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Abstract 

In this analytical study a 3D nonlinear parallel FEM algorithm was developed to overcome the physical limitation 
of a single processor computer when analysing the dynamic response of interaction between a large-scale satu-
rated soil layers and civil structures. The parallel algorithm was derived based on the Domain Decomposition 
Method (DDM) such that a boundary value problem can be converted into an interface problem. The DDM was 
used to partite a whole of analytical domain into several non-overlapping subdomains. One feature of the current 
algorithm is most parts of the computation processes are performed in subdomain basis without interprocessor 
communication. The interprocessor communication is only take place when solving the interface problem. An itera-
tive solver of the Conjugate Gradient (CG) algorithm incorporating with the interprocessor communication based 
on hypercube networking was used to solve it interface problem. 

Keywords: 3D nonlinear FEM, parallel computation, domain decomposition method, saturated soil layers-civil 
structure interaction problem. 

Abstrak 

Dalam studi analitik ini, algoritma paralel elemen hingga non-linier dikembangkan untuk mengatasi kelemahan 
dari kemampuan komputer berprosesor tunggal dalam menganalisis tanggap dinamik pada masalah interkasi 
antara lapisan tanah jemuh dan struktur sipil dalam skala besar. Algoritma paralel dijabarkan berdasarkam 
motode dekomposisi domain untuk mengubah masalah nilai batas ke masalah interfes. Metode dekomposisi domain 
digunakan untuk membagi keseluruhan domain yang dinalisis menjadi beberapa subdomain yang tidak saling 
overlap. Keungulan dari algiritma yang dikembangkan ini adalah sebagian besar proses perhitungan dilakukan 
dalam basis subdomain tanpa adanya komunikasi antar prosesor. Komunikasi antar prosesor hanya dilakukan 
ketika menyelesaikan masalah interfes. Metode iteratif Conjugate Gradient, yang digabungkan dengan komunikasi 
antar prosesor berbasiskan jejaring hypercube, digunakan untuk menyelesaikan masalah interfes tersebut. 

Kata-kata Kunci:  Metode elemen hingga non-linier 3-dimensi, paralel komputasi, metode dekomposisi domain, 
masalah interaksi antara lapisan tanah jenuh dan struktur sipil. 

3D Nonlinear Parallel FEM for Analyzing Dynamic Response of the Large-
Scale Saturated Soil Layers-Civil Structures Interaction Problem 

(Part I: Formulation and its Numerical Solution) 

Jafril Tanjung 
Civil Engineering Department, Engineering Faculty, Andalas University, Padang 

Email: jafriltanjung@ft.unand.ac.id, jafril_tanjung@yahoo.com  

ISSN 0853-2982 

Jurnal Teoretis dan Terapan Bidang Rekayasa SipilJurnal Teoretis dan Terapan Bidang Rekayasa Sipil

1. Introduction 

The quay walls structures constructed as the waterfront 
structure in the port area often damaged during great 
earthquake. The recent example is most of quay walls 
constructed in the port of Kobe were damaged by the 
Hyogo-ken Nanbu earthquake on January 17th, 1995 
(Baker and Smith, 1987). The damaged of these civil 
structures are indicating the complexity of the interac-
tion problem between saturated soil layers and the 
civil structures. The source of complexity mostly 
comes from the dynamic response of the saturated soil 
layers where the soil grains and the pore water inter-
acts each other. 

To understand the dynamic behaviour of the water-
front structures which retain the saturated soil layers, 
the dynamic interaction between saturated soil layers 
and civil structures should be analyzed more exactly. 
There exist two problems for analysis the dynamic 
interaction problem mentioned above. The first prob-
lem is how to idealize the saturated soil layer. It is 
required to assume the saturated soil layer as a com-
posite of the soil grains and the pore water. Analysis of 
the saturated soil layers considering the coupled sys-
tem soil grains and pore water gives more realistic 
results compared with homogeneous equivalent solid 
assumption. It is also necessary to use an appropriate 
material constitutive model for the soil grains, which 
able to represent the nonlinear stress-strain relation-
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ship and the loading-unloading hysteresis loop.        
To solve the first problem, a simplified bounding sur-
face plasticity model was introduced referring the pre-
vious studies by Dafalias (1986) and Crouch and Wolf 
(1994). In this model the change of plastic strain   
during cyclic loading is evaluated according to rela-
tive position of the current stress point on the loading 
surface inside the bounding surface. The model is  
applicable for both of clays and sands by unifying the 
parameters in the single frame of a constitutive model. 
The number of parameters for this model was reduced 
to specify the model more easily. 

The second problem is how to reduce heavy loads on 
the computation process. Long computing time and 
large computer memory are needed to solve three-
dimensional coupling problem applying iterative 
method for nonlinear analysis and time history      
response analysis for a recorded earthquake motion. 
Analyses using conventional single processor very 
often exceed the available computer capacity.       
With advent the computer technology within last   
decades, analyzing a large-scale problem using several 
processor concurrently becomes possible. This type of 
works is called parallel computation. 

There are several proposed parallel algorithms in the 
field of the finite element analysis as well documented 
in the literatures such as Tallec (1997), Papadrakakis 
(1997), Farhat and Raux, (1991). However, most of 
them were used for analyzing the homogenous or 
equivalent homogenous solid materials. In the       
previous studies, the spatial discretization for the finite 
element approximation was derived based on the 
variational method, which is not valid for the analysis 
of the fluid material. Therefore, in this study, the 
Weighted Residual Method (WRM) was applied to 
define the spatial discretization of the finite element 
and uses a shape function as the weight function as 
have been recommended by the Galerkin Method. 
WRM is more suitable for solid as well as for fluid 
such as a saturated soil layer. 

The parallel algorithm developed herein is based the 
Domain Decomposition Method (DDM) (Tallec, 
1997, Papadrakakis, 1997, Farhat and Raux, 1991) for 
separating a whole of interest domain into several non
-overlapping subdomains. A traction force was used to 
enforce the continuity condition on the subdomain 
interfaces, i.e. the summation of the unknowns on the 
interfaces are equal to zero. As the result, a boundary 
value problem then can be converted into an interface 
problem. 

To achieve an efficient parallel algorithm, two follow-
ing conditions should be considered, i.e. load works 
balancing and interprocessor communication.         
The works in each processor should be balanced as 
possible and the interprocessor communication should 

be as less as possible. The effectiveness of the inter-
processor communication is related to the scheduling 
and the communication algorithms (Kawamura and 
Tanjung, 2000). In order to reach these conditions,  
the proposed parallel algorithm was design to be 
mostly work in subdomain basis without interproces-
sor communication. For this purpose, the algorithm 
was implemented as a Single Program Multiple Data 
(SPMD) programming model. The interprocessor is 
only required when solving the interface problem. 

2. Governing Equation of Motion 

The governing equations of motion were derived by 
assuming the saturated soils compose of the soil 
grains and the pore water. The density of the saturated 
soil, ρ is expressed by the density of the soil grains ρg 
and the fluid density ρf, as schematically shown in 
Figure 1. 

 

Assuming infinitesimal displacement, the equations of 
motions for saturated porous material are given as 
follows (Ghaboussi, 1973, Zienkiewicz, 1984). 

 

 

 

where σij are the components of total stress of the 
saturated soil, p is the pore water pressure; ui and wi 
are the components of displacement of the soil grain 
and the relative displacement of the pore water to ui, 
respectively. The superposed dot implies time deriva-
tive; ( ),i denotes the derivative with respect to coordi-
nates xi. For σij and p tensile stresses are defined posi-
tive. k is the permeability and g is the gravitational 
acceleration. 

( ) g f1 v fρ = − ρ + ρ (1) 

where v is the porosity. 

Figure 1. Idealization of saturated soils 
(Source: Tanjung, 2002) 
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3. Constitutive Model 

A constitutive relation for the saturated soil layer was 
derived for the total stress, i.e. as a summation of the 
effective stress and the pore water pressure. For the 
pore water, the constitutive relation was obtained by 
applying the mass conservation law to the flow of the 
pore water in saturated soil layer. Their increment 
form is given as follow (Dafalias, 1986). 

 

 

 
 
 
 

increment, respectively. Kg, Kf and Kgf are the bulk 
modulus for the soil grain, pore water and their cou-
pling, respectively. α is a measure of compressibility 
of the soil grains representing the contact areas of the 
soil grains to pore water. Dijkl represents the stress-
strain relation of soil grain. dij is the component of the 
Kronecker’s delta.  

strain of the pore water increments, respectively.      
By using the small deformation theory, their values are 
defined as follow. 

 
 
 

 

type of yield function may be expressed as following 
equation (Dafalias, 1986). 
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and   ijε&  ζ& are the strain of soil grain and volumetric  
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De
ijkl represents the elastic stress-strain relation, H is 

the plastic hardening modulus, gp and f are the plastic 
potential and the yield functions. u(L) is the heavy-step 
function, u(L)=1 for L ≥ 0 and u(L)=0 for L<0. In the 
bounding surface plasticity model, these relations are 
applied not only for the bounding surface but also for 
the loading surface inside the bounding surface.         
To specify the relations in Equation 10 in detail,      
the definition of the elastic stress-strain relation De

ijkl, 
the failure surface Ff, the bounding surface Fb, the load-
ing surface fL and the plastic strain potential gp should 
be determined. The form of the functions mentioned 
above is explained in the followings. 

3.1 Elastic stress-strain relation 

The elastic stress-strain relation De
ijkl is expressed as 

 

 

The notation Kg and G denote bulk and shear modulus 
of the soil grains, respectively. They are defined based 
on the critical state of soil mechanics concept as writ-
ten in the following expressions for a given constant 
Poisson’s ratio v. 

 

 

 

 

Notation ein indicates the initial void ratio, κ is the 
slope of the swelling process in the consolidation 
curve, pa is the atmosphere pressure, I is the first invari-
ant of stress. 

3.2 Failure surface 

An expression for failure surface Ff is defined as     
follows. 

 

J is the second invariant of deviatoric stress; Vcr is the 
slope of the critical state line in the meridional section 
shown in Figure 3. In the effective stress space, the 
critical state is represented by an elliptic cone function 
ρc as proposed by Crouch and Wolf (1994) as follow. 
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The shape of the cone is shown in Figure 2. The shape 
of the cone is controlled by the Lode angle θ and         
a material parameter defining the compression critical 
friction angle φer. 

3.3 Bounding surface 

A single elliptic surface shown in Figure 3 was used 
as the bounding surface in this study. The parameter R 
controls the aspect ratio of the ellipse. The form of the 
bounding surface Fb is given in following equation 
(Tanjung, 2002). 

 

 

( )
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cr c
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(18) 

Figure 2. Elliptic cone shape of failure surface 
(Source: 2.Crouch, at.al., 1994) 
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Figure 3. Single elliptic of bounding surface model 
(Source: Tanjung, 2002) 

The size of bounding is defined by a maximum iso-
tropic compression stress I0. The bounding surface 
moves during plastic flow and always envelopes the 
current effective stress state. The evolution of the 
bounding surface depends on the volumetric plastic 
strain increment ε˙p

v as expressed in Equation (20). 
The bounding surface may expand or shrink depends 
upon whether the plastic volumetric ε˙p

v increases or 
decreases.  

 

 

λc is a slope of isotropic consolidation line.  

3.4 Loading surface 

A loading surface is required to define the loading 
direction and to evaluate the plastic condition on the 
current effective stress point. The shape of the loading 
surface was taken similar with the bounding surface 
form. The plastic condition of the loading surface, 
which is located inside the bounding surface, is re-
lated to the plastic condition on the bounding surface. 

As shown in Figure 3, this relation is taken by map-
ping the current stress point (I,J) to  the  image  point  

the wide range of the soil responses, the following 
combination of radial and deviatoric mapping rules 
have been applied (Tanjung, 2002). 

 

 
 

A constant β called a similarity ratio. The equations 
which define the loading surfaces in the radial and 
deviatoric mapping regions can be obtained by substi-
tuting Equations 21 and 22 into the bounding surface 
equation, Equation 19, respectively. 
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3.5 Potential surface 

The potential surface gp is also assumed as the similar 
form with the bounding surface. 

 
in which subscript g denotes the parameters related to 
the potential surface gp. All parameters except I0g are 
same with those of the bounding surface. A parameter 
I0g is scaled such that the current stress point lies on the 
potential surface. Although the bounding, the loading 
and the potential surfaces are the similar elliptic form, 
these surfaces are not geometrically identical and the 
responses of the soil are always obtained in the non-
associated flow rule. 

3.6 Plastic hardening modulus 

The consistency condition for the yield surface is    
required to maintain the effective stress point always 
lies within or on the yield surface. For the bounding 
surface plasticity model, the consistency condition is 
applied to the bounding surface function Fb. The plastic 
hardening modulus H on the loading surface is defined 
referring the  value  of  the  plastic  hardening  modulus  

 

 

A term ∂F/∂I0 is considered for the bounding plastic 
point on the bounding surface. Its point is determined 
by projecting the current stress point from the origin of 
the stress space onto the bounding surface using the 
following mapping rule. 

 

As was previously mentioned, the feature of the bound-
ing surface plasticity model is that the plastic strain is 
allowed to occur not only on the bounding surface, but 
also inside the bounding surface. This plastic strain 
inside the bounding surface can be considered as the 
relative plastic strain to the plastic strain on the bound-
ing surface. To take into account the plastic strain in-
side the bounding surface, Crouch and Wolf (1994) 
proposed an additional plastic hardening modulus Hf as 
follow. 
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A constant h is a material parameter represents the 
hardening behaviour of the soil grains and parameter Se 
defines the elastic nucleus where an only elastic strain 
is developed. 

4. Nonlinear Dynamic Parallel 

4.1 Applied DDM in FEM Formulation 

To clarify usage of a Domain Decomposition Method 
(DDM) in the nonlinear FEM formulation, consider      
a case of a domain Ω separated into two totally non-
overlapping subdomains Ω(1) and Ω(2) shown in Figure 
4. Extrapolation to number of Ns subdomains can be 
done in a straightforward. The Γ(12) is the interface be-
tween subdomain Ω(1) and subdomain Ω(2). Under con-
straint of the displacements field on the interface the 
additional boundary condition as written in Equation 
30 is required with the continuity condition given in 
Equation 31 (Kawamura and Tanjung, 2000, Kawa-
mura and Tanjung, 2001). 

 

 

 

 

 

λij denotes a traction tensor and nj is an outer normal 
vector. 

A solution of the above problem is obtained by apply-
ing the Weighted Residual Method (WRM) 
(Zienkiewicz and Taylor, 1991, Hughes, 1996) to the 
governing equations of motion (2) and (3), the continu-
ity condition on the interface (31) and the boundary 
condition (30). 
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Figure 4. Decompose into two subdomains 
(Source: Tanjung, 2002) 
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Superscript (s) denotes the subdomain number, δui and 
δwi are the arbitrary functions which represent the 
weight for approximating the values of the displace-
ments ui and wi. It is possible to reduce an order of 
differentiation in the first term of left hand side of 
Equation 32 via integration by parts of Green’s theo-
rem. The spatial discretization for the finite element is 
then obtained by introducing the weight function for 
Equation 32 and 33. The Galerkin method 
(Zienkiewicz and Taylor, 1991, Hughes, 1996) was 
applied in this study; i.e. uses an original shape func-
tion as a weight function. The final equation of motion 
for the finite element analysis is obtained as written in 
Equation 34. 
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M(s), D(s) and K(s) are the mass, damping and stiffness 
matrices for each subdomain. K(s)

Tu is the tangent 
stiffness matrix for the soil grains part, which depends 
on the effective stress history. The detailed formula-
tion of these matrices for an 8-node brick element was 
written in reference (Kawamura and Tanjung, 2000). 
The subscript u and w denotes the soil grains and the 
pore water, respectively, the subscript c designates the 
coupling condition. The vectors d(s)

u and d(s)
w are the 

relative displacement of the soil grains and the pore 
water to the ground motion, respectively. The vector 
λ is composed of λij which is traction forces on the 
interface nodes. The matrix B(s) is signed Boolean 
matrix, which localizes a subdomain quantity to the 
subdomain interface. If the interior degrees of free-
dom are numbered first and the interface ones are 
numbered last, the Boolean matrix B(s) takes a form, 

 

In above equation, 0 and I denote a null and identity 
matrices. 

4.2 Numerical solution of the equation of motion 

Perhaps the most widely used the direct time integrat-
ing method for solving the equation of motion such as 
written in Equation 34 is the Newmark’s family 
(Newmark, 1959). In this study, the Hilber-α 
(Hughes, 1996) method has been used. In this study, 
the following approximation was used to integrate 
equation of motion for constant increment time step 
Dt following the Hilber-α method. 
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The parameters  ,   and α γ β are specified as follow.  

( )2
1
3

1-1- 20;  ;  
2 4

αα
≤ α ≤ γ = β = (40) 

At first, subscripts n and k in the equations of  motion
(34) and (35) are introduced for signing a time step 
and nonlinear iteration number.                               
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Substituting Equations 37 to 39 into Equations 34 

and 35 lead to following expression. The 
Equations 41 to 43 have been extended to Ns subdo-
mains instead of 2 subdomains derived in foregoing 

f o r -

mulations. 

 

A boundary value problem written in Equa-
tion 47 may be converted into following inter-

face 

prob-
lem. 
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solved in the equation of motion (41), i.e. K(s)

Tn, (k)Δλn 

  T

n

Ns Ns
(s) (k) (s) (k) (s) (s) (k)

n n nT
s 1 s 1

ˆ   
= =

⎡ ⎤⎡ ⎤Δ = Δ − Δ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∑K d R B λ

(41) 

  1 1T

n n

Ns Ns
(s) (s)(s) (s) (k) (s) (k) (s)

n nT T
s 1 s 1

ˆ ˆ 
− −

= =

⎡ ⎤ ⎡ ⎤Δ = Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∑B K B B K Rλ

(42) 

with respect to continuity condition 
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and (k)Δd(s)
n. According to the Modified Newton-

Raphson Method (Press, 1995) applied for solving the 
nonlinear condition in this study; a current tangent stiff-

ness matrix K(s)
Tn may 

be approximated by            
a known previ-
ous value K(s)

Tn-1. An itera-
tive solver of 
the Conjugate Gradi-
ent (CG) algorithm 

(Gill and Murray, 1974) explained in following subsec-
tion is employed for defining an increment of traction 
forces(k)Δλn. After (k)Δλn has been obtained, the incre-
ment of displacement vector for each subdomain at 

current iteration (k)Δd(s)
n can be 

evaluated by the following 
equation. 

The iterative process in the 
Newton-Raphson algorithm is terminated when the 
following convergence criterion in each subdomain is 
satisfied. 

 

 

 

 

Where εc is a convergence criterion constant. If nk is    
a number of converged Newton-Raphson iteration,    
the increment of displacement vector for current time 

step is defined as follow, 

 

 

Finally, the dynamic 
response for each subdomain at current time 

step can be computed using 
Equation 37, 38 and 
39 for displacement, 
velocity and accelera-
tion, respectively. 

For a given strain incre-
ment of the soil grains nΔεii 

and the volume change of the pore water nΔζ, which 
are evaluated based on the Equation 8 and 9, respec-
tively, the increment of the stresses state can be calcu-
lated according to the Equation 4 and 5. In numerical 
analysis, the evaluation of these stresses is conducted 
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as in Equation 50 to 54. In these equations a notation 
Δ for denoting the increment is introduced instead of 
superposed dot used in Equation 4 and 5. 

 

 

 

 

 

 

 

 

 

The stresses state increment at current are depending 
on the unknown quantity of the elastoplastic stress-
strain relation for soil grains nDep

ijkl. In order to find 
the    answer of the stresses state increment equations 
50 to 52, a local iteration has been introduced. For this     
purpose, the elastoplastic stress-strain relation for the 
soil grains nDep

ijkl is approximated as follows (Tanjung, 
2002). 

 
 

A n-1 Dep
ijkl  is the elastoplastic stress-strain relation for 

the soil grains defined based on the effective stress      
n-1σ′ij  on the previous time step (n-1). Superscript p in 
the second term of Equation 55 denotes it elastoplas-
tic stress-strain relation evaluated according to a pre-
dicted effective stress below. 

 

 

The predicted effective stress increment p
nΔσ′ij is   

approximated based on the value of the effective stress 
increment on the previous local iteration. Both of elas-
toplastic stress-strain relations for the soil grains writ-
ten in the right hand side of Equation 55 are evaluated 
using the simplified bounding surface plasticity model 
previously mentioned. The local iteration process is 
terminated when a ratio of the norm of the residual of 
the predicted effective stress increment p

nΔσ′ij to the 
effective stress increment n nΔσ′ij goes vanishing. 

4.3 Parallel computation algorithm 

Most of the computations for the Parallel FEM formu-
lations developed in the previous subsection can be 
performed in the subdomain basis. These computations 
are identical with the works in the conventional finite 

  ( )ep ep epp1
n n 1 nijkl ijkl ijkl2D D D−= + (55) 

element analysis, such as forming and assembling 
mass matrix M(s), damping matrix D(s), tangential 
stiffness matrix K(s)

Tu, the dynamic loading vector F(s) 
and evaluating equations 50 to 62. When these works 
are assigned to the individual processors in the multi-
processors machine, each processor will performs an 
identical works as above. The different work in each 
processor is only related to the properties of the con-
sidered subdomain. Each processor will analyze a 
subdomain according to it own input data. When the 
computations have terminated, each processor will 
also record it own results. Since each processor con-
ducts the identical works, we only need to develop a 
single algorithm flow as the usual finite element 
analysis. The algorithm may be executed in the as-
signed processor.       A special treatment is only re-
quired to manage the algorithm for per-

forming the computations with respect 
to the different input data – related to the different 
properties of the subdomains – on the different proc-
essors. When the processors need to exchange the 

data with other processors, the processors can explic-
itly send and/or receive to and/or from other proces-
sors. This type of programming model is known as 
Single Program Multiple Data (SPMD) programming 
model (Kawamura and Tanjung, 2000, Tanjung, 
2002, Baker and Smith, 

1987, Kumar, 1994). An-
other different point to a sequential programming 
model is only related to the interprocessor communi-
cation. This interprocessor communication only takes 

place 
when 
solves 
an in-
terface 
prob-

lem 
written 
in 
Equa-
tion 48. 

As 

men-
tioned above, the traction vector (k)Dln is    defined by 
converting the boundary value problem into an inter-
face problem as written in Equation 42. It problem is 

 p p
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A term of  1
I
−A in the CG algorithms  (57)  above  is  
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n
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B K Bsince the components of matrix  are  
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identical to a minimiz-
ing problem     respect 
to continuity condition 
given in Equation 43 In this 

study, an iterative solver of the Conjugate  Gradient 
(CG) algorithm was used to solve its interface prob-
lem. One of the features of the CG method is   

 
in this study – are maintained without modification 
during iteration. This feature is very convenient to 
solve the minimizing problem in the parallel  machine  
constructed in the several independent individual 
processors. Specifically, the algorithm of CG method 
goes as follow. A superscript k traction vector (k)Δλn 
is temporary omitted for simplification. The initial 
value of the tractor vector λ0 is given as a null vector;  
l0  =  0  
 

The following calculations are iterated until conver-
gence criterion is confirmed (Kawamura and Tanjung, 
2000, Tanjung, 2002). 
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Figure 5. Interprocessor communications on 3D-hypercube 
(Source: Tanjung, 2002) 

 
 
 

 
known as a preconditioner. The preconditioner is used 
to enhance the convergence rate. The form of the pre-
conditioner is written in Equation 58 following the 
form proposed by Farhat (1991). 

 
 
 
The solution of the interface problem requires inter-
processor communication such that the data can be 
exchanged from one processor to others. In fact this 
exchanged data significantly affects the parallel com-
puting performance, since the communication will de-
lay the calculation works during analysis. There are 
several patterns of the interprocessor communication 
commonly used in the parallel algorithms. A simple 
way is to collect all subdo-

mains’ contribution in Equation 42 onto another proc-
essor and 
solves using 

CG algorithm (58). When the 
CG has converged, the solu-
tion is broadcasted to all proc-
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tion, say vector yk, which is calculated as.  
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essors. By this way, all processors for analyzing the 
subdomains of the FEM analysis are only communi-
cating with the processors used to solve the interface 
problem. Unfortunately, this simple way requires 
transferring large number of data. This type of inter-
processor communication will also reduce the rank of 
the parallelism since all processors for analyzing the 
subdomains will idle during solving the interface prob-
lem. To improve the simple interprocessor communi-
cation above, an interprocessor communication based 
on the hypercube networking was constructed in this 
study (Kawamura and Tanjung, 2000, Tanjung, 2002, 
Kawamura and Tanjung, 2001). 

To make clear an understanding of current the inter-
processor communication pattern, consider a three-
dimensional hypercube scheme shown in Figure 5 
below for instance. 

For the first step, maps the subdomains onto the hyper-
cube networking such that each processor is assigned 
into different active processor. Then, the interproces-
sor communication is carried out as graphically shown 
in the Figure 5. For example, assume that each vector 
yk in parentheses in the figure denotes the messages, 
which is required to exchange from one processor to 
the others. The interprocessor communication starts 
from the lowest dimension of the hypercube and then 
proceeds along successively higher dimensions.       
The processors communicate in pairs with least sig-
nificant bit of their binary representations. At the ter-
mination of communication procedures, each proces-
sor will hold the same overall summation result of the 
vector. Noting that, in the hypercube pattern each 
processor is only communicate with the neighbours. 
The neighbours are mapped to hypercube processors 
whose processor labels differ in exactly one bit posi-
tion. 

Although the CG algorithm requires the interprocessor 
communication, the algorithm is still amenable to 
work in the parallel manner. Consider the matrix-
vector    
as an example. Each  processor  evaluates  the contribu
- 

 

 

 
Then exchange the values of the vector yk follows the 
proposed interprocessor communication pattern men-
tioned in the foregoing paragraph to obtain the global 
values containing the contribution from all subdo-
mains. This example clearly shows the attractive CG 

algorithm using the communication pattern mentioned 
above to solve the interface problem (42). 

5. Conclusions 

Comparing the proposed interprocessor communica-
tion pattern based on the hypercube with the simple 
communication ones, the advantages of the proposed 
pattern are clearly shown. Each processor is only 
needed to exchange data in the vector type instead of 
the matrix/vector in the simple communication pat-
tern. The proposed communication pattern also does 
not require an additional processor to perform stand 
alone the CG algorithm. Finally, all of active proces-
sors  almost never idle since the computation still is       
conducted in parallel manner even for conducting the 
CG algorithms. 
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