | sc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A<br>SB<br>SB         | 6000<br>3 SB1<br>3 SB1                                                                                                                                                                           | SB3_<br>SC1<br>SC1                                                                                             | 3000<br>SB1<br>SC<br>SB1<br>SC                                                                                                       | ©<br>1<br>1<br>1<br>1                                                 | 6000<br>3 SB1<br>3 SB1                                             | SB3_<br>SC1<br>SB3_<br>SC1                                                              |            | $\frac{Mutu B}{fc' = 29}$ $fy_{tulangan}$ $fy_{profil ba}$ $\frac{Dimens}{B1 = 30}$ $B2 = 30$ $B3 = 35$ $C1 = 60$                                                           | $\frac{ahan:}{2} MPa (1) = 400 \frac{1}{2}$ $\frac{ahan:}{a} = 240 \frac{1}{2}$ $\frac{ahan:}{ahan} = 240 \frac{1}{2}$ $\frac{ahan}{ahan} = 240 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K-350)<br>MPa<br>MPa<br>ur betc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )<br>(BJ-3<br>on (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37)<br><u>nm):</u>                                                          |             | Ţ                                         |                                              |                                                                    |                                                      | 1            |
| 3800 3800 3800                  | sc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 6000<br>3 SB1<br>3 SB1<br>B2                                                                                                                                                                     | SB3_<br>SC1<br>SC1<br>B3_/<br>C1                                                                               | 3000<br>SB1<br>SC<br>SB1<br>SC<br>B2<br>C                                                                                            | ©<br>1SB3<br>1SB3<br>1SB3<br>1B3                                      | 6000<br>3 SB1<br>3 SB1<br>B2                                       | SB3_<br>SC1<br>SB3_<br>SC1<br>B3_<br>C1                                                 |            | $\frac{Mutu B}{fc^2 = 29}$ fy <sub>tulangan</sub> fy <sub>profil ba</sub> $\frac{Dimens}{B1 = 30}$ B2 = 30 B3 = 35 C1 = 60 Tebal P Dimens                                   | $\frac{ahan:}{2} MPa (1) = 400 \frac{1}{2}$ $= 400 \frac{1}{2}$ $= 240 \frac{1}{2} \frac{1}$ | K-350<br>MPa<br>MPa<br>ur betc<br>60<br>tur ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br>(BJ-3<br>on (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37)<br>nm):                                                                 |             |                                           |                                              | 10                                                                 |                                                      | 1            |
| 00 3800 3800 3800 (             | sc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A<br>SB:<br>SB:<br>B3 | 6000<br>3 SB1<br>3 SB1<br>B2<br>B2                                                                                                                                                               | SB3_<br>SC1<br>SC1<br>SC1<br>C1<br>B3_<br>C1<br>B3_                                                            | 3000<br>SB1<br>SC<br>SB1<br>SC<br>SB1<br>SC<br>SC<br>B2<br>C<br>B2                                                                   | C<br>1<br>5<br>5<br>1<br>1<br>1<br>5<br>5<br>83<br>1<br>5<br>83       | 6000<br>3 SB1<br>3 SB1<br>B2<br>B2                                 | SB3_<br>SC1<br>SB3_<br>SC1<br>B3_<br>C1<br>B3_/<br>B3_/                                 |            | $\frac{Mutu B}{fc' = 29}$ fy <sub>tulangan</sub> fy <sub>profil ba</sub> $\frac{Dimens}{B1 = 30}$ B2 = 30 B3 = 35 C1 = 60 Tebal P Dimens Notasi                             | $\frac{ahan:}{2} MPa (1) = 400 \frac{1}{2}$ $\frac{ahan:}{2} = 240 $                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K-350<br>MPa<br>MPa<br>ur betc<br>0<br>tur ba<br>Jodel I<br>Semi F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )<br>(BJ-3<br>o <u>n (m</u><br>Nigid<br>Rigid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37)<br>nm):                                                                 |             | <sup>₽</sup>                              | [ode                                         | 1 Ser                                                              | ndi                                                  | 1            |
| 3800 3800 3800 3800             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 6000<br>3 SB1<br>3 SB1<br>B2<br>B2                                                                                                                                                               | SB3_<br>SC1<br>SC1<br>SC1<br>C1<br>B3_/<br>C1                                                                  | 3000<br>SB1<br>SC<br>SB1<br>SC<br>SB1<br>SC<br>SB2<br>C<br>B2<br>C                                                                   | C<br>                                                                 | 6000<br>3 SB1<br>3 SB1<br>B2<br>B2                                 | SB3_<br>SC1<br>SC1<br>SC1<br>C1<br>B3_/<br>C1                                           |            | $\frac{Mutu B}{fc' = 29}$ $fy_{tulangan}$ $fy_{profil ba}$ $\frac{Dimens}{B1 = 30}$ $B2 = 30$ $B3 = 35$ $C1 = 60$ $Tebal P$ $Dimens$ $Notasi$ $SB$                          | $\frac{ahan:}{2} MPa (i) = 400 $ $\frac{ahan:}{2} = 400 $ $\frac{ahan:}{2} = 240 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K-350<br>MPa<br>MPa<br>ur betc<br>0<br>tur ba<br>1<br>0<br>del 1<br>Semi H<br>250x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )<br>(BJ-3<br>o <u>n (m</u><br>Rigid<br>25x(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37)<br><u>nm):</u><br>1/<br>6x9                                             |             | M                                         | [ode<br>250;                                 | <b>1 Ser</b><br>x125                                               | <b>ndi</b><br>x6x9                                   |              |
| 3800 3800 3800 3800             | sc1<br>c1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | B2<br>B2<br>B2<br>B2<br>B2                                                                                                                                                                       | SB3_<br>SC1<br>SC1<br>B3_<br>C1<br>B3_<br>C1<br>B3_<br>C1<br>B3_<br>C1                                         | 3000<br>SB1<br>SC<br>SB1<br>SC<br>SB1<br>SC<br>SC<br>B2<br>C<br>B2<br>C<br>B2<br>C                                                   | C<br>-SB3<br>1<br>-SB3<br>1<br>-SB3<br>1<br>-B3<br>1<br>-B3           | 6000<br>5 SB1<br>3 SB1<br>B2<br>B2<br>B2<br>B2                     | SB3_<br>SC1<br>SB3_<br>SC1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1                    |            | $\frac{Mutu B}{fc^2 = 29}$ fy <sub>tulangan</sub> fy <sub>profil ba</sub> $\frac{Dimens}{B1 = 30}$ B2 = 30 B3 = 35 C1 = 60 Tebal P Dimens Notasi SB SB1                     | $\frac{ahan:}{2} MPa (1) = 400 \frac{1}{2} = 240 $                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K-350<br>MPa<br>MPa<br>ur betc<br>0<br><b>tur ba</b><br><b>5emi F</b><br>250x1<br>WI<br>00x200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ija:<br>n (m<br>Rigid<br>25x0<br>x8x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37)<br>nm):<br>1/<br>6x9                                                    | V           | M<br>WF<br>VF 5                           | <b>Iode</b><br>250:<br>00x2                  | <b>1 Ser</b><br>x125<br>200x                                       | ndi<br>x6x9<br>10x1                                  | 6            |
| 3800 3800 3800 3800 3800 (      | sc1<br>c1<br>c1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | BUKTUR         B           6000         3           3         SB1           3         SB1           B2         B2           B2         B2                                                        | SB3_<br>SC1<br>SC1<br>B3_<br>C1<br>B3_<br>C1<br>B3_<br>C1<br>C1                                                | 3000<br>SB1<br>SC<br>SB1<br>SC<br>SB1<br>SC<br>SB1<br>SC<br>C<br>B2<br>C<br>B2<br>C<br>C<br>B2<br>C                                  | C<br>-SB3<br>-SB3<br>-SB3<br>-SB3<br>-SB3<br>-B3<br>-B3<br>-B3<br>-B3 | 6000<br>5 SB1<br>3 SB1<br>B2<br>B2<br>B2<br>B2                     | SB3_<br>SC1<br>SC1<br>SC1<br>B3_/<br>C1<br>B3_/<br>C1<br>C1                             |            | $\frac{Mutu B}{fc' = 29}$ fy <sub>tulangan</sub> fy <sub>profil ba</sub> $\frac{Dimens}{B1 = 30}$ B2 = 30 B3 = 35 C1 = 60 Tebal P Dimens Notasi SB SB1 SB2                  | $\frac{ahan:}{2} \text{ MPa} (i) = 400 \text{ m}^2$ $\frac{ahan:}{2} = 240 \text{ m}^2$ $\frac{ahan:}{2} = 24$                                                                                                                                                                                                                                                                                                                                                                                                                                           | K-350<br>MPa<br>MPa<br>ur betc<br>30<br><b>tur ba</b><br><b>50</b><br><b>tur ba</b><br><b>50</b><br><b>10</b><br><b>10</b><br><b>10</b><br><b>10</b><br><b>10</b><br><b>10</b><br><b>10</b><br><b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ija:<br>ija:<br>ija:<br>Rigid<br>25x(<br>x8x1<br>x8x1<br>x8x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37)<br>1m):<br>6x9                                                          | <br><br>V   | M<br>WF<br>VF 5<br>VF 6                   | lode<br>250:<br>00x2                         | <b>1 Ser</b><br>x125<br>200x<br>200x                               | n <b>di</b><br>x6x9<br>10x1<br>11x1                  |              |
| 3800 3800 3800 3800 3800        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | BUKTUR         B           6000         3         SB1           3         SB1         3           3         SB1         B2           B2         B2         B2           B2         B2         B2 | B3_/<br>B3_/<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1 | 3000<br>SB1<br>SC<br>SB1<br>SC<br>SB1<br>SC<br>C<br>B2<br>C<br>B2<br>C<br>B2<br>C<br>B2<br>C                                         | C<br>-SB3<br>1<br>-SB3<br>1<br>-SB3<br>1<br>-B3<br>1<br>-B3           | 6000<br>5 SB1<br>3 SB1<br>82<br>82<br>82                           | SB3_<br>SC1<br>SC1<br>SC1<br>C1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1 |            | $\frac{Mutu B}{fc' = 29}$ $fy_{tulangan}$ $fy_{profil ba}$ $B1 = 30$ $B2 = 30$ $B3 = 35$ $C1 = 60$ $Tebal P$ <b>Dimens Notasi</b> $\frac{SB}{SB1}$ $SB1$ $SB2$ $SB3$        | $\frac{ahan:}{2} MPa (i) = 400 I = 100 I $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K-350<br>MPa<br>MPa<br>ur betc<br>0<br>tur ba<br>50<br>tur ba<br>50<br>tur ba<br>250x1<br>WI<br>0x200<br>WI<br>0x200<br>WI<br>0x200<br>WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (BJ-3<br>)<br>(BJ-3<br>)<br>(BJ-3<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>(BJ-4<br>)<br>( | 37)<br>1m):<br>1/<br>6x9<br>12                                              |             | M<br>WF<br>VF 5<br>VF 6<br>WF 4           | l<br>lode<br>250:<br>00x2<br>450x            | <b>1 Ser</b><br>x125<br>200x<br>200x<br>200x                       | <b>ndi</b><br>x6x9<br>10x1<br>11x1<br>x9x14          |              |
| 4500 3800 3800 3800 3800 3800 ( | sc1<br>c1<br>c1<br>c1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | BUKTUR         B           6000         3           3         SB1           3         SB1           B2         B2           B2         B2                                                        | SB3_<br>SC1<br>SC1<br>SC1<br>C1<br>B3_<br>C1<br>B3_<br>C1<br>B3_<br>C1<br>C1                                   | 3000<br>SB1<br>SC<br>SB1<br>SC<br>SB1<br>SC<br>SC<br>SB1<br>SC<br>C<br>B2<br>C<br>B2<br>C<br>B2<br>C<br>C<br>B2<br>C<br>C<br>B2<br>C | C<br>-SB3<br>-SB3<br>-SB3<br>-SB3<br>-B3<br>-B3<br>-B3<br>-B3<br>-B3  | 6000<br>6000<br>3 SB1<br>3 SB1<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2 | SB3_<br>SC1<br>SB3_<br>SC1<br>B3_/<br>C1<br>B3_/<br>C1<br>B3_/<br>C1<br>C1              |            | $\frac{Mutu B}{fc' = 29}$ fy <sub>tulangan</sub> fy <sub>profil ba</sub> $\frac{Dimens}{B1 = 30}$ B2 = 30 B3 = 35 C1 = 60 Tebal P Dimens SB SB1 SB2 SB3 SC1 SB2 SB3 SC1 SC2 | $\frac{ahan:}{2} \text{ MPa} (i) = 400 \text{ J}_{ja} = 240 \text{ J}_{ja} = 260 \text{ J}_{j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K-350<br>MPa<br>MPa<br>ur betc<br>60<br><b>tur ba</b><br>50<br><b>tur ba</b><br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | (BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>)<br>(BJ-2<br>(      | 37)<br><u>1/</u><br><u>1/</u><br><u>5x9</u><br>12<br>16<br>14<br>x19<br>x21 | V<br>V<br>V | ₩F<br>WF 5<br>WF 6<br>WF 40<br>H40<br>H40 | lode<br>250:<br>00x2<br>450x<br>0x40<br>0x40 | 1 Ser<br>x125<br>200x<br>200x<br>200x<br>200x<br>200x<br>1<br>00x1 | ndi<br>x6x9<br>10x1<br>11x1<br>x9x14<br>3x21<br>3x21 |              |

### LAMPIRAN 2: Data Struktur Gabungan untuk Rangka Baja 2 Lantai dan Rangka Beton 4 Lantai

PORTAL AS 1,2,6, DAN 7

Beban Hidup = 2 kPa di setiap lantai Beban Mati di luar berat sendiri = 1,4 kPa di lantai tipikal dan 1,8 kPa di lantai atap.

#### 0 3 4 5 6 1 Ð 8000 8000 8000 8000 8000 8000 6 83 B3 B3 B3 B3] B3] C1 IC1 C1 6000 딿 8 8 딿 m m 5 5 멆 83 ā 5 C1 O 83 B3] B3] B3] 83 얾 8 얾 83 얾 ā 뛊 ğ 8 m m m æ 50 9 C1 C1 B3 C1 83 B3 B3] 83 **B**3 C1 C1 C1 800 얾 얾 얾 53 뎚 멂 얾 ā m 120 8 ā 8 Ċ1 C1 Ċ1 C1 C1 ⊗ 83 23 B3 83 RT R DENAH STRUKTUR BETON 4 6 6 Ð Q 3 1 8000 8000 8000 8000 8000 8000 0 SC1 SC. SB3 SC SB3 SB2 SB2 SC2 SB3 SC. SB3 6000 SB1 SB1 8 SB1 SB1 88 18 8 8 8 18 18 8 88 8 88 18 89 18 89 188 88 18 88 88 SB3 SB3 SB3 SC1 SB2 SB2 SB3 0 155 8 18 8 8 8 8 8 8 8 8 8 8 8 8 18 8 18 8 18 88 18 8 8 8 SB3 SC1 SB3 SB2 582 SB3 SC1 SR3 SC1 SC2 . 600 581 8 8 8 ŝ 88 88 88 ß 18 18 83 圐 18 88 18 8 18 88 SB1 88 18 88 88 8 188 SC1 SB2 SB 3 DENAH STRUKTUR BAJA \$ 3000 \$ ۲ 0 Dimensi struktur baja di lantai 4 dan 5: 6000 ൈറ Dimensi struktur baja di lantai 6:

## LAMPIRAN 3: Data Struktur Gabungan Untuk Rangka Baja 3 Lantai dan Rangka Beton 3 Lantai

|      |      |      | 2000 |      | 2000  | _    |     | 0000 |      |
|------|------|------|------|------|-------|------|-----|------|------|
| -    |      |      |      |      |       |      |     |      |      |
| 0    | F    | _SB3 | 5B1  | SB3_ | SB1   | ₽    | SB3 | \$B1 | SB3_ |
| 380  | SC1  | 1    |      | SC1  | SC1   | i    |     |      | SC1  |
| _    |      | -    |      | _    |       | ₿.   |     |      |      |
| g    |      | _SB3 | SB1  | SB3_ | SB1   | ľF   | SB3 | SB1  | SB3_ |
| ß    | SC1  | i    |      | SC1  | SC1   | i    |     |      | SC1  |
| -    |      |      |      |      |       | ╢    |     |      |      |
| 8    |      | LSB3 | SB1  | SB3_ | SB1   | F    | SB3 | SB1  | SB3_ |
| 38   | 5C1  | 1    |      | SC1  | SC1   | i    |     |      | SCI  |
| -    |      |      |      |      |       |      |     |      |      |
| 8    | ľ    | №В3  | 82   | B3_/ | 82    | ΠΨ   | 83  | 82   | 83_/ |
| 38   | C1   | il   |      | C1   | [  C1 | li I |     |      | C1   |
| -    |      |      |      |      |       | Ш.   |     |      | _    |
| g    | - I' | N_B3 | B2   | B3   | B2    | ΠΨ   | B3  | 82   | B3_/ |
| Ř    | C1   | -    |      | C1   | C1    |      |     |      | C1   |
| _    |      |      |      |      |       | Ш.   |     |      |      |
|      |      | 1_83 | 82   | 83   | 82    | ľΨ   | 83  | 82   | 83-  |
| 4500 | C1   | !    |      | C1   | L C1  |      |     |      | C1   |
|      |      |      |      |      |       |      |     |      |      |
|      |      |      |      |      |       |      |     |      |      |

PORTAL AS 1,2,6, DAN 7

| Notasi | Model Rigid/Semi | Model Sendi    |
|--------|------------------|----------------|
|        | Rigid            |                |
| SB     | WF 250x125x6x9   | WF 250x125x6x9 |
| SB1    | WF 500x200x10x16 | WF             |
|        |                  | 500x200x10x16  |
| SB2    | WF 600x200x11x17 | WF             |
|        |                  | 600x200x11x17  |
| SB3    | WF 450x200x9x14  | WF             |
|        |                  | 450x200x9x14   |
| SC1    | H350x350x12x19   | H400x400x13x21 |
| SC2    | H400x400x13x21   | H400x400x13x21 |
|        |                  |                |

| Notasi | Model Rigid/Semi | Model Sendi    |
|--------|------------------|----------------|
|        | Rigid            |                |
| SB     | WF 250x125x6x9   | WF 250x125x6x9 |
| SB1    | WF 400x200x8x12  | WF             |
|        |                  | 400x200x8x12   |
| SB2    | WF 500x200x10x16 | WF             |
|        |                  | 500x200x10x16  |
| SB3    | WF 450x200x9x14  | WF             |
|        |                  | 450x200x9x14   |
| SC1    | H300x300x10x15   | H350x350x12x19 |
| SC2    | H350x350x12x19   | H350x350x12x19 |
|        |                  |                |

Data perancangan lainnya sama dengan 2 model sebelumnya.