ANALISA AUDIT KONSUMSI ENERGI SISTEM HVAC (HEATING, VENTILASI, AIR CONDITIONING) DI TERMINAL 1A, 1B, DAN 1C BANDARA SOEKARNO-HATTA

Budi Yanto Husodo¹, Nurul Atiqoh Br. Siagian²

1,2Program Studi Teknik Elektro, Fakultas Teknik Universitas Mercu Buana, Jakarta Email: husodo2008@gmail.com

Abstrak - Audit energi pada sistem HVAC (Heating, Ventilasi, Conditioning) merupakan aktivitas yang dilakukan secara berkala untuk mengetahui kualitas udara, performa peralatan serta konsumsi energi dan mengevaluasi tingkat kelayakannya serta menentukan langkah perbaikannya. Audit Energi ini dilaksanakan di terminal 1A, 1B, dan, 1C bandara Soeakrno-Hatta untuk memastikan bahwa tingkat kelembaban udara pada terminal 1A, 1B. dan 1C Bandara Soekarno-Hatta sesuai dengan standar kelayakan dan kenyamanan yang berlaku di Indonesia yaitu SNI 03-6390-2000 tentang konservasi energi sistem tata udara pada bangunan dan gedung. Audit Energi Sistem HVAC (Heatig Ventilasi. Air *Conditioning*) Terminl 1A, 1B, dan 1C Bandara Soekarno-Hatta menunjukkan bahwa tingkat kelembaban udara atau kualitas udara pada Terminal 1A, 1B,

dan 1C Bandara Soekarno-Hatta berada pada kondisi tidak nyaman performa peralatan Sistem HVAC (Heating, Ventilasi, Air Conditioning) sudah mulai menurun, sehingga perlu dilakukan peninjauan kembali terhadap Sistem HVAC (Heating, Ventilasi. Air untuk mendapatkan Conditioning) kualitas udara yang nyaman sesuai dengan SNI 03-6390-2000 tentang konservasi energi sistem tata udara pada bangunan dan gedung.

ISSN: 2086-9479

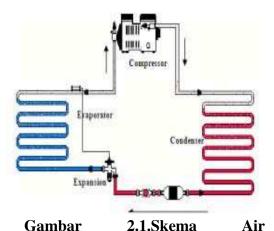
Kata kunci: audit energi, HVAC

PENDAHULUAN

Bandara Soekarno-Hatta satu merupakan salah bandara terbesar di Indonesia dengan daya tampung total sekitar 22 juta penumpang tahun. Untuk menunjang pelayanan yang optimal, sistem HVAC (Heating, Ventilasi, Air Conditioning) sangat diperlukan untuk menjaga kelembaban udara

dalam ruangan sehingga memberikan kenyamanan bagi para pengguna Bandara Soekarno-Hatta.

Bandara Soekarno-Hatta terutama pada Terminal 1A, 1B, dan 1C yang dirancang untuk 9 juta penumpang / tahun, namun pada saat ini harus melayani ± 25 juta penumpang / tahun. Oleh karena itu, perlu dilakukan audit energi sistem HVAC agar kelembaban udara tercapai yang sesuai dengan tingkat kelayakan dan kenyamanan bandara tercapai. Tujuan dari penelitian ini adalah memastikan bahwa tingkat kelembaban udara di Terminal 1A, 1B, dan 1C Bandara Soekarno-Hatta sesuai dengan standar kelayakan dan kenyamanan yang berlaku. Audit HVACenergi sistem (Heating, Ventilasi, Air *Conditioning*) Terminal 1B, 1C Bandara dan Soekarno-Hatta dilakukan untuk menentukan apakah tingkat kelembaban udara di terminal 1A, 1B, dan 1C Bandara Soekarno-Hatta sesuai dengan standar yang berlaku dan apakah perlu dilakukan pengembangan sistem **HVAC** dan (Heating, Ventilasi, Air Conditioning) di Bandara Soekarno-Hatta.


Audit Energi pada tugas akhir ini menggunakan standar SNI 03-6390-2000 dan 3690-2011 tentang konservasi energi sistem tata udara pada bangunan gedung serta 03-9167-2000 tentang Konservasi Energi Sistem Pencahayaan pada Bangunan Gedung.

ISSN: 2086-9479

LANDASAN TEORI

HVAC Sistem (Heating, Ventilasi, Air Conditioning) adalah suatu fasilitas tata udara yang digunakan untuk mengontrol suhu lingkungan dari suatu wilayah apakah tertutup, itu bangunan, gudang, atau kendaraan komersial.

Sistem HVAC pada Terminal 1 Bandara Soekarno-Hatta umumnya menggunakan sistem terpusat yang terhubung secara menyeluruh antara keberangkatan dan ruang kedatangan, yaitu menggunakan AC Central dan AC Split Duct. Untuk mengetahui sistem kerja AC Central, terlebih dahulu kita harus mengetahui dasar dari Sistem Air **Conditioning**

Conditioning 2.1.5kcma

Cara Kerjanya:

Kompressor menarik refrigerant (gas) yang bertekanan dan bertemperature rendah yang keluar dari evaporator kemudian menaikan tekanan dan temperaturnya dengan cara memperkecil volume/menaikan kecepatan gas. Refrigerant (gas) yang bertekanan tinggi tersebut kemudian diteruskan ke kondensor.

Di Kondensor, refrigerant (gas) yang bertekanan tinggi dirubah menjadi cairan yang bertekanan tinggi dengan cara dikondensasikan melalui pendinginan dengan menggunakan media air atau udara. Refrigerant (Cair) tersebut kemudian dialirkan ke katup ekspansi Valve). (Expantion Pada katup ini, refrigerant ekspansi (cair) diturunkan tekanannya sehingga refrigerant (cair) berubah kondisi

dari fase cair ke fase uap yang kemudian dialirkan ke evaporator.

ISSN: 2086-9479

Di **Evaporator**, Refrigerant (uap) menyerap panas dalam ruangan melalui kumparan pendingin dan kipas evaporator meniupkan udara dingin ke dalam ruangan. Refrigerant dalam evaporator mulai berubah kembali menjadi uap bertekanan rendah, tapi masih mengandung sedikit cairan yang kemudian di tarik kembali oleh kompressor.

AC Central adalah sistem pendinginan ruangan yang dikontrol dari satu titik atau tempat dan di distribusikan secara terpusat ke seluruh isi gedung dengan kapasitas yang sesuai dengan ukuran ruangan dan isinya dengan menggunakan saluran udara / ducting ac.

AC Central terdiri dari beberapa komponen yaitu:

Chiller adalah mesin pendingin yang berfungsi untuk mendinginkan fluida dalam hal ini air melalui sebuah proses kompresi uap ataupun siklus pendinginan yang kemudian fluida tersebut bisa disirkulasi untuk didistribusikan ke peralatan air handling unit. Dalam hal ini, Chiller yang

digunakan adalah jenis *Air Cooled System. Chiller* ini

menggunakan refrigerant

sebagai fluida dan udara sebagai

media pendingin kondensornya.

Gambar 2. 2. Air Cooled Chiller

- 2. AHU (Air Handling Unit) / FCU (Fan Coil Unit) berfungsi sebagai media pertukaran kalor antara air dingin dengan udara.
- Pompa berfungsi untuk menaikkan tekanan dan mensirkulasi fluida ke tempat lain dalam suatu sistem pemipaan.
- Ducting Adalah media penghubung AHU antara dengan ruangan akan yang dikondisikan udaranya, fungsi ducting utama dari adalah meneruskan udara yang didinginkan oleh AHU untuk kemudian didistribusikan ke masing-masing ruangan.

Audit energi adalah suatu teknik yang dipakai untuk menghitung besarnya konsumsi energi pada bangunan gedung dan mengenali cara-cara untuk penghematannya. Konservasi energi sistem HVAC diatur dalam SNI 03-6390-2000. SNI ini digunakan agar sasaran penggunaan energi yang effisien dapat tercapai. Peralatan pada sistem (Heating, Ventilasi, HVAC Conditioning) menggunakan chiller direkomendasikan untuk memenuhi effisiensi minimum dan kriteria seperti ditunjukkan pada tabel 2.3.1.

Tabel 1. Efisiensi minimum dari chiller yang dioperasikan dengan

Jenis	Jenis Peralatan		Effisiensi Minimum (Dinyatakan Dengan COP)	Cara Pengetesan
	Termasuk	< 150 TR	2,7	ARI 550
Pendin ginan	kondenser	≥ 150 TR	2,5	ARI 550
Udara	Tanpa Kondenser	Semua kapasit as	3,10	ARI 550
	Jenis kompressor	< 150 TR	3,80	ARI 550
Pendin ginan	torak & screw	≥ 150 TR < 300 TR	4,20	ARI 550
Air	Jenis kompressor centrifugal	≥ 300 TR	5,20	ARI 550

DATA SISTEM HVAC DI TERMINAL 1A, 1B, DAN 1C BANDARA SOEKARNO-HATTA

Chiller pada **Terminal** Bandara Soekarno-Hatta berjumlah 19 (sembilan belas) unit dengan kapasitas masing-masing yaitu 13 (tiga belas) unit kapasitas 95 TR, 1 (satu) unit kapasitas 100 TR, dan 5 (lima) unit kapasitas 500 TR dan untuk penditribusian udara dingin terdiri dari 23 (dua puluh tiga) unit AHU yang terbagi merata pada semua sub terminal A, B, dan C. Untuk AC Split Duct berjumlah 25 puluh lima) unit dengan kapasitas masing-masing yaitu 4 (empat) unit kapasitas 20 TR dan 21 (dua puluh satu) unit kapasitas 40 TR yang terbagi merata pada semua sub terminal.

Tabel 2. Daftar peralatan Sistem *HVAC* Terminal 1A, 1B, dan 1C Bandara Soekarno-Hatta

Du	muara 50	chai ii	<u>U-114</u>	ııa
NO.	NAMA PERALATAN	KAPASITAS	JUMLAH	LOKASI
1	CHILLER CIAT	95 TR	7 UNIT	TERMINAL 1A
2	CHILLER CIAT	95 TR	2 UNIT	TERMINAL 1B
3	CHILLER MDV	500 TR	5 UNIT	TERMINAL 1B
4	CHILLER YORK	100 TR	1 UNIT	TERMINAL 1C
5	CHILER CIAT	95 TR	4 UNIT	TERMINAL 1C
6	AC SPLIT DUCT	20 TR	4 UNIT	CENTRAL CORIDOR TERMINAL A
7	AC SPLIT DUCT	40 TR	7 UNIT	BOARDING LOUNGE TERMINAL A
8	AC SPLIT DUCT	40 TR	7 UNIT	BOARDING LOUNGE TERMINAL B
9	AC SPLIT DUCT	40 TR	7 UNIT	BOARDING LOUNGE TERMINAL C

Tabel 3. Data Pencapaian Suhu di Terminal 1A, 1B dan 1C Bandara Soekarno-Hatta

ISSN: 2086-9479

No.	Nama Beban	Suhu Ruangan (°C)	RH Ruangan (%)
1	Check In Area A	26.0	72.5
2	Arrival Area A	25.0	71.5
3	Check In Area B	25.8	67.0
4	Arrival Area B	26.0	64.0
5	Check In Area C	24.3	65.6
6	Arrival Area C	26.1	51.7

Suatu peralatan tersebut dikatakan baik atau memenuhi standard jika nilai *Coefficient of Performance* (COP) dan Energy Efficiency Ratio (EER atau kW/TR) memenuhi standard yang telah ditentukan.

Nilai Coefficient of Performance (COP):

Nilai Energy Efficiency Ratio (EER) atau KW/TR:

Sebagai contoh perhitungan, diketahui konsumsi daya suatu *Chiller* sebesar 184,58 kW dan *Cooling Effect* sebesar 631,58 kW, maka:

COP
$$_{184.58}^{\circ}$$
 $_{184.58}^{\circ}$ $_{184.58}^{\circ}$ 003,42, dan

EER ൌ 12/ሺCOP x 3,41 ሻെ 12/ሺ3,42 x 3,41ሻ ൌ1,03

Dengan kedua rumus tersebut maka dapat dihitung nilai *COP* dan *EER* setiap peralatan sistem *HVAC* di

Terminal 1A, 1B, dan 1C Bandara

Soekarno-Hatta, dapat dilihat pada tabel-tabel berikut:

Tabel 4. Performa Peralatan Utama Sistem *HVAC* pada Terminal 1A Bandara Soekarno-Hatta

N	N D L	C.O.P	EER
No.	Nama Peralatan	Eksisting	Eksisting
1	Chiller CIAT Deprture	3,42	1,03
2	Chiller CIAT Departure	3,30	1,07
3	Chiller CIAT Departure	3,33	1,05
4	Chiller CIAT Departure	3,43	1,03
5	Chiller CIAT Arrival	3,34	1,05
6	Chiller CIAT Arrival	3,48	1,01

Tabel 5. Tabel Performa Peralatan Utama Sistem *HVAC* pada Terminal 1B Bandara Soekarno-Hatta

		C.O.P	EER
No.	Nama Peralatan	Eksisting	Eksisting
1	Chiller MDV Deprture	3.47	1.01
2	Chiller MDV Departure	3.52	1.00
3	Chiller CIAT Departure	3.16	1.11
4	Chiller CIAT Arrival	3.37	1.04
5	Chiller MDV Arrival	3.31	1.06
6	Chiller MDV Arrival	3.26	1.08
7	Chiller MDV Arrival	3.30	1.07

Tabel 6. Tabel Performa Peralatan Utama Sistem *HVAC* pada Terminal 1C Bandara Soekarno-Hatta

		C.O.P	EER	
No.	Nama Peralatan	Eksisting	Eksisting	
1	Chiller YORK Deprture	3,35	1,05	
2	Chiller CIAT Departure	3,30	1,07	
3	Chiller CIAT Departure	3,46	1,02	
4	Chiller CIAT Arrival	3,10	1,13	
5	Chiller CIAT Arrival	3,39	1,04	

AUDIT ENERGI SISTEM HVAC (HEATING, VENTILASI, AIR CONDITIONING)

ISSN: 2086-9479

Standar nasional Indonesia telah menentukan standar suhu dan kelembaban udara (*RH*) yang diatur pada SNI 03-6390-2000 tentang konservasi energi sistem tata udara pada bangunan dan gedung yaitu: 25±1°C untuk suhu ruangan dan 60±10% untuk kelembaban udara (*RH*).

Berdasarkan tabel 3. Data Pencapaian Suhu Udara Pada Terminal 1A, 1B, dan 1C di Bandara dapat Soekarno-Hatta dianalisa tingkat kenyamanannya sebagai berikut:

Tabel 7. Analisa Pencapaian Suhu Udara di Terminal 1A, 1B, dan 1C Bandara Soekarno-Hatta

		Suhu		Standar		
No.	Nama Beban	Ruangan (°C)	Ruangan (%)	Suhu (°C)	RH (%)	Kesimpulan
1	Check In Area A	26.0	72.5	25±1	60±10	Tidak Nyaman
2	Arrival Area A	25.0	71.5	25±1	60±10	Tidak Nyaman
3	Check In Area B	25.8	67.0	25±1	60±10	Nyaman
4	Arrival Area B	26.0	64.0	25±1	60±10	Nyaman
5	Check In Area C	24.3	65.6	25±1	60±10	Nyaman
6	Arrival Area C	26.1	51.7	25±1	60±10	Tidak Nyaman

Dari tabel di atas, dapat dilihat bahwa tingkat kenyamanan ruangan pada terminal 1A, 1B, dan 1C Bandara Soekarno-Hatta pada beberapa lokasi tidak tercapai tingkatannya sesuai dengan SNI 03-6390-2000. Suatu ruangan dikatakan nyaman atau tidak dilihat dari suhu ruangan dan kelembaban udaranya. Jika salah satu faktor tersebut tidak dapat terpenuhi maka tidak dapat dikatakan bahwa ruangan tersebut

nyaman karena suhu ruangan dan kelembaban udara itu sebanding.

Suatu peralatan dikatakan baik jika performa peralatan tersebut memiliki nilai *COP* dan *EER* yang sesuai dengan Standar nasional Indonesia. Nilai *COP* dan *EE* yang diatur pada SNI nomor 6390:2011 tentang Konservasi Energi Sistem Tata Udara pada Banguan Gedung adalah:

- COP: 2,90 untuk Air Cooled Chiller dengan kapasitas < 150 TR;
- COP: 3,00 untuk Air Cooled Chiller dengan kapasitas > 150 TR;
- kW/TR: 1,213 untuk Air Cooled Chiller dengan kapasitas < 150 TR;
- kW/TR: 1,172 untuk Air Cooled Chiller dengan kapasitas >150 TR.

Dari tandar nilai untuk *COP* dan *EER*, diambil range untuk standar nilai *COP* adalah 2,90 – 3,00 dan *EER* adalah 1,172 – 1,213.

Tabel 8. Tabel Resume Performa Peralatan Utama Sistem *HVAC* Terminal 1A Bandara Soekarno-Hatta

		C.O.P			EER	
No.	Nama Peralatan	Eksisting	SNI 6390:2011	Eksisting	SNI 6390:2011	KONDISI
1	Chiller CIAT Departure	3,42	2,90 - 3,00	1,03	1,172-1,213	Di bawah standar
2	Chiller CIAT Departure	3,30	2,90 - 3,00	1,07	1,172-1,213	Di bawah standar
3	Chiller CIAT Departure	3,33	2,90 - 3,00	1,05	1,172-1,213	Di bawah standar
4	Chiller CIAT Departure	3,43	2,90 - 3,00	1,03	1,172-1,213	Di bawah standar
5	Chiller CIAT Arrival	3,34	2,90 - 3,00	1,05	1,172-1,213	Di bawah standar
6	Chiller CIAT Arrival	3,48	2,90 - 3,00	1,01	1,172-1,213	Di bawah standar
7	Chiller CIAT Arrival	3,27	2,90 - 3,00	1,08	1,172-1,213	Di bawah standar

Tabel 9. Tabel Resume Performa Peralatan Utama Sistem *HVAC* Terminal 1B Bandara Soekarno-Hatta

ISSN: 2086-9479

			C.O.P		EER	
No.	Nama Peralatan	Eksisting	SNI 6390:2011	Eksisting	SNI 6390:2011	Di bawah standar Di bawah standar Di bawah standar
1	Chiller MDV Deprture	3.47	2,90-3,00	1.01	1,172-1,213	Di bawah standar
2	Chiller MDV Departure	3.52	2,90-3,00	1.00	1,172-1,213	Di bawah standar
3	Chiller CIAT Departure	3.16	2,90-3,00	1.11	1,172-1,213	Di bawah standar
4	Chiller CIAT Arrival	3.37	2,90-3,00	1.04	1,172-1,213	Di bawah standar
5	Chiller MDV Arrival	3.31	2,90-3,00	1.06	1,172-1,213	Di bawah standar
6	Chiller MDV Arrival	3.26	2,90-3,00	1.08	1,172-1,213	Di bawah standar
7	Chiller MDV Arrival	3.30	2,90-3,00	1.07	1,172-1,213	Di bawah standar

Tabel 10. Tabel Resume Performa Peralatan Utama Sistem HVAC Terminal 1C Bandara Soekarno-Hatta

			C.O.P		EER	
No.	Nama Peralatan	Eksisting	SNI 6390:2011	Eksisting	SNI 6390:2011	KONDISI
1	Chiller YORK Deprture	3.35	2,90-3,00	1.05	1,172-1,213	Di bawah standar
2	Chiller CIAT Departure	3.30	2,90-3,00	1.07	1,172-1,213	Di bawah standar
3	Chiller CIAT Departure	3.46	2,90-3,00	1.02	1,172-1,213	Di bawah standar
6	Chiller CIAT Arrival	3.10	2,90-3,00	1.13	1,172-1,213	Di bawah standar
7	Chiller CIAT Arrival	3.39	2,90-3,00	1.04	1,172-1,213	Di bawah standar

Pada tabel 8, tabel 9, tabel 104, hampir seluruh peralatan berada di bawah standar karena nilai *EER* dan *COP* tidak terpenuhi. Kedua nilai tersebut harus dipenuhi karena EER adalah indikator kinerja energi sedangkan *COP* standar efisiensi refrigerasi bagi sistem refrigeransi sehingga standar tersebut harus dipenuhi untuk menyatakan bahwa

suatu alat tersebut sesuai dengan standar yang telah ditentukan.

KESIMPULAN

- Kualitas Udara di Terminal 1A, B, dan C Bandara Soekarno-Hatta rata-rata berada di range tidak nyaman. Hal ini disebabkan karena standar suhu udara yaitu 25±1 dan RH ruangan yaitu 60±1 tidak tercapai bersamaan,kadang suhu udara tercapai namun RH ruangan tidak tercapai atau sebaliknya.
- 2. Performa peralatan utama sistem HVAC pada terminal 1A, B, dan C Bandara Soekarno-Hatta berada di bawah standar nilai COP dan EER yang telah ditentukan SNI 6390:2011 yaitu nilai COP di atas kisaran 2,90-3,00 dan nilai kW/TR di atas kisaran 1,172-1,213;

SARAN

- Melakukan perawatan secara berkala sesuai dengan Standard Operasi Peralatan tersebut agar performance peralatan sesuai dengan SNI dapat tercapai;
- 2. Melakukan peninjauan ulang kembali terhadap peralatan

sistem HVAC (Heating, Ventilasi, Air Conditioning) apakah perlatan tersebut masih layak untuk beroperasi atau harus diganti dengan yang baru, meningat umur perlatan tersebut sudah cukup tua;

- 3. Melakukan perhitungan ulang tentang kebutuhan Sistem HVAC dimana pada awalnya bangunan setiap terminal hanya dirancang untuk kapasitas ±9 juta penumpang, namun saat ini harus melayani ±25 juta penumpang;
- 4. Mengontrol perilaku pengguna jasa maupun petugaas yang berada bandara Soekarno-Hatta seperti:
 - Merokok, dengan cara menghimbau pengguna jasa tersebut untuk tidak merokok di ruangan ber-AC atau membuat smoking area.
 - b. Menghimbau setiap
 petugas yang masuk
 melalui pintu yang
 berhubungan lansung
 dengan apron, untuk selalu
 menutupnya setelah
 menggunakannya karena

jika dibiarkan terbuka akan membuat hawa panas dari apron masuk sehingga untuk mendapatkan ruangan yang nyaman dan pencapaian suhu ruangan standar menjadi sulit.

DAFTAR PUSTAKA

- 1 SNI 03-6390-2000. Konservasi Energi Sistem Tata Udara Pada Bangunan Gedung
- 2 SNI 03-9167-2000. Konservasi Energi Sistem Pencahayaan Pada Bangunan Gedung
- 3 www.energyefficiencyasia.org, Pedoman Efisiensi Energi untuk Industri di Asia
- 4 http://www.energyefficiencyasia.o rg/docs/ee_modules/indo/Chapter-AC and Refrigeration Bahasa Indonesia.pdf terakhir diakses pada tanggal 24 Oktober 2014
- 5 Ashrae Handbook Jan 2001.

 American Society Of Heating,
 Refrigerating, and Air
 Conditioning Engineer, Inc.