

Analisis Kinerja Simpang Steger Tak Bersinyal Pada Jl. Buah Batu – Jl. Solontongan – Jl. Suryalaya Kota Bandung (Defari Jananuraga, Tan Lie Ing)

Perilaku Sambungan Sekrup (*Self Drilling Screw*) Pada Sambungan Momen Sebidang Untuk Struktur Baja Ringan (*Y. Djoko Setiyarto*)

Studi Analisis Pengaruh Lendutan Akibat Geser Pada Balok Kayu (Buen Sian)

Analisis *Pushover Pier Flyover Bridge* di Jakarta Jalur Tn. Abang - Kp. Melayu (*Yosafat Aji Pranata, Nathan Madutujuh*)

Stabilisasi Tanah Lempung Menggunakan Soil Binder (Asriwiyanti Desiani, Salijan Redjasentana)

J. Tek.Sipil Vol. 8	No. 1	Hlm.1-75	Bandung, April 2012	ISSN 1411-9331
---------------------	-------	----------	---------------------------	-------------------

FAKULTAS TEKNIK UNIVERSITAS KRISTEN MARANATHA

Jurnal Teknik Sipil adalah jurnal ilmiah jurusan teknik sipil Universitas Kristen Maranatha yang diterbitkan 2 kali setahun pada bulan April dan Oktober. Pertama kali terbit bulan Oktober 2003. Tujuan penerbitan adalah sebagai wadah komunikasi ilmiah dan juga penyebarluasan hasil penelitian, studi literatur dalam bidang teknik sipil atau ilmu terkait. Bila pernah dipresentasikan pada seminar agar diberi keterangan lengkap.

Pelindung: Rektor Universitas Kristen Maranatha

Penanggung Jawab : Dekan Fakultas Teknik Universitas Kristen Maranatha

Pemimpin Redaksi: Ir. Maksum Tanubrata, MT.

Ketua Dewan Penyunting
Dr. Yosafat Aji Pranata, ST., MT.
Penyunting Pelaksana
: Dr. Ir. Budi Hartanto Susilo, M.Sc.

Ir. Maria Christine, M.Sc.
Ir. Herianto Wibowo, M.Sc.
Anang Kristianto, ST., MT.
Hanny Juliany Dani, ST., MT.

Desain Visual dan Editor : Aldrin Boy Rahardjo

Sekretariat dan Sirkulasi: Dra. Dorliana, Eirene Liastawati, A.Md.

Alamat Redaksi : Sekretariat Jurnal Teknik Sipil

Jurusan Teknik Sipil, Universitas Kristen Maranatha

Jl. Prof. drg. Suria Sumantri MPH. No. 65 Bandung 40164

Tel. 022 - 2012186 ext. 212 Fax. 022 - 2017622

E-mail : jurnal_ts@eng.maranatha.edu

Website : http://majour.maranatha.edu

Penerbit : Jurusan Teknik Sipil, Universitas Kristen Maranatha

Jl. Prof. drg. Suria Sumantri MPH. No. 65 Bandung 40164

FAKULTAS TEKNIK UNIVERSITAS KRISTEN MARANATHA

DAFTAR ISI:

Analisis Kinerja Simpang Steger Tak Bersinyal Pada Jl. Buah Batu – Jl. Solontongan – Jl. Suryalaya Kota Bandung (Defari Jananuraga, Tan Lie Ing)	1 - 16
Perilaku Sambungan Sekrup (<i>Self Drilling Screw</i>) Pada Sambungan Momen Sebidang Untuk Struktur Baja Ringan (<i>Y. Djoko Setiyarto</i>)	17 - 32
Studi Analisis Pengaruh Lendutan Akibat Geser Pada Balok Kayu (Buen Sian)	33 - 46
Analisis <i>Pushover Pier Flyover Bridge</i> di Jakarta Jalur Tn. Abang - Kp. Melayu (<i>Yosafat Aji Pranata, Nathan Madutujuh</i>)	47 - 59
Stabilisasi Tanah Lempung Menggunakan Soil Binder (Asriwiyanti Desiani, Salijan Redjasentana)	61 - 74

ANALISIS KINERJA SIMPANG STEGER TAK BERSINYAL PADA JL. BUAH BATU - JL. SOLONTONGAN - JL. SURYALAYA KOTA BANDUNG

Defari Jananuraga¹, Tan Lie Ing²

¹ Alumnus Jurusan Teknik Sipil Fakultas Teknik Universitas Kristen Maranatha Jl. Prof. drg. Suria Sumantri, MPH., No. 65, Bandung, 40164 E-mail: aerotus def@yahoo.co.uk

² Dosen Tetap Jurusan Teknik Sipil Fakultas Teknik Universitas Kristen Maranatha Jl. Prof. drg. Suria Sumantri, MPH., No. 65, Bandung, 40164 E-mail: lieing.tan@yahoo.com

ABSTRAK

Kota Bandung merupakan kota yang banyak memiliki simpang dan jarak antara simpangnya berdekatan. Simpang merupakan pertemuan antara beberapa jalan menjadi satu. Pada simpang sering terjadi konflik kendaraan bermotor, khususnya simpang tidak bersinyal. Kecenderungan pengguna kendaraan bermotor pada saat ini selalu ingin cepat dan ingin menang sendiri dan sering mengakibatkan konflik di persimpangan. Akibat terjadinya konflik dan hambatan pada persimpangan, maka meningkatnya juga tundaan dan derajat kejenuhan (DS) di simpang tersebut. Analisis dilakukan pada simpang empat steger tak bersinyal, tepatnya pada jl.Buahbatujl.Solontongan-jl.Suryalaya. Data diperoleh dari survei lapangan berupa geometri simpang, arus lalulintas pada waktu pagi, siang dan sore selama 3 jam kemudian diambil peakhour, pola pergerakan kendaraan pada jam tertentu, kecepatan dan keadaan hambatan samping secara visual pada simpang tersebut. Analisis terhadap simpang empat steger tak bersinyal ini dilakukan dengan mengunakan metode MKJI yaitu simpang empat bersinyal, Simpang tiga tak bersinyal dan simpang tiga bersinyal. Analisis awal dilakukan dengan menggunakan metode MKJI simpang tiga tak bersinyal untuk mengetahui kinerja simpang tersebut dan menghasilkan DS>1. Alternatif yang dianalisis sebanyak 3 alternatif dan menghasilkan data tundaan dan derajat kejenuhan. Dari ketiga alternatif tersebut didapatkan Alternatif terpilih yaitu alternatif 3 dengan cara menggunakan separator pada area disekitar simpang tersebut sepanjang 300 m dan menghasilkan derajat kejenuhan rata–rata < 0,6...

Kata kunci: Tundaan, Derajat Kejenuhan (DS), Peakhour, Hambatan samping, Simpang tiga tak bersinyal.

1. PENDAHULUAN

1.1 Latar Belakang

Seiring berkembangnya kota dan tingginya populasi penduduk berdampak meningkatnya aktivitas perkotaan yang menimbulkan kemacetan lalulintas. Kemacetan lalulintas yang terjadi di kota Bandung diakibatkan oleh banyak faktor. Faktor yang paling mendominasi yaitu tingginya pertumbuhan kendaraan bermotor baik roda 2 ataupun roda 4 yang tak sebanding dengan pertumbuhan kapasitas jalan yang ada di kota Bandung. Kesadaran para pengguna jalan terhadap tata tertib pun ikut serta menimbulkan kemacetan dan meningkatnya tingkat kecelakaan. Banyak kerugian yang timbul diakibatkan oleh kemacetan, yaitu pembakaran tidak sempurna yang dihasilkan kendaraan bermotor, banyaknya waktu, yang terbuang, meningkatnya kebisingan,

konsumsi bahan bakar yang terbuang percuma, itu semua berdampak tidak baik bagi penduduk yang ada disekitarnya.

Untuk mengatasi kepadatan lalulintas tersebut, tidak sekedar membuka jalan baru, tetapi perlu ada perbaikan dalam sistem manajemen lalulintas, pembenahan hambatan samping atau pemasangan lampu lalulintas. Sistem manajemen yang ada masih belum tertata dengan baik, terutama pada simpang tidak bersinyal yang sering kali timbul kemacetan lalu lintas

Simpang empat steger yang berada di jalan Buahbatu sering kali menimbulkan kemacetan. Simpang tersebut dulu memiliki lampu persinyalan, akan tetapi saat ini lampu persinyalan tersebut tidak dinyalakan atau sudah tidak beroperasi lagi dikarenakan berbagai banyak hal. Simpang tersebut mempunyai 2 lengan yang tidak sejajar, yaitu pada lengan yang menuju jalan Solontongan dan Jalan Suryalaya. Jalan Buahbatu sering kali terjadi kemacetan dikarenakan daerah tersebut termasuk daerah komersil ,pemukiman penduduk dan daerah pendidikan. Di sekitar daerah jalan Buahbatu terdapat banyak pusat perbelanjaan, toko, Universitas dan sekolah diantaranya SMUN 8, SMPN 28, SMKN 3, dan tempat bimbingan belajar. Yang dapat menimbulkan kemacetan dikarenakan banyaknya siswa sekolah yang menyebrang, berhentinya angkutan umum, keluar masuknya kendaraan dari tempat perbelanjaan dan simpang 4 steger yang tak bersinyal yang mempunyai volume kendaraan yang cukup besar.

1.2 Tujuan

Tujuan dari penelitian ini adalah mengevaluasi kinerja simpang steger tersebut kemudian memberikan alternatif solusi untuk peningkatan kinerja simpang tersebut.

1.3 Ruang Lingkup

- Simpang empat steger tak bersinyal pada Jl. Buahbatu Jl. Suryalaya Jl. Solontongan kota Bandung
- 2. Menganalisis kinerja simpang menggunakan MKJI 1997.
- Aspek lalu lintas yang ditinjau hanya dari pola pergerakan lalu lintas kendaraan, arus kendaraan dan konflik di area persimpangan Jl. Buahbatu – Jl.Suryalaya – Jl.Solontongan kota Bandung
- 4. Pembenahan hambatan samping dan fasilitas di area persimpangan Jl.Buahbatu Jl.Suryalaya Jl.Solontongan kota Bandung.
- 5. Survei kendaraan sesuai dengan pola pergerakan yang ada karena ada pergerakan yang tidak diperbolehkan di simpang tersebut.

6. Survei dilakukan selama 3 jam, pada waktu 06:00 – 09:00 Pagi, 11:00 - 14:00 Siang dan 15:00 – 18:00 Sore pada hari Senin dan Kamis.

2. TINJAUAN PUSTAKA

2.1 Teori Arus dan Klasifikasi Jalan

Arus lalulintas adalah jumlah kendaraan yang terdapat dalam ruang yang diukur dalam satu interval waktu tertentu. Ukuran dasar dari arus lalulintas yang sering digunakan adalah konsentrasi aliran dan kecepatan. Konsentrasi aliran dianggap sebagai jumlah kendaraan pada suatu panjang jalan, sedangkan kecepatan ditentukan dari jarak yang ditempuh oleh kendaraan pada satuan waktu atau dalam beberapa penelitian ratarata kecepatan dihitung terhadap distribusi waktu kecepatan (kecepatan waktu rata-rata) atau kecepatan distribusi ruang (kecepatan ruang rata-rata).

Arus lalulintas (Q) untuk setiap gerakan (belok dan lurus) dikonversi dari kendaraan perjam menjadi satuan mobil penumpang (smp) perjam dengan menggunakan ekivalen kendaraan penumpang (emp) untuk masing-masing pendekat terlindung dan terlawan. Kendaraan dikelompokan menjadi beberapa bagian seperti diperlihatkan oleh Tabel 1.

NoTipe KendaraanDefinisi1Kendaraan tak bermotor (UM)Sepeda, becak2Sepeda bermotor (MC)Sepeda motor3Kendaraan ringan (LV)Colt, pick up, station wagon4Kendaraan berat (HV)Bus, truck

Tabel 1. Kelompok Kendaraan.

Klasifikasi jalan dalam peraturan perencanaan geometri jalan raya (PPGJR) oleh Dirjen Bina Marga 1970 menurut fungsinya, jalan diklasifikasikan menjadi 3 golongan antara lain:

- Jalan utama yaitu jalan yang melayani lalulintas yang tinggi antara kota-kota yang penting atau antara pusat-pusat produksi dan pusat-pusat ekspor. Jalan dalam golongan ini direncanakan untuk dapat melayani lalulintas yang cepat dan berat. Jalan utama mempunyai kelas I dengan lalulintas harian rata-rata (LHR dalam smp) lebih dari 20000.
- 2. Jalan sekunder yaitu jalan yang melayani lalulintas yang cukup tinggi antar kota-kota penting dan kota yang lebih kecil serta melayani daerah sekitarnya. Jalan sekunder

- mempunyai kelas IIA (LHR 6 000 20 000 smp), IIB (LHR 1 500 8 000 smp), dan IIC (LHR lebih kecil dari 2 000 smp)
- 3. Jalan penghubung yaitu jalan untuk keperluan aktivitas daerah yang juga dipakai sebagai jalan penghubung antara jalan-jalan dari golongan yang sama maupun berlainan, jalan ini mempunyai kelas III.


2.2 Persimpangan

Berdasarkan MKJI 1997, persimpangan merupakan pertemuan dua jalan atau lebih yang bersilangan. Secara umum simpang terdiri dari simpang bersinyal dan simpang tak bersinyal. Persimpangan steger yaitu persimpangan dimana satu kakinya bergeser atau persimpangan tegak lurus yang salah satunya bergeser (tidak menerus bersilang). Jarak dari kedua kaki simpang biasanya berkisar 30 m – 100 m dari as jalan.

2.3 Simpang Tak Bersinyal

a. Lebar Rata-Rata Pendekat

Pendekat merupakan daerah lengan persimpangan jalan untuk kendaraan mengantri sebelum keluar melewati garis henti. Lebar pendekat diukur pada jarak 10 m dari garis imajiner yang menghubungkan tipe perkerasan dari jalan berpotongan, yang dianggap mewakili lebar pendekat efektif untuk masing-masing pendekat.

Gambar 1. Lebar Rata-Rata Pendekat.

b. Tipe Simpang (IT) Berdasarkan Jumlah Lengan Simpang

Tipe simpang diklasifikasikan berdasarkan jumlah lengan, jumlah lajur jalan mayor dan minor.

c. Kapasitas

Kapasitas persimpangan secara menyeluruh dapat diperoleh dengan menggunakan

$$C = C_0 \times F_w \times FM \times F_{os} \times F_{RSU} \times FLT \times FRT \times FMI (^{omp} f_{jam})$$
(1)

Kapasitas dasar merupakan kapasitas persimpangan jalan total untuk suatu kondisi tertentu yang telah ditentukan sebelumnya (kondisi dasar). Kapasitas dasar (smp/jam) ditentukan oleh tipe simpang.

d. Faktor Penyesuaian Lebar Pendekat

Faktor penyesuaian lebar pendekat (Fw) ini merupakan faktor penyesuaian untuk kapasitas dasar sehubungan dengan lebar masuk persimpangan jalan.

e. Faktor Penyesuaian Median Jalan Utama (FM)

FM ini merupakan faktor penyesuaian untuk kapasitas dasar sehubungan dengan tipe median jalan utama. Tipe median jalan utama merupakan klasifikasi media jalan utama, tergantung pada kemungkinan menggunakan media tersebut untuk menyeberangi jalan utama dalam dua tahap.

f. Faktor Penyesuaian Ukuran Kota (F_{cs})

Faktor ini hanya dipengaruhi oleh variabel besar kecilnya jumlah penduduk dalam juta.

g. Faktor Penyesuaian Tipe Lingkungan, Kelas Hambatan Samping dan Kendaraan Tak Bermotor (F_{RSU})

Faktor penyesuaian tipe lingkungan jalan, hambatan samping dan kendaraan tak bermotor (F_{RSU}), dengan variabel masukkan adalah tipe lingkungan jalan (RE), kelas hambatan samping (SF) dan rasio kendaraan tak bermotor UM/MV.

h. Faktor penyesuaian belok kiri (FLT)

Persamaan yang digunakan dalam pencarian faktor penyesuaian belok kiri.

$$FLT = 0.84 + 1.61PLT (2)$$

i. Faktor penyesuaian belok kanan (FRT)

Faktor penyesuaian belok kanan untuk simpang jalan dengan empat lengan adalah FRT = 1.0, Untuk simpang 3 – lengan, variabel masukan adalah belok kanan PRT. FRT = 1,09 – 0,922 PRT.

j. Faktor Penyesuaian rasio arus minor (FMI)

Pada faktor ini yang banyak mempengaruhi adalah rasio arus pada jalan (PMI) dan tipe simpang (IT) pada persimpangan jalan tersebut.

k. Derajat Kejenuhan (DS)

Derajat kejenuhan merupakan rasio lalulintas terhadap kapasitas. Jika yang diukur adalah kejenuhan suatu simpang maka derajat kejenuhan disini merupakan perbandingan dari total arus lalulintas (smp/jam) terhadap besarnya kapasitas pada suatu persimpangan (smp/jam).

$$DS = \frac{QTOT}{C} \tag{3}$$

1. Tundaan Lalulintas Simpang (DT1)

Tundaan lalulintas simpang adalah tundaan lalulintas rata-rata untuk semua kendaraan bermotor yang masuk simpang. DT1 ditentukan dari kurva empiris antara DT1 dan DS1 dengan rumus:

untuk DS ≤ 0.6

$$DT = 2 + 8,2078 \times DS - (1 - DS) \times 2$$
 (4)

untuk DS ≥ 0.6

$$DT = \frac{1,0504}{(0,2742 - 0,2042 \times DS) - (1 - DS) \times 2}$$
 (5)

m. Tundaan Lalulintas Jalan Utama (DTMA)

Tundaan lalulintas jalan utama adalah tundaan lalulintas rata-rata semua kendaraan bermotor yang masuk persimpangan dari jalan utama.

untuk DS ≤ 0.6

$$DTMA = 1.8 + 5.8234 \times DS - (1 - DS) \times 1.8$$
(6)

untuk DS≥ 0

$$DTMA = \frac{1,05034}{(0,346 - 0.24 \times DS) - (1 - DS) \times 1.8}$$
 (7)

m. Penentuan Tundaan Lalulintas Jalan Minor (DTMI)

Tundaan lalulintas jalan minor rata-rata ditentukan berdasarkan tundaan simpang rata-rata dan tundan jalan utama rata-rata.

$$DTMI = \frac{(QTOT \times DT1) - (QMA \times DTMA)}{QMI}$$
(8)

n. Tundaan Geometri Simpang (DG)

Tundan geometri simpang adalah tundaan geometri rata-rata seluruh kendaraan bermotor masuk simpang.

untuk DS < 1,0

$$DS = (1 - DS) \times (PT \times 6 + (1 - PT) \times 3) + DS \times 4$$
(9)

untuk
$$DS \ge 1,0 : DG = 4$$
 (10)

o. Tundaan Simpang (D)

Tundaan Simpang yaitu tundaan yang diakibatkan oleh simpang.

$$D = DG + DT1 \left(\frac{\det f_{smp}}{}\right) \tag{11}$$

p. Peluang Antrian (QP)

Untuk menghitung peluang antrian dapat dilihat dengan menggunakan persamaan:

Batas bawah:

$$QP\% = 9.02 \times DS + 20.66 \times DS^2 + 10.49 \times DS^{\square}$$
(12)

Batas atas:

$$QP\% = 47,71 \times DS - 24,68 \times DS^2 - 56,47 \times DS^8$$
 (13)

2.4 Simpang Bersinyal

Sinyal lalulintas adalah alat yang berfungsi untuk mengatur saat pergerakan dan lama waktu berjalan dari kendaraan di kaki simpang. Fungsi utama dari persinyalan yaitu menghindari arah pergerakan kendaraan yang saling berpotongan atau melalui titik konflik pada saat yang sama.

Ada dua konflik pada simpang yaitu konflik primer dan konflik sekunder. Sinyal lampu lalulintas akan dapat menghilangkan konflik primer bahkan mungkin juga konflik sekunder. Hal ini tergantung dari karakter simpang. Pada prinsipnya, simpang yang tidak memiliki konflik (*protected*) maka tidak akan ada aliran pergerakan yang terganggu, akan tetapi jika masih ada aliran pergerakan yang terganggu, maka disebut dengan terganggu (*permitted*). Berdasarkan MKJI 1997 kinerja operasi suatu simpang diukur dari kapasitas, derajat kejenuhan, panjang antrian, rasio kendaraan terhenti dan tundaan.

a. Data Geometri dan Lalulintas

Kondisi geometri simpang digambarkan dalam bentuk sketsa dengan tujuan memberikan informasi lebar masuk dan lebar keluar simpang, lebar pendekat, jumlah lajur pada masing-masing lengan, median serta penunjuk arah untuk setiap lengan. Data lalulintas menurut MKJI 1997 dibagi kedalam empat tipe kendaraan, diantaranya kendaraan ringan (LV), kendaraan berat (HV), sepeda motor (MC), dan kendaraan tak bermotor (UM).

$$Q = (Q_{LV} \times emp_{LV}) + (Q_{HV} \times emp_{HV}) + (Q_{MC} \times emp_{MC})$$
(14)

b. Arus Jenuh

Arus jenuh merupakan besarnya keberangkatan antrian didalam suatu lengan simpang selama kondisi yang ditentukan (smp/jam hijau). Arus jenuh (S) dapat dinyatakan sebagai hasil perkalian dari arus jenuh dasar (So) yaitu arus jenuh pada keadaan standar, dengan faktor penyesuaian (F) untuk penyimpangan dari kondisi sebenarnya, dari suatu kumpulan kondisi-kondisi (ideal) yang telah ditetapkan sebelumnya.

$$S = S_0 \times F_{CS} \times F_{SF} \times F_G \times F_P \times F_{RT} \times F_{LT}$$
(15)

c. Lebar Efektif

i. Jika $W_{LTOR} \ge 2 \text{ m}$

We dihitung dari nilai terkecil antara: Wa - W_{LTOR} dan W_{MASUK}

Jika $W_{KELUAR} < We \times (1 - P_{RT})$, We sebaiknya diberi nilai baru sama dengan W_{KELUAR} serta penentuan waktu sinyal untuk pendekat ini dilakukan hanya untuk bagian lalulintas lurus saja.

ii. Jika kondisi $W_{LTOR} < 2 \text{ m}$

We dihitung dari nilai terkecil antara:

Wa, $W_{MASUK} + W_{LTOR}$ dan Wa \times $(1 + P_{LTOR}) - W_{LTOR}$

Jika WKELUAR < We \times (1 - PRT - PLTOR) We sebaiknya diberi nilai baru sama dengan W_{KELUAR} serta penentuan waktu sinyal untuk pendekat ini dilakukan hanya untuk bagian lalulintas lurus saja.

d. Rasio Arus

Perhitungan rasio arus (Q) dengan arus jenuh (S) untuk tiap pendekat.

$$FR = \frac{Q}{S} \tag{16}$$

$$IFR = \sum (FR_{ortt}) \tag{17}$$

$$PR = \frac{FR_{orth}}{IFR} \tag{18}$$

e. Waktu Siklus dan Waktu Hijau

Waktu siklus untuk fase merupakan waktu siklus optimum dengan tundaan yang dihasilkan adalah kecil. Waktu hijau yang lebih pendek dari 10 detik harus dihindari, karena dapat mengakibatkan pelanggaran lampu merah yang berlebihan dan kesulitan bagi pejalan kaki untuk menyeberang jalan

$$c = \frac{(1.5 \times LT1 + 5)}{(1 - \Sigma FR_{crit})} \tag{19}$$

$$LT = \sum (ali\ red + amber)_i = \sum IG_i$$
(20)

$$g_t = (c - LT1) \times PR \tag{21}$$

f. Kapasitas

Kapasitas merupakan arus lalulintas maksimum yang dapat dipertahankan pada suatu bagian jalan dengan melihat kondisi geometrik jalan, lingkungan dan komposisi lalulintas tertentu.

$$C = S \times \frac{g}{c} \tag{22}$$

h. Panjang Antrian

Panjang antrian merupakan panjang kendaraan yang mengantri atau terhenti dikarenakan pengaturan sinyal lalulintas. Dari nilai derajat kejenuhan dapat diketahui jumlah antrian smp (NQ1) yang merupakan sisa dari fase hijau sebelumnya dan jumlah smp yang datang pada selama fase merah (NQ2).

Untuk DS > 0.5, perhitungan NQ_1 menggunakan persamaan:

$$NQ_1 = 0.25 \times C \times \left[(DS - 1) + \sqrt{(DS - 1)^2 + \frac{8 \times (DS - 0.5)}{C}} \right]$$
 (23)

Untuk Ds ≤ 0.5 , maka nilai NQ₁ = 0

$$NQ_2 = c \times \frac{1 - GR}{1 - GR \times DS} \times \frac{Q}{3600}$$
 (24)

$$NQ = NQ_1 + NQ_2 \tag{25}$$

$$QL = \frac{NQ_{\text{max} \times} 20}{w_{MASUR}} \tag{26}$$

i. Tundaan

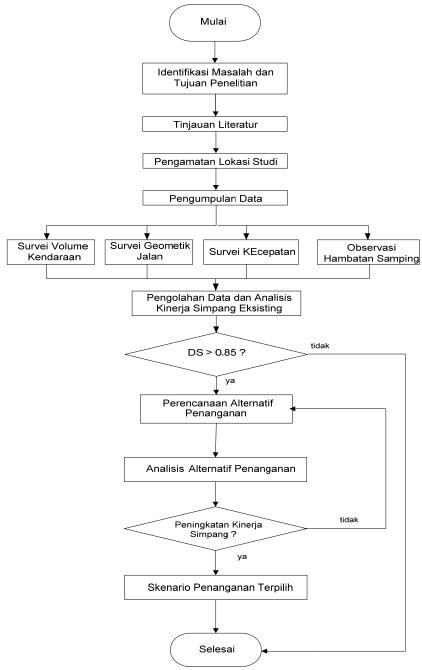
Tundaan adalah waktu tambahan yang diperlukan kendaraan ketika melewati simpang dibandingkan dengan situasi tanpa melewati simpang. Tundaan Lalulintas (DT), yaitu tundaan yang terjadi dikarenakan interaksi lalulintas dengan gerakan lainnya pada suatu simpang. Tundaan Geometri (DG), yaitu tundaan yang terjadi dikarenakan perlambatan dan percepatan sebuah kendaraan pada saat membelok pada suatu simpang (disebabkan oleh kondisi geometri simpang) atau terhenti karena lampu merah.

$$D = DT + DG \tag{27}$$

$$DT = c \times \frac{0.5 \times (1 - GR)^{2}}{(1 - GR \times DS)} + \frac{NQ_{1} \times 3600}{C}$$
(28)

$$DG = (1 - P_{SV}) \times P_T \times 6 + (P_{SV} \times 4)$$
 (29)

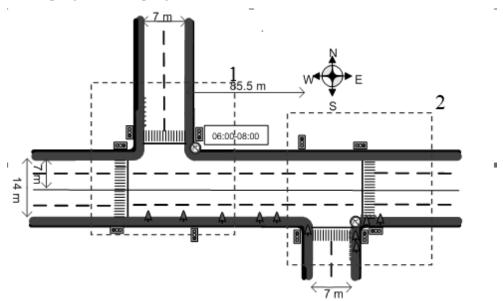
2.5 Median dan Jalur Pemisah


Median adalah sejalur lahan yang diperuntukkan untuk memisahkan jalur lalulintas yang berlawanan arah, penempatan perlengkapan jalan, tanaman perdu yang berakar tunggang, sebagai fungsi estetika dan meredam sinar lampu kendaraan dari arah yang berlawanan. Jalur pemisah adalah sejalur lahan yang diperuntukkan untuk memisahkan jalur lalulintas yang searah. Kalau memungkinkan peruntukkannya sama dengan median. Tabel 2.14 diambil dari Tabel 3-PD7-17-2004B.

Tabel 2. Jarak Bukaan dan Jarak Antar Bukaan.

	Luar	Kota			
Fungsi Jalan	Jarak Bukaan (d ₁ , km)	Lebar Bukaan (d ₂ ,m)	Jarak E	km)	Lebar Bukaan (d ₂ , km)
			Pinggir Kota	Dalam Kota	
Arteri	5	7	2,5	0,5	4
Kolektor	3	4	1,0	0,3	4

3. METODE PENELITIAN


Penelitian dilakukan pada dua simpang tiga tak bersinyal atau simpang empat steger tak bersinyal pada jalan Buahbatu. Berdasarkan survey pendahuluan, waktu survei ditentukan yaitu pagi hari 06:00 – 09:00, siang hari 11:00 – 13:00 dan sore hari 15:00 – 16:00 pada hari senin dan kamis. Dari data pengambilan volume kendaraan tersebut, di dapat waktu sibuk optimum selama satu jam pada pagi,siang dan sore. Data tersebut dipergunakan untuk evaluasi kinerja simpang dan perencanaan alternatif solusi. Perencanaan alternatif solusi menggunakan MKJI 1997 simpang bersinyal dan simpang tak bersinyal.

Gambar 2. Bagan Alir Penelitian.

4. ANALISIS DATA DAN PEMBAHASAN

Kondisi persimpangan di area jalan Buah batu memiliki jarak yang berdekatan. Khususnya simpang pada jalan Solontongan (Simpang 1) dan jalan Suryalaya (Simpang 2) yang memiliki Simpang 3 tidak bersinyal. Analisis yang dilakukan sangat berkaitan antara Simpang 1 dan Simpang 2.

Gambar 3. Kondisi Geometrik Simpang.

4.1 Kondisi Geometri

a. Simpang 1

Simpang 1 merupakan simpang tiga tak bersinyal yang terletak di kawasan komersial yang dikelilingi pertokoan dan tempat pendidikan. Simpang 1 merupakan pertemuan antara ruas Jalan Buahbatu dan Jalan Solontongan.

Lengan Simpang	Nama Jalan	Peran Jalan	Tipe	Lebar Jalan (m)	NSPM (m)	Sesuai Ketentuan
D	Jl.Buahbatu	Kolektor Sekunder	4/2 UD	14	≥ 7,0	✓
С	Jl.Solontongan	Lokal Sekunder	4/2 UD	7	≥ 4,0	✓
В	Jl.Buahbatu	Kolektor Sekunder	4/2 UD	14	≥ 7,0	✓

Tabel 3. Karakteristik Simpang 1.

b. Simpang 2

Simpang 2 ini sama halnya dengan Simpang 1, berada di kawasan komersil dan pendidikan. Simpang 2 merupakan pertemuan antara ruas Jalan Buahbatu dan Jalan Suryalaya.

Tabel 4. Karakteristik Simpang 2.

Lengan Simpang	Nama Jalan	Peran Jalan	Tipe	Lebar Jalan (m)	NSPM (m)	Sesuai Ketentuan
D	Jl.Buahbatu	Kolektor Sekunder	4/2 UD	14	≥ 7,0	✓
C'	Jl.Suryalaya	Lokal Sekunder	4/2 UD	7	≥ 4,0	✓
В	Jl.Buahbatu	Kolektor Sekunder	4/2 UD	14	≥ 7,0	✓

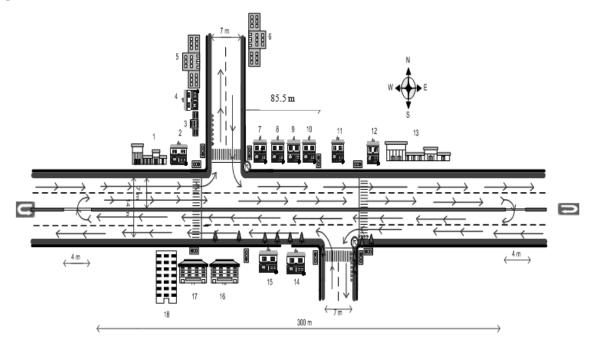
4.2 Analisis

Analisis yang dilakukan pada Simpang 1 dan Simpang 2 tak bersinyal ini menggunakan metoda MKJI 1997 dengan cara mendapatkan volume lalulintas yang ada di lapangan. Data tersebut kemudian di analisis untuk mendapatkan derajat kejenuhan dan tundaan pada simpang tersebut. Data arus lalulintas yang digunakan yaitu data dari hasil survey hari senin dan kamis pada waktu pagi. siang dan sore selama 3 jam pada Simpang 1 dan Simpang 2. Data tersebut kemudian dianalisis untuk mendapatkan satu jam sibuk pada waktu pagi siang dan sore. Volume kendaraan yang didapatkan pada 1 jam sibuk tersebut dikalikan dengan emp untuk masing masing kendaraan sehingga didapatkan keseragaman dalam satuan smp/jam.

Evaluasi dilakukan pada kedua simpang tersebut atau simpang steger dengan menggunakan MKJI 1997 simpang 3 tak bersinyal. Hasil dari evaluasi simpang tesebut pada waktu pagi siang dan sore pada kedua simpang menghasilkan derajat kejenuhan dan tundaan, terlihat pada Table 4.

Tabel 5. Derajat Kejenuhan dan Tundaan simpang.

WAKTU	Derajat Keje	nuhan (DS)	Tundaan Simpang		
Wilkie	Simpang 1	Simpang 2	Simpang 1	Simpang 2	
PAGI	1.220	1.016	46.551	19.792	
SIANG	0.888	0.969	14.974	17.679	
SORE	0.926	0.994	16.117	18.751	


4.3 Perancangan Alternatif Solusi dan Evaluasi Alternatif Solusi

Perlakuan terhadap persimpangan dengan tetap memperhitungkan volume kendaraan per kapasitas jalan sebagai indikator tingkat pelayanan jalan (persimpangan) pada wilayah studi. Dengan menggunakan alternatif solusi penanganan, bahwa pertambahan arus lalulintas kendaraan yang melewati persimpangan daerah studi akan terus bertambah, sementara kapasitas persimpangan tetap. Selain itu dilakukan juga kajian dengan bobot untuk menganalisis simpang-simpang dengan menggunakan ketentuan, peraturan maupun NSPM yang berlaku. Perancangan alternatif solusi pada studi kasus ini dilakukan dengan beberapa alternatif, diantaranya:

- 1. Menjadikan simpang tersebut masing-masing simpang 3 bersinyal
- 2. Menjadikan simpang tersebut Simpang empat bersinyal dalam 1 siklus waktu.
- 3. Memasang median jalan sepanjang ruas jalan tersebut.

4.4 Evaluasi Alternatif Solusi

Hasil dari analisis ke 3 alternatif solusi tersebut didapatkan alternatif solusi terpilih dengan analisis menggunakan metoda MKJI 1997 simpang 3 tak bersinyal dan simpang 4 bersinyal. Dari analisis tersebut terpilihlah alternatif solusi yaitu alternatif ke tiga dengan memasang median sepanjang 300 m dengan bukaan simpang 4 m. alternatif ke tiga menghasilkan derajat kejenuhan dan tundaan simpang yang paling rendah dibandingkan kedua alternative lainnya. Hasil dari analisis alternatif ke tiga dapat terlihat pada Tabel 6 dan Gambar 4.

Gambar 4. Kondisi Geometri Setelah Menggunakan Median.

Tabel 6. Derajat Kejenuhan (DS) dan Tundaan Simpang.

Waktu	Drajat Kejenuhan (DS)				Tundaan Simpang			
	Kondisi Awal		Alternatif 3		Kondisi Awal		Alternatif 3	
waktu	Simpan	Simpan	Simpan	Simpan	Simpan	Simpan	Simpan	Simpan
	g 1	g 2	g 1	g 2	g 1	g 2	g 1	g 2
PAGI	1.220	1.016	0.15	0.93	46.551	19.792	5.78	16.16
SIANG	0.888	0.969	0.30	0.57	14.974	17.679	6.80	9.40
SORE	0.926	0.994	0.50	0.51	16.117	18.751	8.65	8.67

5. KESIMPULAN DAN SARAN

Dari hasil analisis dan pembahasan yang telah dilakukan didapatkan kesimpulan sebagai berikut:

- 1. Pembenahan fasilitas jalan harus dilakukan seperti marka jalan, zebracross, dan rambu-rambu lalulintas agar dapat mengurangi kemacetan pada simpang tersebut.
- 2. Volume kendaraan yang melewati kedua simpang tersebut sangat besar pada jam sibuk yang menimbulkan kapasitas jalan pada simpang tersebut tidak bisa menampung kendaraan lagi terlihat pada hasil analisis awal simpang 3 tak bersinyal untuk kedua simpang tersebut memiliki Derajat kejenuhan sebesar 1.22; 1.01 (pagi hari), 0.88; 0.96 (siang hari), dan 0.92; 0.99 (sore hari) kemudian untuk Tundaannya sebesar 46.5; 19.79 (pagi hari), 14.97; 17.67 (siang hari) dan 16.11; 18.75 (sore hari) dengan satuan detik.
- 3. Pengaruh kendaraan yang berbelok dari jalan utama menuju jalan minor atau sebaliknya berdampak tundaan yang besar pada persimpangan tersebut. Geometrik pada simpang tersebut pun turut serta membuat kemacetan dikarenakan kedua simpang 3 tak bersinyal tersebut berdekatan dengan jarak 85.5 meter.
- 4. Analisis alternatif solusi 1 dan 2 yaitu dengan cara membuat kedua simpang tersebut simpang 3 bersinyal kemudian dikoordinasikan tidak dapat dilakukan karena nilai DS dan panjang antrian yang cukup besar. Dan pada alternatif 2 yaitu menggabungkan kedua simpang tersebut menjadi satu simpang empat bersinyal masih kurang efektif dikarenakan pada jam sibuk DS dan panjang antrian di simpang tersebut cukup besar.
- 5. Dari analisis ke 3 alternatif pada simpang tersebut didapatkan alternatif solusi terpilih yaitu alternatif ke 3 yang dapat menghasilkan Derajat kejenuhan yang kecil pada waktu pagi, siang dan sore dengan rata-rata DS < 0.6 dan tundaan simpang yang kecil dengan cara memasang median jalan pada simpang tersebut sepanjang 300 m.</p>

Saran yang dapat disampaikan sehubungan dengan penelitian ini adalah untuk melakukan survei volume lalulintas sebaiknya selalu menggunakan alat perekam video dan menggambil videonya pun dari ketinggian agar dapat menghasilkan hasil yang lebih akurat dan jelas karena dapat diputar berulang-ulang. Kemudian perlu dilakukan survei lebih lanjut tentang prilaku kendaraan di daerah simpang tersebut bilamana sudah dipasangnya marka jalan.

DAFTAR PUSTAKA

- 1. Direktorat Jenderal Bina Marga. (1987). *Produk Standar Untuk Jalan Perkotaan*. Direktorat Jenderal Bina Marga, Jakarta.
- 2. Direktorat Jenderal Bina Marga-Sweroad. (1997). *Manual Kapasitas Jalan Indonesia*. Direktorat Jenderal Bina Marga, Jakarta.
- 3. Direktorat Jenderal Bina Marga. (1992). *Perencanaan Geometri Untuk Jalan Perkotaan*. Direktorat Jenderal Bina Marga, Jakarta.
- 4. Direktorat Pembinaan Jalan Kota. (1990). *Panduan Penentuan Klasifikasi Fungsi Jalan di Wilayah Perkotaan*. Direktorat Jenderal Bina Marga, Jakarta.
- 5. Duddy S, Moch. (2004). *Analisa Kapasitas Simpang Bersinyal*. Jurusan Teknik Sipil Politeknik Negeri Bandung, Bandung.
- 6. Jananuraga, D. (2009). Peningkatan Kinerja Simpang ATCS (Area Traffic Control System) Jalan LLRE Martadinata-Ir.H.Juanda, Kota Bandung. Politeknik Negeri Bandung, Bandung
- 7. Kusnandar, E. (2006). *Teknik Perancangan Jalan Dan Jembatan*. Departemen Pekerjaan Umum, Bandung.
- 8. Novianti, S. (2007). *Analisis ATCS Aktivitas Lalu Lintas Wilayah Kota Bandung*. Universitas Pajajaran, Bandung.
- 9. Desutama, R.B.P. (2008). *Teknik Lalu Lintas*. Jurusan Teknik Sipil Politeknik Negeri Bandung, Bandung.

PERILAKU SAMBUNGAN SEKRUP (SELF DRILLING SCREW) PADA SAMBUNGAN MOMEN SEBIDANG UNTUK STRUKTUR BAJA RINGAN

Y. Djoko Setiyarto

Jurusan Teknik Sipil - Universitas Komputer Indonesia Email: trivi46@yahoo.com

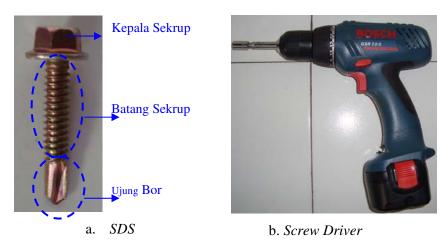
ABSTRAK

Penggunaan sekrup sebagai pengencang sambungan momen pada struktur baja ringan umum dilakukan terutama untuk konstruksi atap. Berbeda dengan baut, mekanisme tumpu pada sekrup dapat disertai pula dengan mekanisme tarik yang menyebabkan sekrup tertarik keluar (pull-out) dari bidang sambungan, mengingat sekrup tidak menggunakan mur. Analisis desain yang disertai dengan kegiatan eksperimental berikut akan memaparkan tentang perilaku dan bentuk kehancuran (failure mode) pada sambungan momen struktur baja ringan yang menggunakan sekrup. Hasil eksperimental menunjukkan bahwa sebagian besar sekrup mengalami rotasi dan tertarik keluar bidang sambungan (pull-out) sehingga dapat menurunkan kekuatan sambungan. Diketahui pula bahwa sekrup yang memiliki eksentrisitas besar terhadap pusat sambungan dan berlokasi dekat dengan beban, akan berpotensi putus akibat besarnya gaya geser yang diterima.

Kata kunci: sekrup, sambungan momen sebidang, pull-out.

ABSTRACT

The use of self drilling screws as moment connections fasteners on cold formed steel structures is done mainly for roof construction. In contrast to the bolts, bearing on the screw mechanism can be accompanied by a tension mechanism that causes the screw pulled ou from the field connection, given the screws do not use nuts. Analysis of the design is accompanied by the following experimental activities will be elaborated on the behavior and failure mode connection screws that may occur in connection moment of cold formed steel structures. Experimental results show that most of the screws have rotation and pull-outs so it can reduce the strength of the connection. Note also that the screw that has a large eccentricity of the connection and is located in the center with weights, will potentially drop out due to the amount of shear force received.


Keywords: self drilling screw, lap-joint moment, pull-out.

1. PENDAHULUAN

Teknologi alat sambung yang sering digunakan dalam struktur baja ringan, khususnya rangka atap adalah sekrup. Alasannya sekrup merupakan alat pengencang yang cepat, mudah, dan efektif. Jenis sekrup yang digunakan adalah *Self Drilling Screw* (SDS) atau sekrup dengan ujung penembus baja (ujung bor) tanpa mur. Sekrup tersebut memiliki ulir yang kasar, dan memiliki sedikit ruang di bawah kepala baut. Ulir yang kasar tersebut akan membuat baja tipis tersusun di antara ulir, bukan dirusak oleh ulir, yang menyebabkan sekrup mampu memikul beban yang besar di sambungan.

Pemasangan sekrup harus menggunakan alat khusus berupa *screw driver* yang dilengkapi dengan kontrol torsi seperti Gambar 1. Tanpa adanya alat kontrol torsi, sekrup berisiko kehilangan fungsinya karena aus (overtighten), dimana keadaan ini amat berbahaya bagi struktur. Karena jumlah sekrup yang dipakai dalam suatu sistem rangka atap baja ringan relatif banyak jumlahnya, relatif sulit untuk dilakukan pengontrolan satu demi satu sekrup jika tidak menggunakan kontrol torsi.

Mengingat sekrup dikencangkan tanpa menggunakan mur, dan kekuatannya juga dipengaruhi oleh tingkat kecocokan antara diameter batang sekrup dengan lubang sekrup, maka kegagalan pada sambungan baja ringan dapat menjadi kegagalan struktur secara keseluruhan. Sehubungan dengan hal tersebut maka perilaku sambungan sekrup pada baja ringan, terutama yang berkaitan dengan bentuk kehancuran yang mungkin terjadi pada sistem sambungan harus dapat diprediksi dengan cermat.

Gambar 1 SDS dan Screw Driver.

Tulisan berikut akan memaparkan analisis kekuatan sambungan sekrup pada baja ringan yang menahan momen sebidang sesuai kriteria desain AISI. Agar diperoleh fakta ilmiah mengenai perilaku sambungan sekrup, maka tulisan ini disertai pula pemaparan hasil kegiatan eksperimental tentang pengujian sambungan momen yang menggunakan sekrup.

2. TINJAUAN LITERATUR

2.1 Bentuk-bentuk kehancuran sambungan sekrup

Berbeda halnya dengan sambungan baut yang mengandalkan mekanisme tumpu [AISI, 2002], maka penggunaan sekrup sebagai sambungan geser sebidang (lap-joint shear) untuk struktur baja ringan tidak hanya mengandalkan mekanisme tumpu, namun

juga mengandalkan mekanisme tarik pada sekrup akibat gaya geser yang bekerja pada sistem sambungan [Yu, 2000]. Hal ini terjadi akibat eksentrisitas ketebalan pelat yang menimbulkan momen sehingga sekrup dapat mengalami rotasi. Menurut AISI, bentuk keruntuhan (failure mode) yang mungkin terjadi pada sambungan sekrup tersebut digolongkan menjadi 5 jenis yaitu:

a. Kehancuran geser ujung pelat (end shearing failure)

Gambar 2 Keruntuhan Geser Ujung Pelat [AISI, 2002].

b. Kehancuran tumpu berupa pemanjangan lubang searah gaya (*tearing*) dan lipatan pada bidang tumpu (*pilling up*).

Gambar 3 Bearing, Tearing, Pilling Up [AISI, 2002].

c. Kehancuran tarik pada penampang bersih pelat (fraktur/sobek)

Gambar 4 Keruntuhan Tarik Pelat [AISI, 2002].

d. Kehancuran geser pada sekrup (sekrup putus)

Gambar 5 Keruntuhan Geser Sekrup [AISI, 2002].

e. Sekrup berotasi miring dan merusak permukaan sambungan (*tilting*), sekrup tertarik keluar dari pelat (*pull out*), dan sekrup tertinggal pada bidang sambungan (*pull over*)

Gambar 6 Tilting, Pull-Over, Pull-Out [AISI, 2002].

Berdasarkan bentuk keruntuhan tersebut maka perhitungan desain kekuatan nominal sambungan sekrup yang harus ditinjau [AISI, 2002; Brockenbrough et all, 2006;

Yu, 2000] yaitu kekuatan sambungan akibat gaya geser dan kekuatan sambungan akibat gaya tarik.

2.2 Kekuatan Sambungan Akibat Gaya Geser

Kekuatan nominal geser tiap sekrup ditentukan dengan mempertimbangkan rasio ketebalan pelat baja ringan yang disambung seperti Gambar 7. Selanjutnya, kuat nominal geser sekrup dipilih berdasarkan nilai terkecil dari persamaan berikut:

Tilting :
$$Pns_1 = 4.2 (t_2^3 d)^{1/2} Fu_2$$
 (1)

Bearing pelat 1 :
$$Pns_2 = 2.7 t_1 d Fu_1$$
 (2)

Bearing pelat 2 :
$$Pns_3 = 2.7 t_2 d Fu_2$$
 (3)

Shear sekrup :
$$Pns_4 = 0.8 Pss$$
 (4)

Keruntuhan Ujung :
$$Pns_5 = t.e.Fu$$
 (5)

Keterangan: t_1 = tebal pelat 1 (kontak dengan kepala sekrup)

 t_2 = tebal pelat 2 (tidak kontak dengan kepala)

 $Fu_1 = tegangan ultimit pelat 1$

 Fu_2 = tegangan ultimit pelat 2

d = diameter batang sekrup

Pss = kuat geser sekrup

t = tebal pelat tertipis

e = jarak sekrup ke ujung pelat

Fu = tegangan ultimit pelat tertipis

2.3 Kekuatan Sambungan Akibat Gaya Tarik

Kekuatan nominal tarik tiap sekrup ditentukan dengan mempertimbangkan geometrik sekrup. Selanjutnya, kuat nominal tarik sekrup dipilih berdasarkan nilai terkecil dari persamaan berikut:

Pull-out : Pnot =
$$0.85 \text{ tc d Fu}_2$$
 (6)

$$Pull-over : Pnov = 1.5 t_1 dw Fu_1$$
 (7)

Tension sekrup : Pnt =
$$0.8 \text{ Pts}$$
 (9)

Keterangan: t_1 = tebal pelat 1 (kontak dengan kepala sekrup)

t_c = nilai terkecil antara penetrasi sekrup dan t₂

 Fu_1 = tegangan ultimit pelat 1

 Fu_2 = tegangan ultimit pelat 2

d = diameter batang sekrup

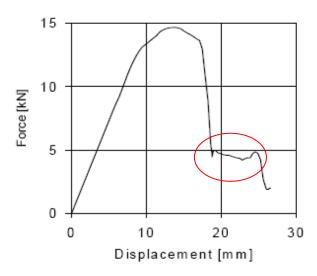
2.4 Bentuk-bentuk kehancuran sambungan sekrup

Eksperimental tentang perilaku sambungan sekrup pada struktur baja ringan yang pernah dilakukan sebelumnya [Dunai et all, 2004], berhasil mengetahui bentuk keruntuhan yang mungkin terjadi pada sambungan sekrup sebagai berikut;

a. Shear

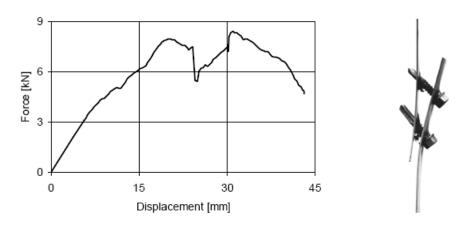
Geser sekrup (putus sekrup) seperti Gambar 7a diawali dengan terjadi *tilting* (sekrup berotasi dan memperbesar lubang). Akibat kuat nominal batang sekrup yang lebih rendah dibandingkan gaya geser yang bekerja maka sekrup menjadi putus. Peristiwa *tilting* ditunjukkan oleh bagian yang mendatar dari kurva *Force-Displacement* pada Gambar 7b, sebelum sekrup mengalami putus geser.

b. Pull out

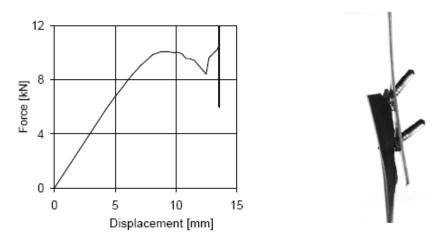

Peristiwa *pull-out* (sekrup tertarik keluar) diperlihatkan oleh Gambar 8. Pada kurva *Force-Displacement* gambar tersebut memperlihatkan bagian yang menurun sebelum terjadi peningkatan kekuatan lagi. Bagian kurva yang menurun tersebut merupakan kegagalan *pull out* dari salah satu sekrup.

c. Buckling

Buckling (tekuk) pada permukaan bidang sambungan baja ringan dapat terjadi apabila sambungan sekrup demikian kuat hingga melebihi kapasitas tekuk pelat. Akibat interaksi antara *tilting* dan *pull-over* maka peristiwa *buckling* dapat terjadi seperti Gambar 10.



a. Tepi lubang pelat yang mengalami *elongation* akibat geser sekrup
 Gambar 7 Keruntuhan Geser Sekrup [Dunai et all, 2004].

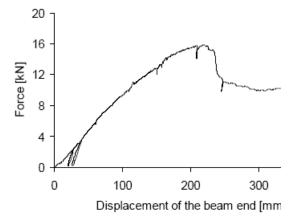


b. Hubungan $P-\delta$ yang menyatakan Perilaku Geser Sekrup

Gambar 7 Keruntuhan Geser Sekrup [Dunai et all, 2004] (lanjutan).

Gambar 8 Keruntuhan Tilting dan Pull-out [Dunai et all, 2004].

Gambar 9 Keruntuhan Tilting & Pull-Over [Dunai et all, 2004].



Gambar 10 Buckling [Dunai et all, 2004].

d. Distortion

Akibat *tilting* dari sekrup yang disertai dengan lentur dari pelat yang tersambung dapat menimbulkan kehancuran distorsi. Distorsi merupakan bentuk kehancuran pada pelat tersambung yang berupa deformasi pada pelat badan atau pelat sayap, meskipun secara keseluruhan sistem sambungan belum memperlihatkan adanya kegagalan. Bentuk kehancuran distorsi dapat dilihat pada Gambar 11.

Gambar 11 Distortion [Dunai et all, 2004].

2.5 Distribusi gaya tiap sekrup

Besarnya gaya yang diterima oleh tiap sekrup dapat dianalisis dengan menggunakan cara *traditional elastic vector* [Brockenbrough et all, 2006] dengan persamaan sebagai berikut:

$$R = \sqrt{(Ry + Ruy)^2 + Rux^2} \tag{10}$$

$$Ry = \frac{Py}{n} \tag{11}$$

$$Ruy = \frac{M \times x}{\sum x^2 + \sum y^2}$$
 (12)

$$Rux = \frac{M \times y}{\sum x^2 + \sum y^2}$$
 (13)

Keterangan: n = jumlah sekrup

Py = gaya pada sambungan

 $M = \text{momen pada pusat sambungan} = Py \times e$

x = jarak sekrup dalam arah sumbu x

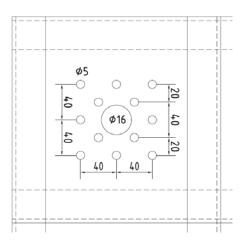
y = jarak sekrup dalam arah sumbu y

3. DESKRIPSI EKSPERIMENTAL

Berikut ini kegiatan eksperimental yang telah dilakukan untuk mengetahui bentuk kehancuran dan perilaku sekrup yang mungkin terjadi pada spesimen sambungan momen sebidang.

3.1 Spesimen Sambungan Momen Sebidang Menggunakan Sekrup

Spesimen sambungan momen terbuat terbuat dari baja ringan berpenampang *lip channel* tunggal dengan ukuran profil 150 x 65 x 20 x 2.3. Batang vertikal dan batang horisontal sepanjang 30 cm dan 25 cm dari baja ringan tersebut dihubungkan secara *backto-back* pada bagian badannya sehingga membentuk sambungan siku L yang dapat menahan momen sebidang. Sekrup yang digunakan berdiameter 5 mm dengan konfigurasi sekrup seperti pada Gambar 12.


3.2 Properti Material

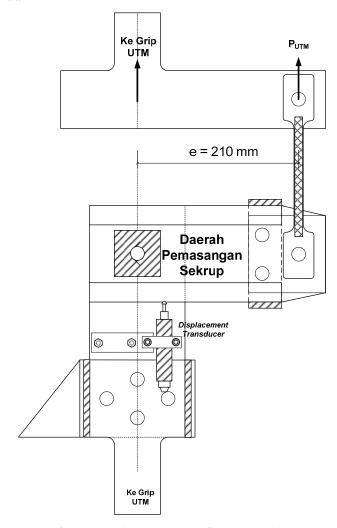
Properti material baja ringan diperoleh dari uji tarik pelat baja sesuai dengan ASTM A 370 – 03a [ASTM, 2003]. Hasil uji tarik material baja ringan yang digunakan untuk spesimen sambungan momen memiliki tegangan leleh σ_y = 212 MPa, tegangan

ultimit σ_u = 275 MPa dan modulus elastisitas E = 202944 MPa. Jenis sekrup yang digunakan sebagai alat penyambung adalah SDS dengan *Grade* 4.6 yang memiliki tegangan tarik nominal σ_{uf} = 421 MPa. Kapasitas penampang *lip channel* 150 x 65 x 20 x 2.3 telah dianalisis dengan menggunakan metode AISI (Yu 2000), yang menghasilkan nilai kapasitas penampang sebesar 8.282 kN.m seperti Tabel 1.

Tabel 1 Properti Penampang.

	Profil	Luas (mm²)	Ix (mm ⁴)	Sx (mm ³)	Mn (kN.m)
ĺ	C150x65x20x2.3	702.4	2484685	33129	8.282

(a) Rencana.



(b) Aktual.

Gambar 12 Spesimen Uji Sambungan Sekrup.

3.3 Test Setup dan Prosedur Pengujian

Pengujian sambungan momen sebidang dilakukan dengan menggunakan UTM sedemikian hingga spesimen dapat dapat menerima momen sebidang seperti pada Gambar 14 berikut.

Gambar 13 Test Setup [Setiyarto, 2011].

Gambar 13 tersebut memperlihat pemasangan alat bantu pada spesimen uji momen yang disertai dengan pemasangan instrumentasi *displacement tranduscer*. Eksentrisitas yang dihasilkan alat bantu lengan momen adalah 0,21 m sehingga besar momen yang diperoleh sebesar 0.21 kali P_{UTM} (beban UTM) yang dihasilkan dalam satuan kN.m. Sedangkan *displacement tranduscer* dipasang sedemikian hingga menghasilkan jarak antara sensor *displacement* dengan pusat sambungan sebesar 50 mm. Besarnya rotasi sambungan yang terjadi dapat diperoleh dengan cara membagi besarnya peralihan vertikal dengan jarak sensor perpindahan.

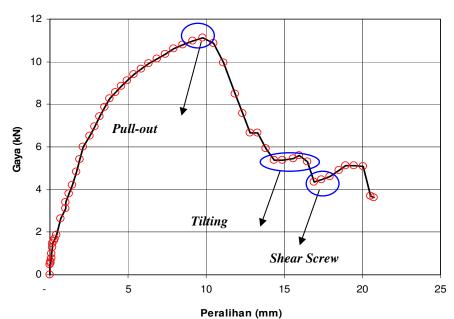
Pengujian sambungan momen dilakukan dengan cara memberikan beban tarik dari UTM ke ujung bebas batang *channel* horisontal sedemikian hingga timbul momen pada daerah sambungan sebagai akibat adanya eksentrisitas antara grip bawah dengan lengan grip. Pengujian dilakukan hingga tercapai kondisi beban ultimit (sambungan hancur).

4. HASIL EKSPERIMENTAL & PEMBAHASAN

Saat mencapai beban ultimit, deformasi di permukaan bidang sambungan baja ringan atau di sekitar sekrup sudah mulai terlihat. Akibat adanya mekanisme tumpu pada batang sekrup, maka sekrup cenderung berotasi dalam arah tegak lurus bidang sambungan (*tilting*). Rotasi sekrup tersebut juga menyebabkan kepala sekrup membentur permukaan bidang sambungan, sehingga menyebabkan permukaan baja ringan sobek. Beberapa sekrup juga mengalami kegagalan tumpu akibat tidak dapat menahan gaya geser yang terjadi dalam mekanisme tumpu pada penampang pelat.

a. Tampak Bagian Kepala Sekrup

b. Tampak Bagian Ujung Sekrup


Gambar 14 Bentuk Kehancuran Spesimen Sambungan Sekrup [Setiyarto, 2011].

Bentuk kehancuran yang terjadi pada sambungan momen yang menggunakan SDS dapat dilihat pada Gambar 14, terlihat deformasi plastis pada permukaan baja ringan yang berbenturan dengan kepala sekrup dan deformasi plastis pada permukaan baja

ringan yang berbenturan dengan ujung sekrup. Bentuk keruntuhan yang dominan terjadi pada spesimen uji adalah:

- a. Sebuah sekrup mengalami putus geser, yaitu sekrup yang dekat dengan lokasi gaya.
- b. Semua sekrup mengalami rotasi dan sekrup yang memiliki eksentrisitas besar terhadap pusat sambungan mengalami *pull-out*

Hubungan gaya-peralihan hasil pengujian sambungan momen terlihat pada Gambar 15. Untuk memperoleh titik ultimit (Pu) dan titik leleh (Py) digunakan metode *offset* [ASTM, 2003] yang hasilnya seperti pada Tabel 2. Besarnya momen ultimit yang diperoleh adalah Mu = 1.65 kN.m. Nilai ini masih lebih rendah daripada kapasitas penampang profil pada Tabel 1 (selisih 80%).

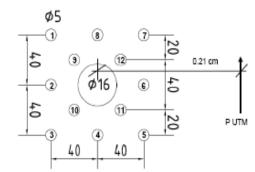
Gambar 15 Kurva P – Δ Hasil Eksperimental [Setiyarto, 2011].

Kurva gaya-peralihan tersebut memperlihatkan keruntuhan sambungan diawali dengan terjadinya *pull-out* pada sekrup yang mengalami gaya geser terbesar. Setelah sekrup tersebut putus maka peristiwa *pull-out* diikuti oleh seluruh sekrup yang lain (bagian kurva menurun drastis). Selanjutnya beberapa sekrup mengalami *tilting* (bagian kurva yang mendatar) dan sekrup yang berada dekat dengan beban UTM mengalami putus geser (bagian kurva yang menanjak setelah mengalami penurunan yang signifikan).

Tabel 2Titik Leleh dan Titik Ultimit.

Δy	Py	Δu	Pu
mm	kN	mm	kN
2.888	7.857	9.772	11.129

5. BESAR GAYA TIAP SEKRUP TEORITIS


Untuk mempelajari perilaku sambungan sekrup dalam menerima beban, berikut dilakukan analisis gaya yang bekerja pada tiap sekrup dengan tujuan untuk mengetahui distribusi gaya masing-masing sekrup. Gaya geser yang bekerja pada tiap sekrup tersebut dianalisis dengan cara *traditional elastic vector* [Brockenbrough et all, 2006] seperti persamaan 10 s/d 13. Dengan menggunakan nilai Py = 7.857 kN (kondisi elastis), dan konfigurasi sekrup seperti Gambar 16 untuk menentukan nilai $\Sigma yi^2 + \Sigma xi^2$, maka besarnya gaya yang diterima tiap sekrup dapat dianalisis. Hasil analisis gaya tiap sekrup dapat dilihat pada Tabel 3 dan Tabel 4.

Tabel 3 Penentuan $\Sigma yi^2 + \Sigma xi^2$ untuk Analisis Gaya Tiap Baut.

No Sekrup	xi	yi	xi ²	yi ²
1	-40	40	1600	1600
2	-40	0	1600	0
3	-40	-40	1600	1600
4	0	-40	0	1600
5	40	-40	1600	1600
6	40	0	1600	0
7	40	40	1600	1600
8	0	40	0	1600
9	-20	20	400	400
10	-20	-20	400	400
11	20	-20	400	400
12	20	20	400	400
			$\Sigma xi^2 = 11200$	$\Sigma yi^2 = 11200$

Berdasarkan hasil dari tabel tersebut diketahui bahwa gaya geser terbesar yang diterima oleh sambungan kelompok sekrup adalah pada sekrup no 5, yaitu sekrup yang berdekatan dengan lokasi gaya seperti yang ditunjukkan oleh Gambar 14 b. Meskipun tidak dilakukan pengukuran besarnya gaya geser yang terjadi pada sekrup saat kondisi plastis, namun dengan dengan cara *traditional elastic vector* telah diketahui bahwa gaya

yang diterima sekrup no 5 tersebut adalah sebesar 4.65 kN dan merupakan gaya terbesar yang diterima dari sistem sambungan.

Gambar 16 Tata Letak Sekrup [Setiyarto, 2011].

Ry+Ruy No Sekrup Rux Ruy Ry R(kN)2.946 -2.946 0.655 -2.292 3.73 1 2 0.000 -2.9460.655 -2.2922.29 3 -2.946-2.946 0.655 -2.2923.73 4 -2.9460.000 0.655 0.655 3.02 5 -2.946 2.946 3.601 4.65 0.655 6 0.000 2.946 0.655 3.601 3.60 7 2.946 2.946 0.655 3.601 4.65 8 2.946 0.000 0.655 0.655 3.02 9 1.473 -1.473 0.655 -0.818 1.69 10 -1.473 -1.473 0.655 -0.8181.69

1.473

1.473

0.655

0.655

Tabel 4 Gaya Geser Tiap Sekrup

6. KEKUATAN NOMINAL TIAP SEKRUP TEORITIS

-1.473

1.473

11

12

Analisis kekuatan nominal sambungan sekrup, secara teoritis (elastis) dapat ditentukan dengan persamaan 1 s/d 9. Selama menerima momen sebidang, sambungan sekrup akan berotasi terhadap sumbu transversalnya. Sehingga beberapa bagian kepala sekrup akan membentur (mengalami kontak) dengan bidang permukaan sambungan baja ringan. Selama kontak tersebut sekrup mengalami gaya geser dan sekaligus mengalami gaya tarik. Gaya geser terjadi akibat mekanisme tumpu antara tepi lubang sekrup dengan batang sekrup, sedangkan gaya tarik terjadi akibat mekanisme tarik antara kepala sekrup dengan bidang permukaan pelat.

Hasil analisis kuat nominal sekrup dapat dilihat pada Tabel 5. Jika melihat kekuatan nominal sambungan sekrup pada Tabel 5 tersebut, maka kekuatan sambungan

2.128

2.128

2.59

2.59

sekrup lebih banyak ditentukan oleh kekuatan tarik sekrup yaitu *pull-out*. Berikut mengenai analisis kekuatan nominal tiap sekrup.

Data Self Drilling Screw

Diameter sekrup	d =	5	mm
Diameter washer sekrup	dw =	7.5	mm
Kuat tarik sekrup	Pts =	4710	kΝ
Kuat geser sekrup	Pss =	3768	kΝ

Data Pelat Coldformed

Pelat 1 (yang kontak dengan kepala sekrup)

 $\begin{array}{cccc} t_1 = & 2.1 & mm \\ Fy_1 = & 212 & MPa \\ Fu_1 = & 275 & MPa \end{array}$

Pelat 2 (yang tidak kontak dengan kepala sekrup)

 $t_2 = 2.1 \text{ mm}$ $Fy_2 = 212 \text{ MPa}$ $Fu_2 = 275 \text{ MPa}$

Shear Design Strength (Mekanisme Tumpu)

$$t_2/t_1 = 1.00$$

$t_2/t_1 <= 1$

$Pns_1 =$	$4.2 \text{ x } ((t_2^3)\text{xd})^{0.5} \text{ x Fu}_2$	=	7859.52	Ν	Tilting
$Pns_2 =$	$2.7 \times t_1 \times d \times Fu_1$	=	7796.25	Ν	Bearing
$Pns_3 =$	$2.7 \times t_2 \times d \times Fu_2$	=	7796.25	Ν	Bearing
Pns =	$min (Pns_1, Pns_2, Pns_3) =$		7796.25	Ν	

Pns =	7796.25	kN	Bearing
1 113 —	1130.23	L/ I A	Dearing

End Distance (Keruntuhan Ujung)

Tebal pelat tertipis	t =	2.1	mm
Minimum edge distance	e =	0.75	mm
Mutu pelat tertipis	Fu =	275	mm
Pns = txexFu	=	433.13	N

Geser Pada Sekrup

$$Pns = 0.8 \times P_{ss} = 3014.4 \text{ N}$$

Tension Design Strength (Mekanisme Tarik)

P _{not} =	$0.85 \times t_c \times d \times Fu_2$	=	2454.38	Ν	Pull-out
$P_{\text{nov}} =$	$1.5 \times t_1 \times dw \times Fu_1$	=	6496.88	Ν	Pull-over
$P_{nt} =$	0.8 x Pt _s	=	3768.0	Ν	Tension in screw

Tabel 5 Hasil Analisis Kekuatan Nominal Sambungan Sekrup.

Mekanisme Geser (kN)		Mekanisme T	Mekanisme Tarik (kN)		
Tilting	7.86	Pull-out	2.45		
Bearing 1	7.80	Pull-over	6.50		
Bearing 2	7.80	Tension screw	3.77		
Shear Screw	3.01				

7. KESIMPULAN

Beberapa kesimpulan yang diperoleh dari hasil eksperimental dan teoritis tentang perilaku sambungan sekrup pada baja ringan adalah sebagai berikut:

- 1. Pada sambungan momen, sekrup akan berotasi mengikuti arah putaran momen, sehingga perilaku *tilting* dan *pull-out* akan lebih dominan.
- 2. Sekrup yang memiliki eksentrisitas besar terhadap pusat sambungan akan cenderung menerima gaya geser yang besar, terutama sekrup yang berdekatan dengan lokasi beban.
- 3. Perilaku *pull-out* dan *tilting* pada sambungan sekrup dapat menyebabkan terjadinya penurunan kekuatan, sehingga penggunaan sekrup akan menghasilkan kekuatan ultimit yang jauh lebih rendah daripada kapasitas penampang profil.

DAFTAR PUSTAKA

- 1. AISC. (2005). Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois.
- ASTM. (2003). "A 370–03a: Standard Test Methods and Definitions for Mechanical Testing of Steel Products", USA.
- 3. American Iron and Steel Institute. (2002). AISI Manual, 2002 Edition, Washington, DC, U.S.A.
- 4. Brockenbrough, R.L and Merrit, F.S. (2006). Structural Steel Designer's Handbook: AISC, AASHTO, AISI, ASTM, AREMA, and ASCE-07 Design Standars, 4th Ed, McGraw-Hill, Inc.
- 5. Dunai, L and Foti, P. (2004). "Experimental Behaviour Modes of Cold-formed Frame-Corners". Connections in Steel Structures V, Amsterdam.
- 6. Setiyarto, Y. D. (2011). Laporan Kemajuan Penelitian Disertasi, Program Doktor Teknik Sipil Unpar, Bandung.
- 7. Yu, W.W. (2000). *Cold-Formed Steel Design 3rd Ed.*, John Wiley & Sons, New York.

STUDI ANALISIS PENGARUH LENDUTAN AKIBAT GESER PADA BALOK KAYU

Buen Sian

Dosen Jurusan Teknik Sipil, Fakultas Teknik, Universitas Katolik Parahyangan Jalan Ciumbuleuit 94, Bandung, 40141 E-mail: buensian@unpar.ac.id; songbunsian@gmail.com

ABSTRAK

Lendutan pada struktur sering kali disebabkan oleh gaya dalam seperti momen lentur, gaya geser, atau gaya normal. Pada umumnya metode untuk menentukan lendutan balok hanya mempertimbangkan lendutan yang diakibatkan oleh momen lentur saja. Lendutan akibat gaya geser biasanya diabaikan dalam analisa struktur. Pada kenyataan pengaruh lendutan geser cukup signifikan untuk diperhitungkan terutama pada konstruksi kayu. Kayu digambarkan sebagai material orthotropik dan mempunyai keunikan sifat mekanik pada arah ketiga sumbu yang saling tegak lurus yaitu: sumbu longitudinal L yang sejajar serat kayu, sumbu radial R, dan sumbu tangensial T. Kayu mempunyai tiga modulus elastisitas $E_L, E_R, dan E_T$ serta tiga modulus geser G, pada perhitungan lendutan E_L dan G_L digunakan. Pertama pengaruh geser terhadap lendutan total dihitung berdasarkan 34 jenis kayu, hasilnya menunjukan bahwa pengaruh lendutan geser menjadi kecil pada balok bentang panjang. Untuk beberapa jenis kayu pengaruh geser masih ada meskipun pada panjang bentang 4m. Kemudian dilakukan perhitungan selanjutnya untuk mendapatkan beberapa diagram dengan variasi pada: rasio modulus geser/modulus elastisitas, panjang balok, dan berbagai penampang. Diagram hasil studi ini dapat digunakan untuk semua jenis kayu untuk mendapatkan kontribusi lendutan geser terhadap lendutan total.

Kata Kunci: deformasi, momen lentur, geser, orthotropik.

ABSTRACT

Most often the deflection of a structure is caused by internal loadings such as bending moment, shear force, or normal force. Generally the method for determining deflection of a beam considers only deflections due to bending. Deflection due to shear is usually neglected in structural analysis. In fact the influence of shear deflection is significant, especially in wood structure. Wood may be described as an orthotropic material, it has unique mechanical properties in the directions of three mutually perpendicular axis: longitudinal L, radial R, and tangential T. Wood has three moduli of elasticity E which are denoted by E_L , E_R , and E_T , three moduli of rigidity G and the deflection was calculated based on E_L and G_L . First the contribution of shear deformation to the total deflection was calculated based on 34 wood properties. The results showed that the influence of the shear deflection was small at long span. For some wood species the effect will not lost at span length 4 m. Afterwards some analitycal study was done to find some diagrams with variation of G/E, span length, and cross section. These diagrams can be used for all wood species to find the contribution of shear deformation to total deflection.

Keywords: deformation, bending moment, shear, orthotropic.

1. PENDAHULUAN

Lendutan balok dipengaruhi oleh gaya dalam seperti momen, geser, normal, dan torsi tetapi perhitungan lendutan pada umumnya hanya memperhitungkan akibat momen saja sedangkan gaya geser, normal, dan torsi tidak diperhitungkan karena harganya

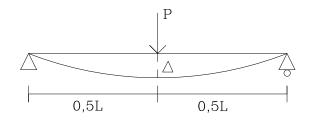
dianggap kecil dan dapat diabaikan. Memperhitungkan lendutan akibat gaya geser pada analisis struktur kayu di Indonesia masih jarang dilakukan. Bahkan beberapa literatur struktur kayu mengasumsikan pengaruh lendutan akibat gaya geser hanya sebesar 10%, padahal harga sesungguhnya cukup besar dan tidak bisa diabaikan terutama kalau kayu tersebut pendek. Hal ini bisa disebabkan belum banyaknya penelitian yang menghasilkan besarnya modulus geser untuk kayu luar maupun yang ada di Indonesia.

Kayu berasal dari tumbuhan yang terdiri dari serat-serat dengan arah tertentu, susunan serat-serat inilah yang mempengaruhi sifat kayu. Kayu bersifat orthotropis dengan tiga sumbu simetri yaitu sumbu longitudinal (searah serat), sumbu radial (tegak lurus lingkaran tumbuh), dan sumbu tangensial (menyinggung lingkaran tumbuh). Pada umumnya perbedaan sifat kayu lebih ditentukan oleh arah sejajar serat dan arah tegak lurus serat sedangkan pada arah radial dan tangensial biasanya sangat kecil dan seringkali diabaikan. Berbeda dengan beton dan baja merupakan material isotropik yang mempunyai satu besaran modulus elastisitas dan modulus geser, tapi kayu mempunyai tiga modulus elastisitas yaitu, $\boldsymbol{E}_L, \boldsymbol{E}_R$, dan \boldsymbol{E}_T serta tiga modulus geser G. Perhitungan lendutan pada kayu diambil searah dengan sumbu longitudinal atau sejajar serat sehingga dalam perhitungan modulus yang digunakan adalah \boldsymbol{E}_L dan \boldsymbol{G}_L

Mengingat besarnya pengaruh gaya geser pada lendutan dalam analisis struktur kayu, perlu dihitung seberapa besar pengaruhnya untuk berbagai bentuk penampang dan panjang balok. Berdasarkan data 31 jenis kayu luar dan tiga jenis kayu Indonesia yang sudah diketahui harga modulus elastisitas (5500MPa-14868MPa) dan modulus gesernya (396 MPa-1257MPa), dihitung secara analitis dengan bantuan *MathCAD*, berapa persen pengaruh lendutan akibat gaya geser terhadap lendutan totalnya. Lendutan dihitung di tengah bentang terhadap balok di atas dua perletakan dengan beban terpusat di tengahnya. Penampang balok dengan variasi: (1) Penampang persegi panjang dengan tinggi 10cm -40 cm. (2) Penampang I dengan tinggi 20 cm, 30 cm, dan 40 cm serta tinggi *web* 0,6 terhadap tinggi penampangnya. (3) Penampang I dengan tinggi 20 cm, 30 cm, dan 40 cm serta tinggi *web* 0,75 terhadap tinggi penampangnya.

Panjang balok kayu diambil bervariasi dari 1m - 8m, dan dipelajari pula sebaliknya pada panjang berapakah pengaruh lendutan geser ketika mencapai harga 10%, 5%, dan 2%. Dari analisis ini diperoleh beberapa grafik yang dapat digunakan untuk semua jenis kayu. Dengan mengetahui harga modulus elastisitas dan modulus geser kayu dapat diperoleh besarnya pengaruh lendutan akibat gaya geser untuk balok berpenampang I dan persegi panjang dengan berbagai panjang balok.

2. MODULUS ELASTISITAS DAN MODULUS GESER KAYU


Mengingat belum banyak jenis kayu yang memiliki data eksperimental modulus gesernya, maka diambil 31 jenis kayu luar (Wood Handbook 2010) dan 3 jenis kayu Indonesia yaitu, Akasia, Meranti, dan Kruing (Tjondro 2007). Sebanyak 34 jenis kayu diurutkan berdasarkan rasio antara modulus geser dengan modulus elastisitasnya (G/E) dari harga terkecil sampai terbesar (Tabel 1).

No Jenis Kayu No Jenis Kayu $\boldsymbol{E}_{\scriptscriptstyle L}$ $\boldsymbol{E}_{\scriptscriptstyle L}$ G_L/E_L G/E_L G_{L} G_{L} (MPa) (MPa) (MPa) (MPa) Hemlock 11300 396 0.035 13400 951 18 Douglas-fir 0,071 1 12100 575 0,047 19 Yellow-poplar 10900 785 0,072 2 Pine, pond 3 Pine, lod. 9200 437 0.048 20 Walnut black 11600 853 0.073 4 Pine, western 10100 505 0,050 21 Sweetgum 11300 848 0,075 Basswood 10100 515 0,051 Pine, loblolly 12300 1002 0,081 23 740 Pine, slash 13700 0,054 Oak, red 13100 1113 0,085 11043 0,054 24 Akasia 600 Oak, white 12300 1058 0,086 750 0,057 25 12600 8 13070 0,087 Maple, sugar 1096 Meranti 9 9900 579 0.058 26 7700 667 0,087 Baldcypress Cedar, west. 10 14868 900 0,060 27 11200 991 0,088 Pine, red Kruing 11 Spruce, sitka 9900 619 0.062 28 Ash, white 12000 1116 0.093 29 11300 12 Cottonwood 9400 602 0,064 Maple, red 1170 0,103 13 Fir, subalpine 8900 570 0.064 30 Pine, sugar 8200 972 0,118 14 Pine, longleaf 13700 897 0,065 31 Spruce, Engel. 8900 1086 0,122 15 Larch, west. 12900 851 0,066 32 Cherry, black 10300 1257 0,122 13900 987 0,071 16 Birch, yellow 33 P. ponderosa 8900 1126 0,126 Redwood 9200 658 0,071 Cedar, north. 5500 1092 0,198 17

Tabel 1. Rasio antara modulus geser dengan modulus elastisitas.

3. PERSAMAAN LENDUTAN BALOK

Lendutan total akibat momen dan gaya geser dihitung ditengah bentang balok dengan beban terpusat di tengahnya (Gambar 1). Persamaan lendutan total untuk balok penampang persegi panjang dan penampang I (Persamaan 2, 3, dan 4):

Gambar 1. Lendutan di tengah bentang

Persamaan umum lendutan akibat momen lentur dan gaya geser dengan beban di tengah bentang adalah:

$$\Delta = \Delta_{L} + \Delta_{G}$$

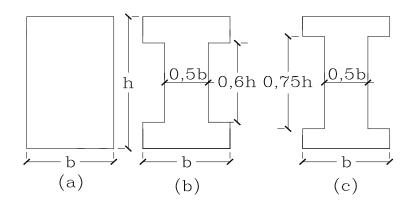
$$\Delta = \frac{P.L^{3}}{48.E.I} + \frac{0.25.P.L}{F.G}$$
(1)

dimana:

 Δ = lendutan total (mm)

 Δ_{L} = lendutan akibat momen lentur (mm)

 Δ_G = lendutan akibat gaya geser (mm)


P = beban(N)

L = panjang bentang balok (mm)

E = modulus elastisitas kayu (MPa)

F = luas penampang efektif (mm²)

G = modulus geser kayu (MPa)

Gambar 2: Penampang balok (a). Persegi empat (b). I dengan tinggi web 0,6h (c). I dengan tinggi web 0,75 h .

Jika balok penampang persegi panjang dengan lebar b dan tinggi h (Gambar 2a) maka persamaan lendutan akibat momen lentur dan gaya geser adalah:

$$\Delta = \frac{P.L^{3}}{4.E.b.h^{3}} + \frac{0.3.P.L}{b.h.G}$$
 (2)

Jika balok penampang I dengan tinggi *web* 0,6 h (Gambar 2b) maka persamaan lendutan akibat momen lentur dan gaya geser adalah:

$$\Delta = \frac{125.\text{P.L}^3}{446.\text{E.b.h}^3} + \frac{5.\text{P.L}}{6.\text{b.h.G}}$$
 (3)

Jika balok penampang I dengan tinggi *web* 0,75 h (Gambar 2c) maka persamaan lendutan akibat momen lentur dan gaya geser adalah:

$$\Delta = \frac{32.\text{P.L}^3}{101.\text{E.b.h}^3} + \frac{2.\text{P.L}}{3.\text{b.h.G}}$$
 (4)

4. HASIL ANALISIS

4.1 Analisis Lendutan Balok Kayu dengan Penampang Persegi Panjang

Besarnya persentase lendutan geser terhadap lendutan totalnya untuk balok penampang persegi panjang didapat dari persamaan (2) dengan bantuan *MathCAD*. Lendutan dihitung untuk kayu *Hemlock* yang mempunyai harga G/E terkecil yaitu 0,035, kemudian kayu Indonesia yaitu kayu Akasia dengan rasio sebesar 0,054, dan kayu *Cedar Northern White* dengan G/E terbesar 0,198.

Hasil perhitungan menunjukan bahwa lebar penampang balok tidak mempengaruhi harga lendutan geser/lendutan total ($\Delta_{\rm G}/\Delta$). Kayu *Hemlock* yang mempunyai harga G/E kecil dengan tinggi 40 cm dan panjang balok 1 m dipengaruhi lendutan akibat geser sebesar 84,6 % terhadap lendutan totalnya. Sedangkan pengaruh geser akan kecil sebesar 2% jika balok mencapai panjang 16,2 m dengan tinggi penampang 40 cm.

Tabel 2. Kayu *Hemlock* dengan penampang persegi panjang.

Tinggi	Lendu	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
10	25,5	7,9	2,1	0,5	1,75	2,6	4,1
20	57,8	25,5	7,9	2,1	3,5	5,2	8,2
30	75,5	43,5	16,2	4,6	5,25	7,8	12,3
40	84,6	57,8	25,5	7,9	7	10,4	16,2

Tabel 3. Kayu Akasia dengan penampang persegi panjang.

Tinggi	Lendut	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
10	18,1	5,2	1,4	0,3	1,4	2,05	3,3
20	46,9	18,1	5,2	1,4	2,8	4,1	6,6
30	66,5	33,2	11,1	3	4,2	6,15	9,9
40	77,9	46,9	18,1	5,2	5,6	8,2	13,2

Kayu Akasia mempunyai harga G/E sebesar 0,054 lebih besar dari kayu *Hemlock* (Tabel 3). Pengaruh lendutan geser terhadap lendutan total harganya masih besar, contoh untuk balok dengan tinggi 40 cm, panjang 1m harganya 77,9 %. Semakin panjang balok pengaruh gaya geser terhadap lendutan total makin kecil, sedangkan semakin tinggi penampang balok semakin besar pengaruh gesernya. Kayu dari Indonesia lainnya seperti Meranti dan Kruing dengan harga G/E masing-masing sebesar 0,057 dan 0,06 akan mempunyai harga persentase yang hampir sama dengan kayu akasia.

Kayu *Cedar Northern White* mempunyai harga G/E besar yaitu 0,198. Sebagian besar jenis kayu luar maupun kayu Indonesia mempunyai harga G/E dibawah 0,198. Dengan harga sebesar ini, pengaruh lendutan geser masih cukup besar untuk diperhitungkan (Tabel 4). Perhitungan menunjukan semakin besar harga G/E semakin kecil pengaruh gaya geser terhadap lendutan balok.

Tabel 4. Kayu Cedar Northern White dengan penampang persegi panjang.

Tinggi	Lendu	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
10	5,7	1,5	0,4	0,1	0,7	1,08	1,7
20	19,5	5,7	1,5	0,4	1,4	2,15	3,4
30	35,2	12	3,3	0,8	2,1	3,23	5,1
40	49,2	19,5	5,7	1,5	2,8	4,3	6,8

4.2 Analisis Lendutan Balok Kayu dengan Penampang I

Perhitungan lendutan akibat lentur dan geser untuk penampang balok I menggunakan persamaan (3) dan (4). Penampang balok I dengan variasi (1). Lebar web 0,5 b dan tinggi web 0,6 h. (2). Lebar web 0,5 b dan tinggi web 0,75 h (Gambar 2b, 2c). Lebar balok tidak berpengaruh pada persentase besarnya gaya geser terhadap lendutan total pada penampang persegi panjang maupun penampang I. Kayu yang ditinjau adalah kayu *Hemlock*, Meranti dan kayu Kruing.

Pengaruh gaya geser pada balok penampang I lebih besar dari pada balok penampang persegi panjang untuk jenis kayu yang sama. Sedangkan untuk tinggi *web* yang lebih besar dengan ukuran tinggi balok yang sama, pengaruh gaya geser lebih kecil. Kayu dengan harga rasio G/E kecil seperti *Hemlock* terlihat pengaruh gesernya sangat besar yaitu sekitar 90% untuk tinggi balok 40 cm dan panjang 1 m. Pengaruh geser semakin menghilang untuk panjang balok mencapai lebih dari 22 m (Tabel 5, Tabel 6).

Tabel 5. Kayu *Hemlock* penampang I dengan tinggi web 0,6 h.

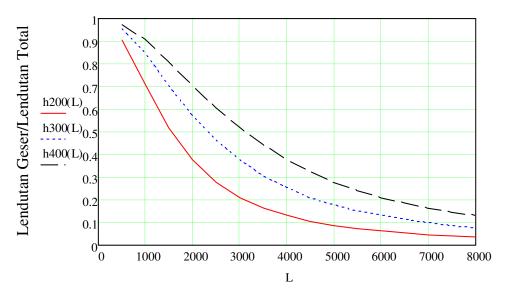
Tinggi	Lendu	an Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok	dengan Panjang Balok				10%	5%	2%
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
20	77,2	45,9	17,5	5	5,6	8	11
30	88,4	65,6	32,3	10,7	8,4	12	16,5
40	93,1	77,2	45,9	17,5	11,2	16	22

Tabel 6. Kayu Hemlock penampang I dengan tinggi web 0,75 h

Tinggi	Lendu	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
20	70,6	37,5	13,1	3,6	4,8	6,8	10,8
30	84,4	57,5	25,2	7,8	7,2	10,2	16,2
40	90,6	70,6	37,5	13,1	9,6	13,6	21,6

Tabel 7. Kayu Meranti penampang I dengan tinggi web 0,6 h

Tinggi	Lendut	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
20	67,5	34,1	11,5	3,1	4,4	6,2	10
30	82,3	53,8	22,6	6,8	6,6	9,3	15
40	89,2	67,5	34,1	11,5	8,8	12,4	20


Tabel 8. Kayu Meranti penampang I dengan tinggi web 0,75 h

Tinggi	Lendu	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
20	59,5	26,8	8,4	2,2	3,65	5,3	8,4
30	76,7	45,2	17,1	4,9	5,45	7,65	12,6
40	85,4	59,5	26,8	8,4	7,3	10,6	16,8

Perhitungan pengaruh gaya geser pada kayu Meranti masih menunjukan harga besar. Kayu Meranti dan kayu Kruing mempunyai harga G/E yang hampir sama yaitu masing-masing sebesar 0,057 dan 0,06, akan menghasilkan besar pengaruh yang hampir sama pula. Perhitungan untuk kayu Kruing dengan tinggi web 0,6 h ditunjukan dengan grafik (Gambar 3).

Kayu dengan G/E besar seperti Kayu *Cedar Northern White* memberi pengaruh gaya geser lebih kecil dibandingkan dengan kayu yang mempunyai G/E kecil baik untuk penampang I maupun persegi panjang pada ukuran penampang yang sama. Meskipun kayu *Cedar Northern White* mempunyai G/E jauh lebih besar dibandingkan dengan kayu

lainnya, harga pengaruh geser masih cukup besar untuk balok pendek. Pengaruh geser akan hilang jika panjang balok mencapai lebih dari 10 m (Tabel 8, 9).

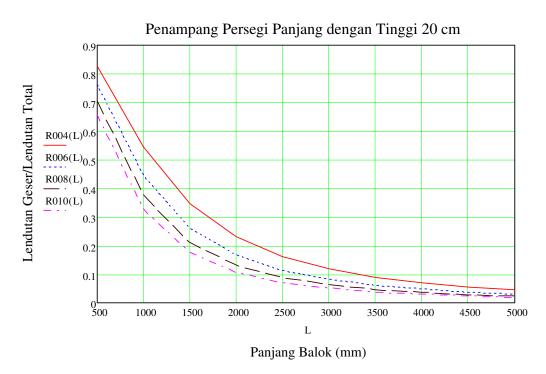
Panjang Balok (mm)

Gambar 3. Grafik hubungan antara panjang balok dengan lendutan geser/lendutan total untuk tinggi penampang 200 mm - 400 mm.

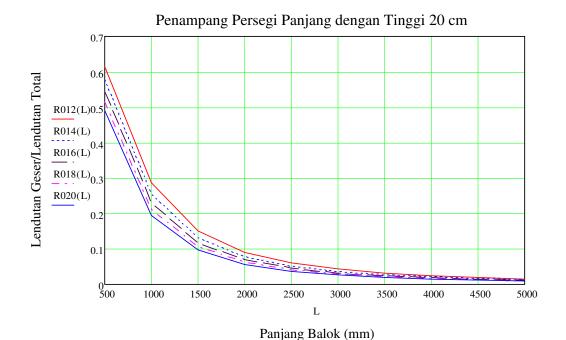
Tabel 8. Kayu Cedar White penampang I dengan tinggi web 0,6 h

Tinggi	Lendu	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
20	37,5	13	3,6	0,9	2,3	3,4	5,4
30	57,4	25,2	7,8	2,1	3,65	5,1	8,1
40	70,6	37,5	13	3,6	4,6	6,8	10,8

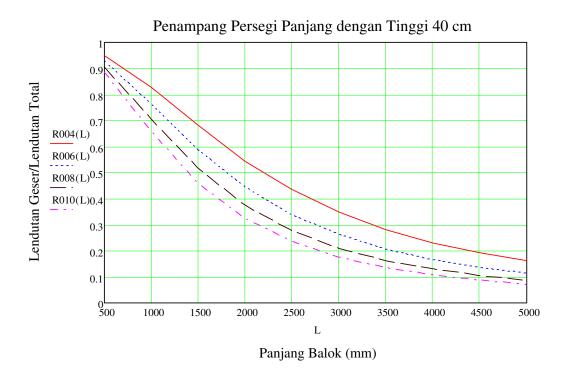
Tabel 9. Kayu Cedar White penampang I dengan tinggi web 0,75 h

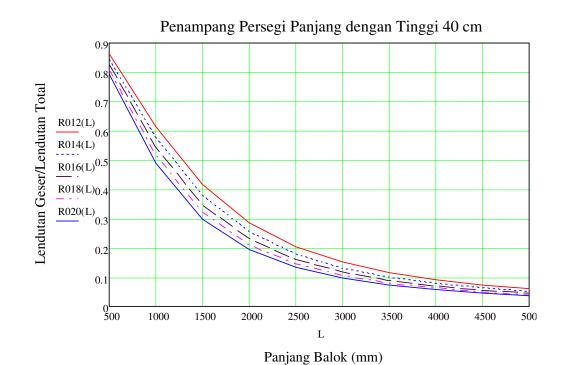

Tinggi	Lendu	tan Geser/L	endutan To	Lendutan Geser/Lend. Total			
Balok		dengan Par	njang Balok	10%	5%	2%	
(cm)	1 m	2 m	4 m	8 m	Panjang Balok (m)		
20	29,8	9,6	2,6	0,7	2	2,8	4,6
30	48,8	19,3	5,6	1,5	3	4,2	6,9
40	62,9	29,8	9,6	2,6	4	5,6	9,2

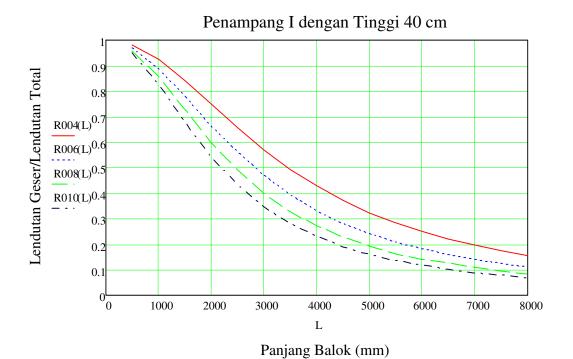
4.3 Analisis Lendutan Akibat Geser untuk Semua Jenis Kayu

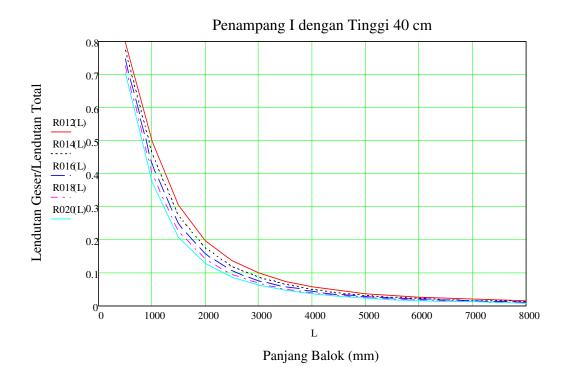

Dari perhitungan 31 jenis kayu luar dan 3 jenis kayu dari Indonesia diperoleh persentase pengaruh lendutan geser untuk berbagai harga: G/E, panjang balok, bentuk

penampang, dan tinggi balok. Kemudian perhitungan dikembangkan dengan bantuan MathCAD untuk semua jenis kayu, mengingat faktor dominannya adalah harga modulus geser dan modulus elastisitas kayu. Kayu yang sudah diketahui harga modulusnya mempunyai harga rasio modulus geser dengan modulus elastisitas antara 0.035 - 0.2. Pada studi analisis ini diambil harga G/E sebesar 0.04 - 0.2 dan ditampilkan dalam bentuk grafik. Dengan mengetahui harga G/E kayu, dari grafik hasil studi bisa didapatkan harga persentase pengaruh lendutan akibat gaya geser terhadap lendutan totalnya. Penggunaan grafik (gambar 4 - 11) mempunyai batasan yaitu (1).

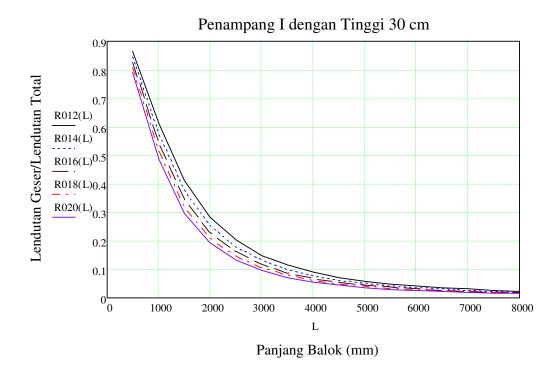

Lendutan di hitung berdasarkan beban di tengah bentang dengan balok di atas dua tumpuan. (2). Penampang balok persegi panjang dengan tinggi 20 cm (Gambar 4 dan 5). (3). Penampang balok persegi panjang dengan tinggi 40 cm (Gambar 6 dan 7). (4). Penampang balok I dengan tinggi web 0,6 h dan tinggi penampang 40 cm (Gambar 8 dan 9). (5). Penampang balok I dengan tinggi web 0,75 h dan tinggi penampang 30 cm (Gambar 10 dan 11). Grafik hasil studi ini diharapkan bisa memberikan gambaran seberapa besar pengaruh gaya geser terhadap lendutan total kayu dan memperhitungkannya dalam analisa struktur khususnya pada struktur kayu.


Gambar 4. Grafik hubungan antara panjang balok dengan lendutan geser / lendutan total untuk G/E 0,04 – 0,1.


Gambar 5. Grafik hubungan antara panjang balok dengan rasio lendutan geser/ lendutan total untuk G/E 0,12 – 0,2.


Gambar 6. Grafik hubungan antara panjang balok (mm) dengan lendutan geser/lendutan total dengan G/E 0,04 – 0,1.

Gambar 7. Grafik hubungan antara panjang balok dengan lendutan geser/ lendutan total untuk G/E 0,12-0,2.


Gambar 8. Grafik hubungan antara panjang balok dengan lendutan geser/lendutan total untuk G/E 0,04 – 0,1 dan tinggi web 0,6 h.

Gambar 9. Grafik hubungan antara panjang balok dengan lendutan geser/lendutan total untuk G/E 0.12-0.2 dan tinggi web~0.6 h.

Gambar 10. Grafik hubungan antara panjang balok dengan lendutan geser/lendutan total untuk G/E 0,04 – 0,1 dan tinggi web 0,75 h.

Gambar 11. Grafik hubungan antara panjang balok dengan lendutan geser/lendutan total untuk G/E 0,12 – 0,2 dan tinggi web 0,75 h.

5. KESIMPULAN

Berdasarkan hasil analisis lendutan geser pada balok kayu, maka dapat diambil kesimpulan sebagai berikut:

- 1. Lebar penampang balok persegi panjang maupun penampang I tidak mempengaruhi besarnya pengaruh geser pada lendutan.
- 2. Semakin tinggi penampang balok I dan persegi panjang, semakin besar pengaruh lendutan geser terhadap lendutan totalnya.
- 3. Besarnya modulus geser/modulus elastisitas kayu menjadi faktor utama yang menentukan besarnya pengaruh akibat geser. Semakin besar harga G/E semakin kecil pengaruh lendutan gesernya. Selain itu semakin panjang balok semakin kecil pengaruh lendutan gesernya.
- 4. Penampang I dengan tinggi *web* 0,6 h mempunyai harga pengaruh geser terbesar dibandingkan dengan penampang I dengan tinggi *web* 0,75 h kemudian penampang persegi panjang.
- 5. Kayu dengan harga G/E rendah seperti kayu *Hemlock* (G/E=0,035), pengaruh lendutan geser menjadi sangat besar. Salah satu contoh,

- 6. Kayu dengan harga G/E tinggi seperti kayu *Cedar Northern White* (G/E=0,198), pengaruh lendutan geser masih cukup besar. Penampang persegi panjang 40 cm dengan panjang 1m pengaruhnya sebesar 49,2 % sedangkan untuk panjang balok 4 m sebesar 5,7% dan pengaruh geser akan hilang untuk panjang balok di atas 7 m. Sebagian besar kayu mempunyai harga G/E jauh dibawah 0,2, berarti pengaruh gesernya akan hilang jauh di atas 7 m.
- 7. Kayu Indonesia Akasia, Meranti, dan Kruing memiliki harga G/E hampir sama masing-masing sebesar 0,054, 0,057, dan 0,06. Pengaruh lendutan geser perlu diperhitungkan, contoh kayu akasia dengan tinggi penampang persegi panjang 40 cm dengan panjang 4 m sebesar 18,1 %. Pengaruh lendutan geser akan hilang pada panjang di atas 13 m.
- 8. Beberapa grafik hasil studi analisis ini dapat dipergunakan untuk semua jenis kayu sehingga dapat memperkirakan berapa besar pengaruh geser dalam menganalisis struktur kayu.

DAFTAR PUSTAKA

- 1. Forest Product Laboratory, (2010). Wood Handbook, *Wood as an Engineering Material*.USA: USDA.
- 2. Gere JM., (2001). Mechanics of Materials, 5th ed.USA: Brooks/Cole.
- Tjondro. J.A., (2007). Perilaku Sambungan Kayu dengan Baut Tunggal Berpelat Sisi Baja akibat Beban Uni-Aksial Tarik (Disertasi), Universitas Katolik Parahyangan, Bandung.

ANALISIS *PUSHOVER PIER FLYOVER BRIDGE*DI JAKARTA JALUR TN.ABANG – KP. MELAYU

Yosafat Aji Pranata¹, Nathan Madutujuh²

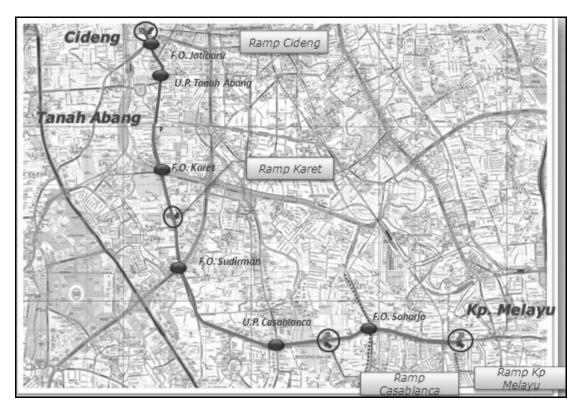
¹ Dosen Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha Jalan Prof. drg. Suria Sumantri, MPH., No. 65, Bandung, 40164
E-mail: yosafat.ap@gmail.com

² Direktur PT. Anugrah Multi Cipta Karya, Bandung
E-mail: nathanmadutujuh@gmail.com

ABSTRAK

Struktur *flyover bridge* di Jakarta jalur Tanah Abang – Kampung Melayu menggunakan *pier* beton bertulang dengan material beton bertulang mutu K-500 dan baja mutu BJTD-40 (ulir), BJTD-24 (polos). Portal mempunyai variasi bentuk dan ketinggian yaitu *pier* dengan ketinggian bervariasi 6,5-12,5 meter, *pier* dengan bresing-X untuk ketinggian diatas 13,5 meter, *pier* tiang tunggal berbentuk Y dengan ketinggian 9,3 meter, dan portal besar bentang 24 meter dengan beton prategang. Tujuan penelitian ini adalah melakukan desain *review pier flyover bridge* dengan menggunakan perangkat lunak SANSPRO. Selanjutnya untuk mendapatkan nilai daktilitas aktual struktur *pier*, maka dilakukan analisis statik nonlinier (*pushover*) dengan menggunakan perangkat lunak SAP2000. Struktur *pier* didesain dengan menggunakan tingkat daktilitas terbatas. Hasil analisis memperlihatkan bahwa peralihan struktur *pier* untuk model biasa dan bresing-X berkisar antara 6,53-40,21 mm dan *drift* berkisar antara 0,111%-0,192%, sedangkan untuk *pier* Y peralihan berkisar antara 3,2-3,6 mm dan *drift* berkisar antara 0,05%-0,12%. Hasil analisis *pushover* memperlihatkan bahwa daktilitas aktual struktur *pier* biasa dan bresing-X berkisar antara 1,39-6,67, sedangkan untuk *pier* Y berkisar antara 5,57-7,64.

Kata Kunci: desain *review*, *pier* beton bertulang, *flyover bridge*, *pushover*.


1. PENDAHULUAN

Desain review pier flyover bridge di Jakarta jalur Tanah Abang-Kampung Melayu meliputi rute (koridor tahap 1) jalan Mas Mansyur-Sudirman-Satrio-Rasuna Said-Casablanca. Kemudian apabila ditinjau pembagian zona tinjauan analisis pondasi berdasarkan karakteristik tanah, analisis dibagi menjadi 5 zona [PT. Pamintori Cipta, 2010]. Kriteria perencanaan struktur jalan layang berkaitan dengan hal-hal berikut, yaitu beban kendaraan dan muatannya yang melewati jalan layang tersebut, tipe jalan layang, bentang jalan layang, pondasi jalan layang, beban gravitasi (berat sendiri struktur), beban-beban mati tambahan lainnya, beban angin, dan beban gempa [Hoedajanto dan Madutujuh, 2010].

Struktur *flyover bridge* di Jakarta jalur Tanah Abang – Kampung Melayu menggunakan *pier* beton bertulang dengan material beton bertulang mutu K-500 dan baja mutu BJTD-40 (ulir), BJTD-24 (polos). Portal mempunyai variasi bentuk dan ketinggian yaitu sebagai berikut:

1. Pier dengan ketinggian bervariasi 6,5-12,5 meter (7 model).

- 2. Pier dengan bresing-X untuk ketinggian diatas 13,5 meter (10 model).
- 3. Pier tiang tunggal berbentuk Y dengan ketinggian 9,3 meter (tiga model).

Gambar 1. Koridor flyover non tol Tn. Abang-Kp. Melayu.

Tujuan penelitian ini adalah melakukan desain review pier flyover bridge dengan menggunakan perangkat lunak SANSPRO [Madutujuh, 2010]. Selanjutnya untuk mendapatkan nilai daktilitas aktual struktur pier, maka dilakukan analisis statik nonlinier (pushover) dengan menggunakan perangkat lunak SAP2000 [CSI, 2009]. Secara umum struktur pier didesain dengan menggunakan tingkat daktilitas terbatas.

2. STUDI LITERATUR

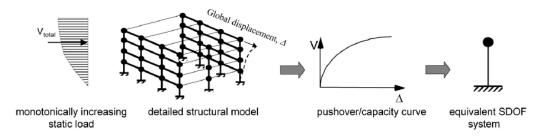
2.1 Pembebanan

Beban yang diperhitungkan dalam desain adalah meliputi beban mati (berat sendiri struktur) atau SW, beban mati (berat *girder*) DL, beban hidup (kendaraan dan pejalan kaki) LL dan PLL, beban *crane* (pada saat proses pelaksanaan konstruksi) atau CR, dan beban gempa E. Berat sendiri struktur bervariasi, sesuai dengan ketinggian *pier*, beban mati yaitu berat girder 750 ton, beban hidup sebesar 324 ton, kemudian beban gempa diperhitungkan dengan menggunakan analisis statik.

Kombinasi beban menggunakan dasar sesuai AASHTO [AASHTO, 2002] yaitu sebagai berikut:

```
1. 1,25 SW + 1,25 DL + 1,25 CR.
2. 1,25 SW + 1,25 DL + 1,75 x 1,33 LL + 1,5 PLL.
3. 1,25 SW + 1,25 DL + 0,5 LL + 0,5 PLL + E
4. DL + SW + CR (beban mati)
5. LL + PLL (beban hidup)
6. DL + SW + CR + LL + PLL (beban mati dan beban hidup)
7. E (gempa)
```

2.2 Beban Gempa


Struktur *pier* didesain tahan gempa, dengan pembebanan gempa untuk Jakarta diambil berdasarkan peta gempa Indonesia tahun 2010. Maka digunakan parameter sebagai berikut [Hoedajanto dan Madutujuh, 2010]:

$S_s = 0.65$	$A_{v} = 0.486g$
$S_I = 0,275$	$C_u = 1,2$
$F_a = 1,4$	$T_o = 0,175 \text{ detik}$
$F_v = 2.9$	$T_s = 0.876 \text{ detik}$
$S_{ms}=0.91g$	R = 3.0
$S_{ml}=0,798$	I = 1,25
$S_{ds}=0,607g$	$C_d = C.I/R = 0.243g$
$S_{dl} = 0,532g$	
C = 0.728	

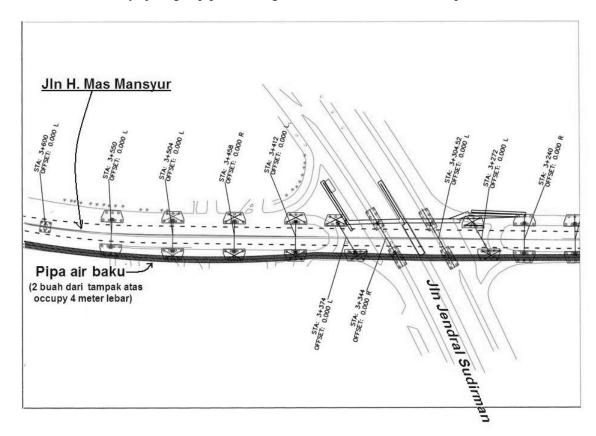
2.3 Analisis Beban Dorong

Analisis statik beban dorong atau analisis *pushover* adalah suatu analisis nonlinier statik dimana pengaruh Gempa Rencana terhadap struktur bangunan gedung dianggap sebagai beban statik yang menangkap pada pusat massa masingmasing lantai, yang nilainya ditingkatkan secara berangsur-angsur sampai melampaui pembebanan yang menyebabkan terjadinya pelelehan (sendi plastis) pertama di dalam struktur bangunan gedung, kemudian dengan peningkatan beban lebih lanjut mengalami perubahan bentuk pasca-elastik yang besar sampai mencapai target peralihan yang diharapkan atau sampai mencapai kondisi plastik.

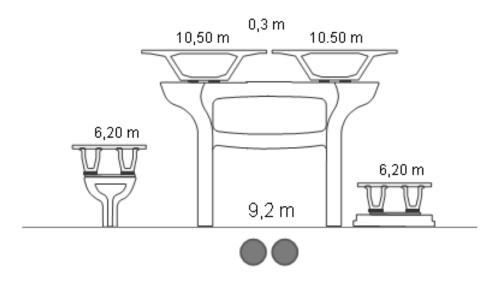
Metode analisis statik beban dorong merupakan metode dengan pendekatan nonlinier statik, dimana dapat digunakan pada struktur bangunan gedung beraturan, dengan karakteristik dinamik mode tinggi yang tidak dominan. Salah satu hasil analisis yang mempunyai manfaat penting yaitu kurva kapasitas. Kurva kapasitas hasil dari analisis statik beban dorong menunjukkan hubungan kurva beban lateral-peralihan oleh peningkatan beban statik sampai pada kondisi ultimit atau target peralihan yang diharapkan.

Gambar 2. Skematik Analisis Statik Beban Dorong [ATC, 2004].

Kurva kapasitas menunjukkan hubungan antara Gaya Geser Dasar (*base shear*) terhadap Peralihan Atap (*roof displacement*) seperti terlihat pada Gambar 2. Kurva berbentuk nonlinier, yang mana menunjukkan peningkatan beban pascaelastik sampai dengan kondisi plastik. Analisis *pushover* relevan dilakukan pada model struktur dengan klasifikasi beraturan, karena beban statik diaplikasikan pada pusat massa tiap lantai.


Beberapa manfaat dari analisis statik beban dorong yaitu antara lain:

- 1. Dapat digunakan untuk mengevaluasi karakteristik perilaku dan kinerja struktur.
- Memungkinkan dilakukan investigasi skema kelelehan atau distribusi sendi plastis.
- 3. Pada saat kondisi struktur diperlukan suatu perkuatan maupun *retrofit*, dapat diketahui elemen-elemen struktur mana saja yang perlu diperkuat, sehingga hal ini berhubungan efisiensi biaya.


3. HAMBATAN DALAM DESAIN

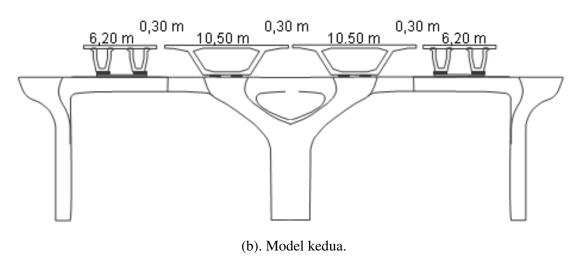
Struktur *pier* direncanakan berdiri diatas daerah sepanjang jalan, dimana terdapat konstruksi pipa didalam tanah eksisting, sehingga berdampak pada perencanaan *pilecap*.

Dalam studi kasus ini, perencanaan dimensi dan tebal *pilecap* menyesuaikan ruang yang tersedia akibat adanya jaringan pipa eksisting (Gambar 3 dan Gambar 4 tanpa skala).

Gambar 3. Denah lokasi pipa air baku jalan Mas Mansyur.



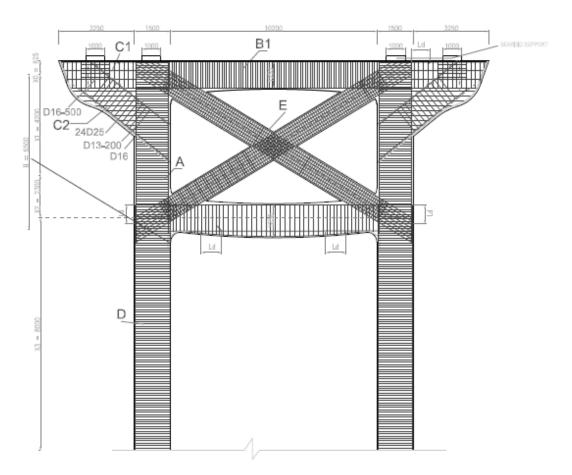
Gambar 4. Skematik salah satu lokasi jaringan pipa tepat dibawah pier.


4. PEMILIHAN MODEL PORTAL

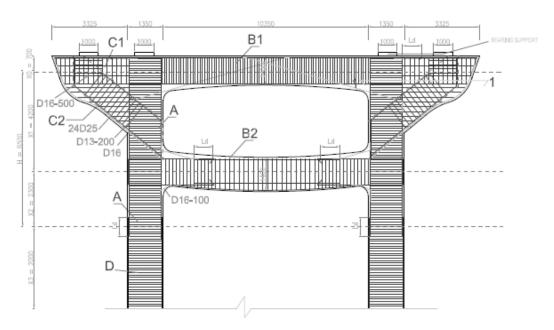
Pier tanpa bresing digunakan untuk model portal dengan tinggi total 6,5 meter (H+0) sampai dengan 12,5 meter (H+6). Sedangkan Pier dengan bresing X digunakan untuk model portal dengan tinggi total 13,5 meter (H+7) sampai dengan 22,5 meter (H+16). Model portal pier tanpa bresing dan bresing-X selengkapnya ditampilkan pada Tabel 2 dan Tabel 1, skematik gambar model pier tanpa bresing ditampilkan pada Gambar 7 dan pier bresing-X ditampilkan pada Gambar 6 (gambar tanpa skala).

Untuk lebih menyediakan ruang lalu lintas yang lebih lebar pada jalan bawah, maka terdapat *pier* tengah yang diubah bentuknya menjadi *pier* tunggal berbentuk Y. lebar kaki Y berkisar antara 3,5 meter sampai dengan 4 meter (Gambar 5, tanpa skala).

(a). Model pertama.


Gambar 5. Skematik model pier tunggal berbentuk Y.

Tabel 1. Dimensi dan ukuran penampang pier bresing-X (satuan mm).


H+	A	B1	B2	C1	C2	D	E
7	1500	1250	1250	1500	1250	1500	1000
	2300	2100	2100	2300	2300	2300	2300
8	1500	1250	1250	1500	1250	1500	1000
	2300	2100	2100	2300	2300	2300	2300
9	1600	1250	1250	1500	1250	1600	1000
	2300	2100	2100	2300	2300	2300	2300
10	1600	1250	1250	1500	1250	1600	1000
	2300	2100	2100	2300	2300	2300	2300
11	1600	1250	1250	1500	1250	1600	1000
	2300	2100	2100	2300	2300	2300	2300
12	1700	1250	1250	1500	1250	1700	1000
	2300	2100	2100	2300	2300	2300	2300
13	1700	1250	1250	1500	1250	1700	1000
	2300	2100	2100	2300	2300	2300	2300
14	1800	1250	1250	1500	1250	1800	1000
	2300	2100	2100	2300	2300	2300	2300
15	1900	1250	1250	1500	1250	1900	1000
	2300	2100	2100	2300	2300	2300	2300
16	2000	1250	1250	1500	1250	2000	1000
	2300	2100	2100	2300	2300	2300	2300

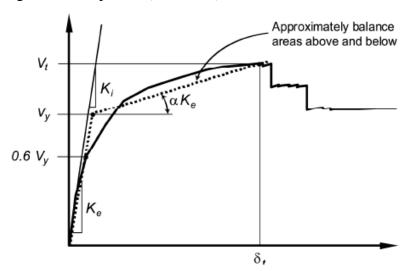
Tabel 2. Dimensi dan ukuran penampang pier tanpa bresing (satuan mm).

H+	A	B1	B2	C1	C2	D	E
0	1250	1300	1300	1500	1250	-	-
	2300	2100	2100	2300	2300	-	-
1	1250	1300	1300	1500	1250	1250	-
	2300	2100	2100	2300	2300	2300	-
2	1350	1400	1400	1500	1250	1350	-
	2300	2100	2100	2300	2300	2300	-
3	1450	1500	1500	1500	1250	1450	-
	2300	2100	2100	2300	2300	2300	-
4	1450	1600	1600	1500	1250	1450	-
	2300	2100	2100	2300	2300	2300	-
5	1550	1600	1600	1500	1250	1550	-
	2300	2100	2100	2300	2300	2300	-
6	1650	1700	1700	1500	1250	1650	-
	2300	2100	2100	2300	2300	2300	-

Gambar 6. Skematik penulangan pier bresing-X H+8 (tinggi 14,5 meter).

Gambar 7. Skematik penulangan *pier* tanpa bresing H+2 (tinggi 8,5 meter).

Pemodelan dan analisis dengan menggunakan perangkat lunak SANSPRO dilakukan dengan menggunakan model *single* kantilever.


5. ANALISIS PUSHOVER

Analisis pushover digunakan untuk mendapatkan parameter daktilitas aktual dan faktor R aktual struktur. nilai daktilitas μ_Δ diperoleh dengan menggunakan persamaan sebagai berikut :

$$\mu_{\Delta} = \frac{\delta_u}{\delta_v} \tag{1}$$

di mana μ_{Δ} adalah daktilitas struktur, δ_y adalah peralihan atap pada saat leleh pertama, dan δ_u adalah peralihan atap pada kondisi ultimit. Model kurva hubungan tegangan-regangan yang digunakan adalah model Mander (untuk material beton) dan model bilinier dengan *strain hardening* (untuk material baja) [CSI, 2009].

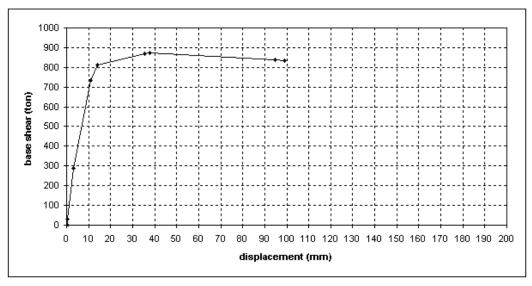
Tingkat kinerja struktur berhubungan dengan target peralihan yang diharapkan pada tahap pra-desain [ATC, 1996; 2000; 2004], sehingga dalam hal ini peralihan atap pada kondisi target peralihan (δ_t) diasumsikan sebagai peralihan ultimit (δ_u) dalam menentukan parameter daktilitas peralihan. Selanjutnya nilai peralihan atap saat leleh pertama (δ_y), $slope/kemiringan K_e$ dan $\alpha.K_e$ ditentukan dengan cara trial and error, berdasarkan konsep luas area yang sama antara kurva bilinier dengan kurva kapasitas (Gambar 8).

Gambar 8. Idealisasi Kurva [ATC, 2004].

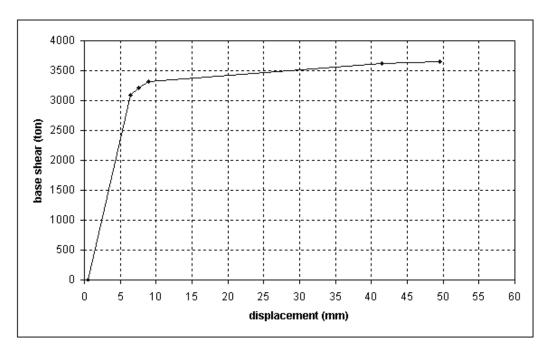
Pemodelan properti sendi-plastis disesuaikan dengan model kurva hubungan momen-kurvatur balok pada *pier* yang ditinjau. Pemodelan beban lateral untuk analisis *pushover* meliputi beban gravitasi (tipe *load control*) dan beban arah sumbu sejajar portal dan arah tegaklurus portal, dengan tipe beban *displacement control*, digunakan asumsi target peralihan sebesar 1 meter.

Hasil analisis *pushover* selengkapnya ditampilkan pada Tabel 3 dan Tabel 4. Contoh kurva hubungan beban-lendutan ditampilkan pada Gambar 7 dan Gambar 8. Konsep perhitungan daktilitas aktual struktur adalah idealisasi kurva kapasitas menjadi kurva bilinier, dengan asumsi bahwa titik pertama leleh ditentukan berdasarkan batas proporsional. Luasan kurva bilinier (idealisasi) harus sama dengan luasan kurva kapasitas yang sebenarnya.

Tabel 3. Base-Shear Pertama Leleh dan Ultimit.


Tabel 3. Duse-5	neur i ci tama izci	ii dan Ommi.
Model Pier	Base She	ear (ton)
	V-ult	V-yield
H+0	833,63	872,81
H+1	659,61	769,99
H+2	786,53	830,11
H+3	776,32	802,56
H+4	762,61	775,02
H+5	745,03	751,25
H+6	807,38	818,50
H+7	1012,66	999,75
H+8	717,89	989,39
H+9	754,85	1062,32
H+10	819,31	978,08
H+11	609,10	951,17
H+12	638,91	992,43
H+13	784,47	949,74
H+14	621,21	973,62
H+15	975,20	996,31
H+16	1066,88	1003,31
PierY-Model1	3362,83	2912,52
PierY-Model2	3653,37	3095,54
PierY-Model3	1857,48	1692,17

Tabel 4. Displacement Pertama Leleh dan Ultimit.


I abel 7. Di	<i>эршсетет</i> 1 с	i taina Deien i	uan Ciumit.
Model Pier	Displacen	nent (mm)	Daktilitas Aktual
	Delta-u	Delta-y	
H+0	100,00	15,00	6,67
H+1	110,00	19,00	5,79
H+2	123,00	25,00	4,92
H+3	140,00	30,00	4,67
H+4	155,00	35,00	4,43
H+5	168,00	36,00	4,67

	Tabel 4. (lanjutan).	
H+6	186,00	40,00	4,65
H+7	71,00	20,00	3,55
H+8	87,00	21,00	4,14
H+9	74,00	22,00	3,36
H+10	163,00	28,00	5,82
H+11	166,00	37,00	4,49
H+12	166,00	38,00	4,37
H+13	201,00	38,00	5,29
H+14	228,00	44,00	5,18
H+15	63,00	42,00	1,50
H+16	64,14	46,00	1,39
PierY-Model1	40,58	7,29	5,57
PierY-Model2	49,53	6,48	7,64
PierY-Model3	11,86	83,26	7,02

Keterangan: V-yield adalah base-shear pada saat leleh pertama kali, V-ult adalah ase-shear ultimit (saat beban runtuh), Delta-y adalah displacement pada saat leleh pertama kali, dan Delta-u adalah displacement ultimit (saat beban runtuh).

Gambar 7. Kurva beban-peralihan pier tanpa bresing tinggi 6,5 meter.

Gambar 8. Kurva beban-peralihan pier bentuk Y model kedua.

6. KESIMPULAN

Kesimpulan yang dapat diambil dari penelitian ini adalah sebagai berikut:

- 1. Hasil analisis *pushover* dengan perangkat lunak SAP2000 memperlihatkan bahwa peralihan struktur *pier* untuk model biasa dan bresing-X berkisar antara 6,53-40,21 mm dan *drift* berkisar antara 0,111%-0,192%, sedangkan untuk *pier* Y peralihan berkisar antara 3,2-3,6 mm dan *drift* berkisar antara 0,05%-0,12%.
- 2. Hasil analisis *pushover* memperlihatkan bahwa daktilitas aktual struktur *pier* biasa dan bresing-X berkisar antara 1,39-6,67, sedangkan untuk *pier* Y berkisar antara 5,57-7,64.
- 3. Secara umum untuk *pier* biasa dan bresing-X memperlihatkan hasil struktur mempunyai tingkat daktilitas terbatas, sesuai prediksi sebelumnya, sedangkan untuk *pier* Y lebih daktail.

LAMPIRAN

58

Sebagian materi dari tulisan ilmiah ini telah dipresentasikan oleh penulis, sebagai pembicara tamu pada kegiatan pengabdian kepada masyarakat pada Seminar Nasional ERSC-ICAT 2011 "Design for New Indonesian Earthquake Map", yang diselenggarakan atas kerjasama antara ERSC, ICAT, dan Universitas Nurtanio Bandung, pada tanggal 26 Februari 2011.

DAFTAR PUSTAKA

- 1. Anonim. (1983). "Peraturan Pembebanan Indonesia untuk Bangunan Gedung 1983", Direktorat Penyelidikan Masalah Bangunan, Bandung.
- 2. AASHTO. (2002). "Standard Specification for Highway Bridge".
- 3. Applied Technology Council. 1996. Seismic Evaluation and Retrofit of Concrete Buildings, ATC-40, Volume 1, Report No. SSC 96-01, Applied Technology Council, California.
- 4. American Society of Civil Engineers. 2000. FEMA 356 Prestandard and Commentary for The Seismic Rehabilitation of Buildings, American Society of Civil Engineers, Reston, Virginia.
- 5. Applied Technology Council. 2004. FEMA 440 Improvement of Nonlinear Static Seismic Analysis Procedure, Applied Technology Council, California.
- 6. Computer and Structures, Inc. (2009). "SAP2000 *manual*", Computer and Structures, Inc.
- 7. Departemen Pekerjaan Umum Republik Indonesia, BMS 1992. (1992). "Bridge Design Codes and Manuals".
- 8. Hoedajanto, D., Madutujuh, M. (2010). "Laporan Perencanaan dan Analisis *Pushover* Struktur *Pier* Projek Jalan *Flyover* Non Tol Kampung Melayu-Casablanca".
- 9. Madutujuh, M. (2010). "SANSPRO *version* 4.95 *manual*", Engineering Software Research Center.
- 10. PT. Pamintori Cipta. (2010). "DED Ruas Jalan Layang Kampung Melayu-Tanah Abang", PT. Pamintori Cipta.
- 11. RSNI T-02-2005. (2005). "Pembebanan untuk Jembatan", Badan Standardisasi Nasional.
- 12. Standar Nasional Indonesia (2003). "SNI 03-1726-2003", Standar Nasional Indonesia.

 Standar Nasional Indonesia. (2008). "Standar Perencanaan Ketahanan Gempa untuk Jembatan – STANDAR 03-2833-2008", Standar Nasional Indonesia.

STABILISASI TANAH LEMPUNG MENGGUNAKAN **SOIL BINDER**

Asriwiyanti Desiani, Salijan Redjasentana

Jurusan Teknik Sipil Fakultas Teknik Universitas Kristen Maranatha Email: asriwiyanti@gmail.com

ABSTRAK

Berbagai teknik perbaikan tanah dapat dilakukan untuk memperbaiki masalah yang terjadi pada saat membangun di atas tanah lempung lunak. Memperbaiki tanah yang ada dengan menggunakan bahan tambahan disebut stabilisasi tanah. Proses tersebut dapat mengurangi penurunan, meningkatkan kuat geser tanah yang berarti meningkatkan daya dukung pondasi, meningkatkan faktor keamanan lereng timbunan, maupun menurunkan karakteristik penyusutan dan pemuaian tanah (Das, 2007) Berbagai cara digunakan untuk memperbaiki kekuatan dari tanah lempung diantaranya dengan penambahan bahan kimia (stabilisasi secara kimiawi). Penelitian ini bertujuan untuk mengkaji pengaruh bahan tambahan soil binder Vienison SB terhadap kekuatan tanah dasar yang dinyatakan dalam nilai CBR (California Bearing Ratio). Sampel tanah lempung diambil dari daerah Cicalengka Kabupaten Bandung, sedangkan bahan soil binder yang digunakan konsentrasinya divariasikan sebesar 150 gram/liter air/m² tanah, 200 gram/liter air/m² tanah dan 300 gram/liter air/m² tanah. Hasil menunjukkan tanah lempung yang digunakan memiliki Gs 2.68 dan berdasar klasifikasi USCS tergolong sebagai Sandy fat clay dengan group symbol CH. Pengujian pemadatan pada tanah asli menghasilkan nilai kepadatan kering maksimum $\gamma_d = 1.6 \text{ gr/cm}^3$ dan kadar air optimum 22%. Nilai CBR desain pada 95% kepadatan kering maksimum 6.9%. Nilai ini menunjukkan tanah buruk untuk dijadikan tanah dasar. Akibat penambahan soil binder terjadi peningkatan γ_d antara 2-14% dan peningkatan nilai CBR antara 41-276%. Penambahan Soil Binder sebesar 150 sampai 300 gram/liter air/m² tanah dapat meningkatkan nilai CBR desain sebesar 13 sampai 76%. Hasil penelitian menunjukkan penambahan soil binder Vienison SB dapat meningkatkan nilai CBR pada tanah cukup signifikan.

Kata kunci: Tanah lempung, stabilisasi, *soil binder*.

1. PENDAHULUAN

Di Indonesia, daerah terbesar tanah lempung lunak terletak di sepanjang pesisir pantai utara Sumatera sampai Sumatera Selatan, sepanjang pesisir pantai utara Jawa, Kalimantan Selatan dan Papua Selatan (Cox, 1970). Membangun di atas lempung lunak menyebabkan banyak masalah, terutama masalah penurunan yang besar dan daya dukung rendah.

Berbagai teknik perbaikan tanah dapat dilakukan untuk memperbaiki masalahmasalah tersebut di atas. Memperbaiki tanah yang ada dengan menggunakan bahan tambahan disebut stabilisasi tanah. Proses tersebut dapat mengurangi penurunan, meningkatkan kuat geser tanah yang berarti meningkatkan daya dukung pondasi, meningkatkan faktor keamanan lereng timbunan, maupun menurunkan karakteristik penyusutan dan pemuaian tanah (Das, 2007) .Bahan tambahan yang umum digunakan adalah kapur, kapur-abu terbang(fly-ash), semen dan aspal serta berbagai bahan kimia.

Saat ini telah dikembangkan stabilisasi tanah dengan bahan kimia berbahan dasar lateks yang ramah lingkungan. Bahan tersebut umum disebut sebagai *Soil Binder* (Pengikat tanah), yang bila diaplikasikan akan membentuk permukaan tanah sekeras semen. Penelitian ini bertujuan untuk mengkaji pengaruh bahan tambahan *soil binder Vienison SB* terhadap kekuatan tanah dasar yang dinyatakan dalam nilai CBR (*California Bearing Ratio*).

2. TINJAUAN PUSTAKA

Tanah lempung merupakan partikel mineral yang berukuran lebih kecil dari 0,002 mm. Partikel-partikel ini merupakan sumber utama dari kohesi di dalam tanah yang kohesif (Bowles, 1991). Tanah lempung merupakan tanah yang berukuran mikroskopis sampai dengan sub mikroskopis yang berasal dari pelapukan unsur-unsur kimiawi penyusun batuan, tanah lempung sangat keras dalam keadaan kering dan bersifat plastis pada kadar air sedang. Pada kadar air lebih tinggi, lempung bersifat lengket (kohesif) dan sangat lunak (Das, 1988).

ASTM memberi batasan bahwa secara fisik ukuran lempung adalah lolos saringan No.200. Untuk menentukan jenis lempung tidak cukup hanya dilihat dari ukuran butirannya saja tetapi perlu diketahui mineral pembentuknya. Menurut Chen (1975), mineral lempung terdiri dari tiga komponen penting yaitu *montmorillonite*, *illite* dan *kaolinite*. Mineral *montmorilonite* mempunyai luas permukaan lebih besar dan sangat mudah menyerap air dalam jumlah banyak bila dibandingkan dengan mineral lainnya, sehingga tanah yang mempunyai kepekaan terhadap pengaruh air ini sangat mudah mengembang. Karena sifat-sifat tersebut *montmorilonite* sangat sering menimbulkan masalah pada bangunan.

Salah satu upaya untuk mendapatkan sifat tanah yang memenuhi syarat-syarat teknis tertentu adalah dengan metode stabilisasi tanah. Metode stabilisasi tanah dapat dibagi menjadi 3 jenis yaitu stabilisasi mekanis, stabilisasi fisik, dan stabilisasi kimiawi (Ingles dan Metcalf, 1972). Saat ini dikembangkan stabilisasi tanah dengan bahan kimia berbahan dasar lateks yang ramah lingkungan. Bahan tersebut umum disebut sebagai *Soil Binder* (Pengikat tanah), yang bila diaplikasikan akan membentuk permukaan tanah sekeras semen.

Soil Binder mudah digunakan serta berbiaya rendah, umum dipakai untuk perawatan tetap pada jalan setapak, jalan kendaraan, jalan raya, area parkir dan area

Jurnal Teknik Sipil Volume 8 Nomor 1, April 2012 : 1-75

penyimpanan /pergudangan, bendung, dan saluran air. Kemudahan aplikasi disebabkan alat yang dipakai mudah ditemukan dilapangan seperti *Road Grader*, *Water Tanker with Spray bar* dan *Drum compactor*.

Keuntungan penggunaan *Soil Binder* (Pengikat tanah) antara lain menahan erosi tanah, mengurangi pekerjaan pemeliharaan, lapis permukaan yang keras, pelindung debu, meningkatkan keamanan publik, mengurangi pengaruh buruk lingkungan. Penggunaan yang dikombinasikan dengan pemadatan akan meningkatkan kepadatan tanah dan mengurangi permeabilitas.

Keenceran (*Dilution*) dari *Soil binder* akan mempengaruhi luas daerah yang akan distabilisasi. Semakin encer *soil binder* maka daerah yang dapat distabilisasi semakin luas. Gambar 2.1. menunjukkan, panjang jalan, lebar jalan, kedalaman dan luas tanah yang dapat distabilisasi berdasar keenceran *soil binder*.

-	nart giving appr The diluti	on ratio and			9
Soil Binder One Container	Product Dilution Ratio	Scarification Depth	Road Length	Road Width	Coverage (m²)
15,000 L	1:7	15cm	3.70 km	9m	33,333m²
15,000 L	1:9	15cm	4.76 km	9m	42,857m ²
15,000 L	1:7	12.5 cm	4.44 km	9m	40,000m²
15,000 L	1:9	12.5 cm	5.71 km	9m	51,428m²
15,000 L	1:7	10cm	5.56 km	9m	50,000m ²
15,000 L	1:9	10cm	7.14 km	9m	64,285m²

Note: These dimensions have a varying factor, which is dependant on the type of soil and the amount of fines present in the soil, 17% being the minimum needed.

Gambar 2.1 Perkiraan keenceran *soil binder* terhadap luasan stabilisasi.
Sumber: www.ofbcorporation.com

SOIL DESCRIPTION	Unified Group Symbol	AASHTO Group Classificatio	RECOMMENDED ADDITIVES						
Well-Graded Gravels/	ì	O.F.B.Soi	l Binder ^{na}	J			L	l J	
Gravel-Sand Mixtures	GW	A-1-2		ĝ.	4		I	1 4	
See NOTE			CONCENTR	31	8		м		
Poorly Graded Gravels/				P	4		E	c	
Gravel-Sand Mixtures	GP	A-1-2		0	1		18.50.1	н	
See NOTE				R	1 4		F	L	
Silty Gravels/Gravel-		- 8		T	3		Ĺ	0	
Sand-Silt Mixtures	GM	A-1-b		L	4		Y	R	
See NOTE				A	A		A	I	
Clayey Gravels/Gravel-				N	s		s	D	
Sand-Clay Mixtures	GC	A-1-b	HIGHER	D	P		н	E	
cana-oray minimes	36	A.T.	CONCENTR	찟	н		5,7	s	
Well-Graded Sand/			programme programme	Ċ	A		(LFA)	li	
Gravelly Sand	sw	A-1-b		E	L		or		
See NOTE		100.000		м	T		27.70		
Poorly Graded Sand/		A-1-b		E	l ĝ		С		
Gravelly Sand	SP	or A-3		N	j		E		
See NOTE				T	1 1		м		
Silty Sands/Sand-silt		A-2-4		1	i î	L	E		
Mixtures	SM	or A-2-5		1	4	I	N	CHLOR-	
Clayey Sands/Sand Clay		A-2-6		J	1 1	M	T	IDES	
Mixtures	sc	or A-2-7		á	l å	E		i i	
Inorganic Silts/Very Fine Sands						-	F		
Rock-Flour/Silty or Clayey Fine	ML	A-4	MEDIUM				L		
Sands			CONCENTR	ATION			Y		
Inorganic Silts/Low to Medium							A		
Plasticity/Gravelly Clays/Sandy	CL	A-6			LIME OR		S		
Clays/Silty Clays/Lean Clays					LIME PLUS CEMENT		н		
Organic Silts/Organic Silty					Ozniza 12				
Clays of Low Plasticity	OL	A-4	0.		PORTLAND	56	(CFA)		
Inorganic Silts/Micaceous or	7,778	1975/5			CEMENT		N		
Diatomaceous Fine Sands or	мн	A-5							
	лич	K-5							
Silts/Elastic Silts					84		St. 11. 1		
Inorganic Clays of High		100,000,000	LOWER			L	LFA		
Plasticity/Fat Clays	сн	A-7-6	CONCENTR	ATION		1	0		
Inorganic Clays of Medium	2:10	1 88800				M	I		
to High Plasticity	он	A-7-5			9	E	CFA		
Peat/Muck/Other Highly		70.00							
Organic Silts	PT	A-8							

Gambar 2.2 Kondisi konsentrasi soil binder terhadap jenis tanah Sumber: www.ofbcorporation.com

Jenis tanah yang dapat distabilisasi menggunakan soil binder sangat bervariasi. Soil binder dapat diaplikasikan pada tanah butir kasar dan tanah butir halus dengan kadar konsentrasi bergantung pada jenis tanahnya. Gambar 2.2 memperlihatkan jenis tanah berdasar klasifikasi USCS dan AASHTO dan kadar konsentrasi *soil binder* merk O.F.B. yang dapat digunakan untuk menstabilisasi tanah-tanah tersebut.

Uji CBR merupakan uji sederhana yang umum digunakan untuk menentukan indikasi kekuatan material tanah dasar, lapisan *sub-base* dan lapisan base dari jalan atau

perkerasan Bandar udara Hasil uji dapat digunakan untuk penentuan awal secara empiris ketebalan perkerasan fleksibel pada jalan dan Bandar udara. Nilai CBR untuk berbagai jenis tanah dapat dilihat pada Gambar 2.3 dan Gambar 2.4.

California Bearing Ratio (CBR) suatu tanah adalah perbandingan antara tegangan penetrasi suatu tanah terhadap tegangan penetrasi material standar dinyatakan dalam %.

2000		The same	Symbol			Value at Autorate		Value at Base When not Subject	Potential	Compressibility
(1)	Divisions (2)	Latter (3)	Hatching (4)	Color (5)	(6)	d gravels or gravel-tand us, little or no fines ded gravels or gravel-tand es, little or no fines ded gravels or gravel-tand es, little or no fines Good to excellent Good Good feach Good Fair ded Good Fair ded Good Fair ded Good Fair Good Fair		to Frost Action (9)	Action (10)	Expansion (11)
	Gw mixture		Well-graded gravels or gravel-sand mixtures, little or no fines	Excellent	Excellent	Good	None to very slight	Almost none		
	GRAVEL	GP	*	Red	Poorly graded gravels or gravel-sand mixtures, little or no fines	Good to excellent	Good	Fair to good	None to very dight	Almost none
	GRAVELLY	i d	Ţ,		Silty gravels, gravel-sand-silt mixtures	Good to excellent	Good	Fair to good	Slight to medium	Very slight
COARSE- GRAINED SOILS	SOILS	GM - u	THI	Yellow	Siny gravers, graver-sand-san mixtures	Good	Fair	Poor to not suitable	Slight to medium	Slight
		GC			Clayey gravels, gravel-sand-clay mixtures	Good	Fair	Poor to not suitable	Slight to medium	Slight
		sw		Red	Well-graded sands or gravelly sands, little or no fines	Good	Fair to good	Poor	None to very slight	Almost none
	SAND	SP		Red	Poorly graded sands or gravelly sands, little or no fines	Fair to good	fair .	Poor to not suitable	None to very slight	Almost none
	SANDY	SM -			Silty sands, sand-silt mixtures	Fair to good	Fair to good	Poor	Slight to high	Very slight
	SOILS	SM		Yellow		Fair	Poor to fair	Not suitable	Slight to high	Slight to mediun
		SC			Clayey sands, sand-clay mixtures	Poor to fair	Poor	Not suitable	Slight to high	Slight to medium
CHIL	SILTS	ML			Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	Poor to fair	Not suitable	Not suitable	Medium to very high	Slight to medium
PINE	CLAYS LL IS LESS	CL		Green	Inorganic clays of low to medium plastic- ity, gravelly clays, sundy clays, silty clays, lean clays	Poor to fair	Not suitable	Not suitable	Medium to high	Medium
FINE- GRAINED SOILS	THAN 50	OL			Organic silts and organic silt-clays of low plasticity	Poor	Not suitable	Not suitable	Medium to high	Medium to high
	SILTS	мн	III		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Poor	Not suitable	Not suitable	Medium to very high	High
	CLAYS LL IS	СН		Blue	Inorganic clays of high plasticity, fat clays	Poor to fair	Not suitable	Not suitable	Medium	High
	GREATER THAN 50	110			Organic clays of medium to high plasticity, organic silts	Poor to very poor	Not suitable	Not suitable	Medium	High
	ORGANIC	Pt		Orange	Peat and other highly organic soils	Not suitable	Not suitable	Not suitable	Slight	Very high

Gambar 2.3 Perkiraan Nilai CBR untuk berbagai jenis tanah (Sumber: Kovacs).

		-	Symbol		4 4 1 1 1 1 1	13 - 14 - 15 - 15 - 15 - 15	Unit Dry	Densities	Турі	cal Design Values
Major	Divisions	Letter	Hatching	Color	Drainage Characteristics	Compaction Equipment	lbf/ft ³	Mg/m ³	CBR	Subgrade Modulu k (1bf/in.3)
(1)	(2)	(3)	(4)	(5)	(12)	(13)	(14)	(15)	(16)	(17)
		GW			Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	125-140	2.00-2.24	40-80	300-500
10 11	GRAVEL	GP		Red	Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	110-140	1.76-2.24	30-60	300-500
	AND GRAVELLY	d		Yellow	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	125-145	2.00-2.32	40-60	300-500
	SOILS	GM ⊢ −			Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	115-135	1.84-2.16	20-30	200-500
COARSE- GRAINED		GC			Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	130-145	2.08-2.32	20-40	200-500
SOILS		sw ·		Red	Excellent	Crawler-type tractor, rubber-tired roller	110-130	1.76-2.08	20-40	200-400
	SAND	SP		Neu	Excellent	Crawler-type tractor, rubber-tired roller	105-135	1.68-2.16	10-40	150-400
	AND SANDY	SM —		Yellow	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	120-135	1.92-2.16	15-40	150-400
	SOILS	J u	1 1111		Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	100-130	1.60-2.08	10-20	100-300
		sc			Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	100-135	1.60-2.16	5-20	100-300
	SILTS	ML			Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	90-130	1.44-2.08	15 or less	100-200
	CLAYS LL IS	CL		Green	Practically impervious	Rubber-tired roller, sheepsfoot roller	90-130	1.44-2.08	15 or less	50-150
FINE- GRAINED	LESS THAN 50	OL		Single	Poor	Rubber-tired roller, sheepsfoot roller	90-105	1.44-1.68	5 or less	50-100
SOILS	SILTS	МН		9366 (1)	Fair to poor	Sheepsfoot roller, rubber-tired roller	80-105	1.28-1.68	10 or less	50-100
	CLAYS LL IS	СН		Blue	Practically impervious	Sheepsfoot roller, rubber-tired roller	90-115	1.44-1.84	15 or less	50-150
	GREATER THAN 50	ОН			Practically impervious	Sheepsfoot roller, rubber-tired roller	80-110	1.28-1.76	5 or less	25-100
	ORGANIC	Pt		Orange	Fair to poor	Compaction not practical	3 31	BY	36.0	

Gambar 2.4. Perkiraan Nilai CBR untuk berbagai jenis tanah (2) (Sumber: Kovacs). 3. METODA PENELITIAN

3.1. Persiapan Benda Uji

Tanah lempung yang digunakan adalah tanah lempung dari daerah Cicalengka Kabupaten Bandung. Contoh tanah diambil dalam keadaan terganggu dengan menggunakan sekop dan cangkul lalu dimasukkan ke dalam karung. Contoh tanah diambil pada kedalaman 50 cm.

Bahan kimia yang digunakan adalah tipe *soil binder* dengan merk Vienison SB. Penambahan *soil binder* dalam penelitian divariasikan konsentrasinya sebesar 150 gram/liter air/m² tanah, 200 gram/liter air/m² tanah dan 300 gram/liter air/m² tanah.

3.2. Prosedur Pengujian

Pengujian indeks properti tanah, konsistensi atterberg, analisis saringan, pemadatan (Standard Proctor) dan CBR mengacu pada standar ASTM seperti tercantum pada Tabel 3.1. Pengujian dilakukan di Laboratorium Mekanika Tanah Universitas Kristen Maranatha Bandung.

Tabel 3.1. Standard ASTM yang digunakan.

No.	Pengujian	ASTM No.
A	Indeks properties	
1	Specific Gravity (Gs)	D-854
2	Kadar Air natural (w)	D-2216
В	Konsistensi Atterberg	
1	Batas Cair (LL)	D-4318
2	Batas Plastis (PL)	D-4318
С	Analisis Saringan	D-422
D	Sifat mekanis	
1	Pemadatan lab.	D-698
	(Standard Proctor)	
2	Daya dukung CBR	D-1883

Proses diawali pencampuran $soil\ binder$ dengan air sesuai konsentrasi yang direncanakan, kemudian dilakukan pengadukan tanah lempung terganggu dengan $soil\ binder$ sampai campuran terlihat homogen. Kandungan kadar air tanah lempung pada saat pengadukan adalah kondisi kadar air optimum. Hasil pencampuran ditutup rapat dengan plastik dan didiamkan selama ± 2 jam untuk memberikan kesempatan $soil\ binder$ meresap pada benda uji namun pengerasan belum terjadi maksimal. Campuran tanah dimasukkan ke dalam cetakan kompaksi dan ditumbuk tiga lapis dimana jumlah tumbukan perlapis **Jurnal Teknik Sipil** Volume 8 Nomor 1, April 2012: 1-75

berbeda-beda, 10, 25, dan 56 tumbukan perlapis. Masing-masing sampel di uji pada alat CBR dan dicari nilai kepadatan keringnya. Gambar 3.1, Gambar 3.2, dan Gambar 3.3 memperlihatkan pencampuran tanah dan *soil binder*, pemadatan dan pengujian CBR di laboratorium.

Gambar 3.1 Pencampuran Tanah dan Soil Binder.

Gambar 3.2 Pemadatan campuran tanah & Soil binder.

Gambar 3.3 Uji CBR.

4. HASIL DAN PEMBAHASAN

4.1. Karakteristik Tanah Lempung

Observasi secara visual di lapangan memperlihatkan warna tanah adalah coklat kemerahan. Hasil pengujian sifat fisik dan sifat mekanis tanah dapat dilihat pada tabel 4.1. Tanah memiliki Specific gravity (Gs) 2.68 yang mengindikasi tanah adalah inorganic clay.

Dari pengujian konsistensi Atterberg diperoleh nilai batas cair adalah 58.33%, batas plastis 27.71% dan indeks plastisitas 30.62%. Pengujian analisis saringan menghasilkan persentase fraksi kasar 40.90% dan fraksi halus 59.10%. Berdasarkan datadata tersebut diatas dilakukan klasifikasi tanah menggunakan metoda USCS (Unified Soil Classification System). Berdasar nilai % lolos saringan no.200 lebih besar dari 50%, maka tanah tergolong butir halus. Dari nilai IP dan LL, terlihat pada Plasticity Chart tanah ini termasuk kategori CH dengan nama grup *Sandy fat clay*.

Sifat mekanis tanah dikaji melalui pengujian pemadatan/kompaksi dan pengujian CBR (*California Bearing Ratio*). Pengujian pemadatan laboratorium menggunakan standard proctor pada tanah asli (belum dicampur apapun) menghasilkan nilai kepadatan kering maksimum γ_d = 1.6 gr/cm³ dan kadar air optimum 22%. Hasil pengujian CBR pada tanah asli dapat dilihat pada tabel 4.2. Nilai CBR design/rencana pada 95% kepadatan kering maksimum adalah 6.9%. Berdasar gambar 2.3 dan 2.4 nilai ini menunjukkan tanah buruk untuk dijadikan tanah dasar.

Tabel 4.1 Hasil pengujian sifat fisik dan mekanis tanah Lampung.

No.	Uraian	Satuan	Nilai
A	Indeks properties		
1	Specific Gravity (Gs)	-	2.68
2	Kadar Air natural (w)	%	35
В	Konsistensi Atterberg		
1	Batas Cair (LL)	%	58.33
2	Batas Plastis (PL)	%	27.71
3	Indeks Plastisitas (PI)	%	30.62
С	Analisis Saringan		
1	Fraksi Kasar	%	40.90
2	Fraksi Halus	%	59.10
D	Sifat mekanis		
1	γ _d maks (Standard Proctor)	gr/cm ³	1.6
2	Kadar Air Optimum	%	22.00
3	Daya dukung CBR	%	6.90

Tabel 4.2 Hasil pengujian CBR tanah asli.

Tumbukan per lapis	10 tumbukan	25 tumbukan	56 tumbukan
$\gamma_{\rm d} ({\rm gr/cm}^3)$	1.30	1.48	1.63
Nilai CBR _{0.1"} (%)	2.53	5.75	8.63
Nilai CBR _{0.2"} (%)	2.68	6.14	9.21

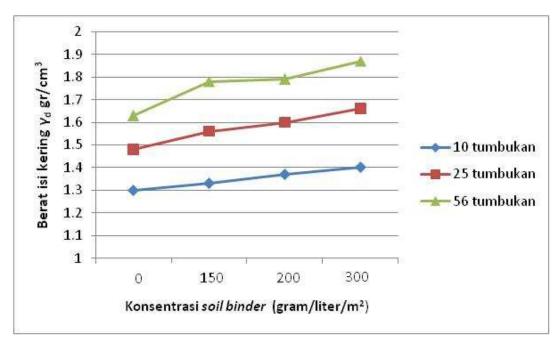
4.2. Pengaruh stabilisasi Soil Binder terhadap CBR Tanah Lempung

Tabel 4.3 memperlihatkan nilai CBR tanah yang telah distabilisasi *soil binder*. Nilai CBR terlihat meningkat sejalan dengan peningkatan konsentrasi *soil binder* yang ditambahkan. Pada Tabel 4.3. terlihat nilai CBR tertinggi 19.70% terjadi pada konsentrasi 300 gram/liter air /m² tanah dengan tumbukan 56.

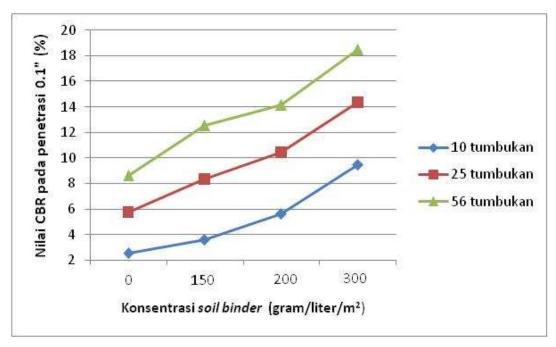
Tabel 4.4 memperlihatkan % peningkatan nilai CBR untuk masing-masing konsentrasi *soil binder* dengan jumlah tumbukan yang berbeda-beda. Peningkatan γ_d berkisar antara 2-14% dan peningkatan nilai CBR berkisar antara 41-276%. Peningkatan terbesar 276% dari nilai CBR tanah asli terjadi pada konsentrasi 300 gram/liter air /m² tanah dengan tumbukan 10.

Tabel 4.3 Hasil pengujian CBR tanah stabilisasi.

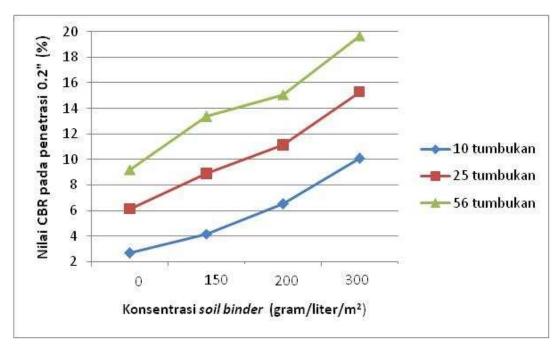
		Konsentrasi Soil Binder yang ditambahkan							
	150	150 gram/liter/m ² 200 gram/liter/m ² 30				300	gram/liter/m ²		
Tumbukan	10	25	56	10	25	56	10	25	56
$\gamma_{\rm d} ({\rm gr/cm}^3)$	1.33	1.56	1.78	1.37	1.60	1.79	1.40	1.66	1.87
Nilai CBR _{0.1"} (%)	3.58	8.34	12.51	5.61	10.45	14.14	9.45	14.34	18.46
Nilai CBR _{0.2"} (%)	4.17	8.90	13.35	6.53	11.14	15.09	10.08 15.29 19.70		

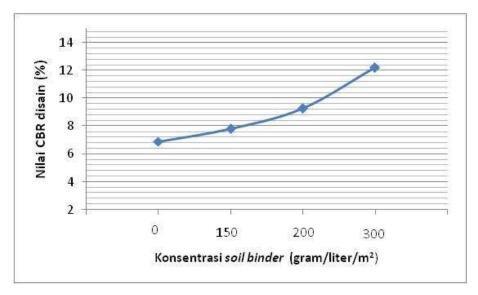

Tabel 4.4 Besar peningkatan nilai CBR & γ_d .

		Konsentrasi Soil Binder yang ditambahkan								
	150 g	gram/lite	er/m ²	200 g	gram/lite	er/m ²	300	300 gram/liter/m ²		
Tumbukan	10	25	56	10	25	56	10	25	56	
Peningkatan γ _d (%)	2.3	5.4	9.2	5.4	8.1	9.8	7.7	12.2	14.7	
Peningkatan CBR _{0.1"} (%)	41.5	45.0	45.0	121.7	81.7	63.9	273.5	149.4	113.9	
Peningkatan nilai CBR _{0.2"} (%)	55.6	45.0	45.0	143.7	81.4	63.8	276.1	149.0	113.9	


Hubungan antara berat isi kering γ_d dengan konsentrasi *soil binder* untuk jumlah tumbukan yang berbeda-beda dapat dilihat pada gambar 4.1. Secara umum harga berat isi kering γ_d meningkat dengan meningkatnya konsentrasi *soil binder*. Hubungan antara berat isi kering γ_d dengan konsentrasi *soil binder* memiliki pola yang sama pada tumbukan 10 dan 25.

Hubungan antara nilai CBR pada penetrasi 0.1" dan 0.2" dengan konsentrasi *soil binder* untuk jumlah tumbukan yang berbeda-beda dapat dilihat pada gambar 4.2. dan gambar 4.3 Secara umum nilai CBR meningkat dengan meningkatnya konsentrasi *soil binder*. Hubungan antara nilai CBR dengan konsentrasi *soil binder* memiliki pola yang sama.


Nilai CBR desain pada 95% kepadatan kering maksimum untuk tanah asli dan berbagai konsentrasi penambahan soil binder terlihat pada tabel 4.5. Peningkatan nilai CBR berkisar antara 13-76 %. Penggunaan *soil binder* merk Vienison dapat dikatakan berhasil meningkatkan nilai CBR tanah dasar. Hubungan antara nilai CBR disain dengan konsentrasi dapat dilihat pada gambar 4.4.


Gambar 4.1 Hubungan berat isi kering γ_d dengan konsentrasi soil binder.

Gambar 4.2 Hubungan nilai CBR_{0.1"} untuk bermacam konsentrasi soil binder.

Gambar 4.3 Hubungan nilai $CBR_{0.2"}$ untuk bermacam konsentrasi soil binder.

Gambar 4.4 Hubungan konsentrasi soil binder dengan nilai CBR disain.

Tabel 4.5. Nilai CBR desain.

Material	CBR Design (%)	Peningkatan (%)
Tanah Asli	6.90	-
Tanah Asli + <i>Soil binder</i> 150 gram/liter/m ²	7.80	13.0
Tanah Asli + <i>Soil binder</i> 200 gram/liter/m ²	9.25	34.0
Tanah Asli + <i>Soil binder</i> 300 gram/liter/m ²	12.20	76.8

5. KESIMPULAN

5.1 Kesimpulan

Berdasarkan hasil pengujian dan pembahasan, maka dapat ditarik kesimpulan sebagai berikut :

- 1. Tanah lempung yang digunakan memiliki Gs 2.68 dan berdasar klasifikasi USCS tergolong sebagai Sandy fat clay dengan group symbol CH.
- 2. Pengujian pemadatan laboratorium menggunakan standard proctor pada tanah asli menghasilkan nilai kepadatan kering maksimum $\gamma_d = 1.6 \text{ gr/cm}^3$ dan kadar air optimum 22%.
- 3. Nilai CBR desain pada 95% kepadatan kering maksimum tanah asli adalah 6.9%. Nilai ini menunjukkan tanah buruk untuk dijadikan tanah dasar.
- 4. Akibat penambahan *soil binder* terjadi peningkatan γ_d antara 2-14% dan peningkatan nilai CBR antara 41-276%.
- 5. Penambahan *Soil Binder* sebesar 150 sampai 300 gram/liter air/m² tanah dapat meningkatkan nilai CBR desain sebesar 13 sampai 76%.

5.2 Saran

Perlu dilakukan penelitian lanjutan untuk kondisi tanah yang direndam air, agar dapat dilihat prilaku tanah stabilisasi terhadap adanya air dan sifat-sifat kerembesannya. Kandungan mineral lempung perlu diteliti lebih lanjut untuk melihat reaksi *soil binder* terhadap kandungan mineral apakah memperlemah atau memperkuat ikatan tanah.

UCAPAN TERIMA KASIH

Penulis berterima kasih kepada Bapak Tan dari PT Vienison Indonesia atas pemberian bahan soil binder.

DAFTAR PUSTAKA

- 1. Bowles, J.E., 1984, Sifat-Sifat Fisis dan Geoteknis Tanah, Penerbit Erlangga, Jakarta.
- 2. Chen, F.H., 1975, *Foundations on Expansive Soils*, Developments in Geotechnical Engineering 12, Elsevier Scientific Publishing Company, New York.
- 3. Cox, J.B., 1970. *The Distribution and Formation of Recent Sediments in South East Asia*. Proceedings Second South East Asian Conference on Soil Engineering: p.30-47.

- 4. Das, Braja M., Endah, Noor. Dan Mochtar, Indrasurya B., 1988, *Mekanika Tanah* (*Prinsip-Prinsip Rekayasa Geoteknik*) *Jilid 1 dan 2*, Erlangga, Jakarta.
- 5. Holtz, R.D., and Kovacs, W.D., 1981, *An Introduction to Geotechnical Engineering*, Prentice Hall Inc., Englewood Cliffs, N.J.
- 6. Ingles, O.G., and Metcalf, J.B., 1972, Soil Stabilization, Butterworths, Sydney.
- 7. url: http://www.ofbcorporation.com

PEDOMAN PENULISAN JURNAL TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

- 1. Jurnal Teknik Sipil UKM merupakan jurnal ilmiah, hasil penelitian, atau studi literatur disertai analisis ilmiah dalam bidang teknik sipil.
- 2. Tulisan harus asli dan belum pernah dipublikasikan sebelumnya, dikirim dengan mencantumkan kelompok bidang keahlian dalam teknik sipil.
- 3. Apabila pernah dipresentasikan dalam seminar, agar diberi keterangan lengkap.
- 4. Naskah ditulis dalam bahasa Indonesia atau bahasa Inggris yang benar, singkat, jelas dilengkapi dengan abstrak dan kata kunci dalam bahasa Indonesia dan bahasa Inggris.
- 5. Naskah ditulis pada kertas A4, menggunakan Microsoft® Word dengan ketentuan sebagai berikut:
 - a. Judul ditulis dengan huruf kapital, **TIMES NEW ROMAN**, ukuran 13, huruf tebal.
 - b. Abstrak ditulis dengan huruf biasa, Times New Roman, ukuran 10, spasi 1, demikian juga dengan kata kunci.
 - c. Isi naskah ditulis dengan huruf biasa, Times New Roman, ukuran 11, spasi 1.5.
 - d. Jumlah halaman beserta lampiran minimal 20 halaman, maksimal 30 halaman.
 - e. Jumlah halaman untuk lampiran maksimal 20% dari jumlah halaman total.
 - f. Nama penulis ditulis tanpa pencantuman gelar akademik.
 - g. Penulisan sub bab disertai nomor, contoh:

1. HURUF KAPITAL

1.1 Huruf Biasa

- h. Gambar diberi nomor dan keterangan gambar ditulis dibawah gambar.
- i. Tabel diberi nomor dan keterangan tabel ditulis diatas tabel.
- j. Daftar pustaka ditulis dengan format sebagai berikut :
 - 1. Timoshenko, S.P, Young, D.H., (1995). *Theory of Structures*, McGraw Hill Book Co, New York.
- k. Kata-kata asing (jika naskah ditulis dalam bahasa Indonesia) dicetak miring.
- 6. Menggunakan sistematika penulisan sebagai berikut :
 - a. Judul Naskah.
 - b. Nama penulis utama, penulis pembantu.
 - c. Abstrak dalam bahasa Indonesia dan bahasa Inggris.
 - d. Kata kunci.
 - e. Pendahuluan (berisi latar belakang, tujuan, ruang lingkup, dan metodologi).
 - f. Isi (tinjauan pustaka).
 - g. Studi Kasus (data, studi kasus, dan pembahasan)
 - h. Penutup (kesimpulan, saran, dan daftar pustaka).
- 7. Naskah dikirim dalam bentuk *file* via E-mail.
- 8. Naskah yang masuk redaksi akan ditinjau oleh penelaah ahli dalam bidangnya sebelum diterbitkan.
- 9. Jurnal terbit 2x dalam setahun pada bulan April dan Oktober.