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Abstrak—Kuantisasi warna citra merupakan operasi penting

pada banyak aplikasi grafik dan pengolahan citra.  Metode

kuantisasi warna banyak dilakukan dengan menggunakan

algoritma klasterisasi data. Kepopuleran k-means sebagai

algoritma klasterisasi data yang telah umum, ternyata belum

mendapat cukup perhatian pada literatur kuantisasi warna. Hal

ini disebabkan karena mahalnya biaya komputasi dan

sensitivitasnya terhadap pengaruh pemilihan pusat klaster.

Penelitian ini memberikan metode percepatan algoritma k-means

untuk kuantisasi warna. Metode yang diajukan melibatkan

beberapa modifikasi pada k-means konvensional, seperti

pengurangan data, pembobotan data, dan penggunaan prinsip

pertidaksamaan segitiga untuk mempercepat pencarian

ketetanggaan terdekat. Ujicoba dilakukan dengan beragam citra

dan menunjukkan bahwa modifikasi yang telah dilakukan

mampu memperlihatkan bahwa k-means juga sangat kompetitif

sebagai algoritma  kuantisasi warna citra, baik dalam segi

efektivitas maupun efisiensinya.

Kata Kunci—klasterisasi, k-means, kuantisasi warna, reduksi

warna.

I. PENDAHULUAN

ITRA dengan warna asli umumnya mengandung banyak

warna hingga ribuan sehingga tak jarang menjadi masalah

tersendiri saat proses penyimpanan, penampilan, pengiriman,

maupun pengolahannya [1]. Di masa lalu, kuantisasi warna

citra diperlukan karena keterbatasan perangkat keras yang

belum mampu menampilkan lebih dari 16 juta warna pada

citra 24 bita. Walaupun sekarang perangkat keras telah

berkembang dengan pesat, kuantisasi warna masih menjadi

perhatian karena banyak aplikasi grafik modern dan citra yang

berkaitan dengan kuantisasi citra, seperti: kompresi,

segmentasi, deteksi dan lokalisasi teks, analisis tekstur warna,

pemberian tanda air, dan sistem temu kembali berbasis isi.

Metode kuantisasi warna banyak dilakukan dengan

menggunakan algoritma pengelompokan data. Kepopuleran k-

means sebagai algoritma pengelompokan data yang telah

umum, ternyata tidak banyak digunakan untuk kuantisasi

warna citra. Hal ini disebabkan mahalnya biaya komputasi dan

sensitivitasnya terhadap pengaruh inisialisasi.

Penelitian ini mengusulkan metode percepatan algoritma k-

means untuk kuantisasi warna. Penelitian ini menginvestigasi

kinerja k-means sebagai algoritma kuantisasi warna citra, dan

selanjutnya memodifikasi algoritma k-means konvensional.

Metode yang diajukan melibatkan beberapa modifikasi pada

algoritma k-means konvensional, seperti pengurangan data [2],

pembobotan sampel data, dan penggunaan pertidaksamaan

segitiga untuk mempercepat pencarian ketetanggaan terdekat

[3].

II. KUANTISASI WARNA

Proses kuantisasi warna citra secara garis besar dibagi

menjadi dua fase utama, yaitu:

a) Desain palet: adalah fase untuk memilih sekumpulan

warna citra yang dianggap mampu mewakili citra asli.

Setiap warna terpilih mengandung 3 dimensi untuk warna

RGB yang bisa diananalogikan sebagai kode dalam

sebuah buku kode, dimana palet adalah buku kodenya.

b) Pemetaan piksel: adalah fase untuk menandai setiap

piksel sesuai desain palet. Setiap piksel pada citra asli

dipetakan ke warna terdekat dalam palet. Caranya adalah

dengan menemukan warna yang sesuai atau yang paling

dekat dari palet.

Tujuan dari kedua fase ini adalah untuk mengurangi

jumlah warna unik dari citra menjadi sehingga

dengan distorsi sekecil mungkin. Pada banyak aplikasi, citra

asli dengan piksel 24 bita akan dikurangi menjadi 8 bita atau

lebih kecil.

Metode kuantiasasi warna secara umum dapat dibedakan

menjadi dua kategori: metode bebas yang menggunakan palet

yang telah ditentukan, bukan diambil dari suatu citra tertentu.

Metode tak bebas, palet ditentukan berdasar distribusi warna

citra. Walaupun sangat cepat, metode bebas memberikan hasil

yang kurang baik karena mengabaikan isi citra. Metode tak

bebas dapat dikategorikan menjadi dua keluarga, yaitu:

preclustering (tak-seragam) dan postclustering (seragam).

Metode preclustering didasarkan pada analisis statistik

distribusi warna citra. Metode ini diinisialisasi dengan

menentukan klaster tunggal yang mengandung semua piksel

citra . Klaster ini kemudian dibagi secara rekursif sampai

klaster diperoleh. Metode postclustering diinisialisasi dengan

klaster tunggal dimana tiap klaster mengandung satu piksel

citra. Klaster-klaster ini kemudian digabung sampai klaster

diperoleh. Beberapa yang termasuk dalam keluarga

postclustering antara lain: k-means [4], minmax, competitive

learning, fuzzy c-means, BIRCH, dan self-organized map.

III. KUANTISASI BERBASIS K-MEANS

A. Algoritma Klasterisasi K-means

Algoritma k-means (KM) dianggap sebagai algoritma yang

paling banyak dipakai pada aplikasi pengelompokan data. KM

menggunakan prinsip titik jarak terdekat. Diberikan suatu

data pada himpunan , tujuan dari KM

adalah untuk membagi menjadi klaster ,
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dimana untuk

dengan meminimalkan sum of square error (SSE):
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dimana menyatakan norma euclid ( ) dan adalah

pusat klaster yang dihitung berdasar rata-rata jarak titik-

titik klaster ke pusat klaster. Kompleksitas dari Persamaan 1

ini diketahui NP-hard bahkan hanya untuk nilai .

Metode heuristik KM memberikan solusi yang lebih

sederhana. Algoritma KM memulai dengan pusat arbitreri

yang diplih secara acak dari titik-titik data. Setiap titik

kemudian dipilih berdasar titik terdekat dengan titik pusat, dan

pusat baru dihitung dari rata-rata titik-titik yang berdekatan

dengannya. Dua langkah ini diulang sampai kriteria terminasi

terpenuhi. Pseudocode untuk langkah-langkah ini ditunjukkan

pada Gambar 1 dimana menyatakan keanggotaan titik .

Kompleksitas dari KM adalah per iterasi untuk

setiap nilai konstanta . Untuk aplikasi kuantisasi citra

berwarna, karena pengelompokan hanya melibatkan

tiga dimensi warna yaitu RGB.  Dari perspektif klasterisasi

data, KM memiliki kelebihan sebagai berikut:

a) Konsep KM sederhana, serbaguna, dan mudah dalam

implementasi.

b) Kompleksitasnya linier pada dan . Dan beberapa

teknik percepatan banyak dibahas di literatur.

c) KM dijamin terminasi dengan tingkat konvergensi

kuadratik.

Sementara itu, kelemahan utama KM adalah fakta bahwa

KM seringkali terminasi pada lokal minimum dan hasilnya

sangat sensitif oleh pengaruh pemilihan pusat klaster. Dari

perspektif kuantisasi warna citra, KM mimiliki dua

kekurangan yaitu: walaupun kompleksitas waktunya linier,

sifat iteratif dari fase desain palet menyebabkan biaya

komputasinya menjadi mahal. Fase pemetaan piksel tidak

efisien, karena untuk setiap input piksel akan dicari satu per

satu dari keseluruhan palet untuk menentukan warna terdekat.

input:

output:

Pilih acak subhimpunan C dari X sebagai inisial klaster pusat

while kriteria terminasi belum terpenuhi do

for do

Masukkan pada pusat klaster terdekat

;

end

Hitung kembali pusat klaster;

for do

Klaster mengandung himpunan titik-titik yang paling

dekat   dengan pusat ;

Hitung pusat baru berdasar nilai rata-rata titik-titik yang

termasuk dalam ;

end

end

Gambar 1. Algoritma k-means konvensional.

B. Mempercepat Algoritma K-means

Dalam rangka menjadikan algoritma KM lebih efisien untuk

proses kuantisasi warna citra, penelitian ini melakukan

beberapa modifikasi pada algoritma KM konvensional.

1. Pembentukan Data Subsampel. Langkah yang paling

pasti untuk mempercepat KM adalah dengan mengurangi

jumlah data, yang dapat diperoleh dengan pembentukan

data subsampel dari input citra. Penelitian ini memakai

dua metode pembentukan data subsampel deterministik,

yaitu: Subsampel 2:1, yang melibatkan arah horisontal

dan vertikal. Sehingga hanya 1/4 dari input citra yang

dipakai. Cara ini terbukti efektif mengurangi waktu

komputasi tanpa mengurangi kualitas hasil visual

kuantisasi [2]. Metode yang kedua adalah subsampel yang

hanya melibatkan piksel-piksel dengan warna unik.

Piksel-piksel ini dapat ditentukan secara efisien dan

mudah dengan menggunakan hash table dengan

menggunakan fungsi hash

dimana menyatakan komponen piksel

merah ( , hijau , dan biru , dan adalah

jumlah warna primer, dan elemen dari urutan

dipilih secara acak dari himpunan

. Metode subsampel ini digunakan untuk

mengurangi data citra dimana kebanyakan citra

mengandung warna-warna yang sama dalam jumlah yang

sangat besar.

2. Pembobotan Data Subsampel. Kelemahan dari metode

subsampel adalah bahwa metode ini mengabaikan

distribusi warna citra asli. Untuk mengatasi hal ini, setiap

titik diberi bobot secara proposional sesuai frekuensinya.

Bobot dinormalisasi dengan jumlah piksel pada citra asli

untuk menghindari ketidakstabilan numerik saat

perhitungan.

3. Penggunaan Pertidaksamaan Segitiga. Pada algoritma

KM, untuk setiap titik, jarak ke setiap titik dari pusat

klaster dihitung. Misal ada sebuah titik , dan dua

pusat klaster dan dan matrik jarak , menggunakan

pertidaksamaan segitiga, didapatkan

. Jadi jika diketahui

bahwa , dapat disimpulkan bahwa

tanpa harus menghitung .

Untuk menghindari perhitungan jarak terdekat dalam

jumlah yang sangat banyak, prinsip pertidaksamaan

segitiga ini dapat digunakan untuk memodifikasi

algoritma KM. Bentuk modifikasinya adalah dengan

melakukan perhitungan jarak berpasangan antarpusat

klaster pada setiap permulaan iterasi. Untuk lebih

mengurangi jumlah perhitungan jarak terdekat, modifikasi

juga dilakukan dengan cara mengurutkan nilai jarak yang

berasosiasi dengan setiap pusat klaster. Pada setiap iterasi,

jarak titik dari pusat dibandingkan dengan pusat-

pusat klaster lainnya dengan urutan menaik dimana

adalah titik yang berada pada klaster di itrasi sebelumnya.

Jika pusat yang berada cukup jauh dari telah dicapai,

semua pusat-pusat lainnya dapat diabaikan dan langkah-

langkah klasterisasi dapat dilanjutkan untuk titik-titik

lainnya.
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Langkah-langkah modifikasi ini disusun menjadi sebuah

algoritma weighted sort-means (WSM). Pseudeocode

algoritma ini ditunjukan oleh Gambar 2. Kompleksitas

algoritma WSM adalah per iterasi

untuk setiap nilai , dimana adalah biaya perhitungan

jarak berpasangan antarpusat klaster, biaya

mengurutkan pusat, dan biaya membandingkan.

Biaya membandingkan dianggap sebagai waktu komputasi

sebab pada aplikasi kuantisasi citra adalah jumlah yang

kecil sehingga . Sehingga dapat dikatakan bahwa

WSM linier pada , yang merupakan jumlah warna unik dari

citra asli. Dalam hal inisialisasi, algoritma WSM memiliki

skema yang sama dengan skema inisialisasi algoritma KM.

input:

output:

Pilih acak subhimpunan C dari X sebagai inisial klaster pusat

while kriteria terminasi belum terpenuhi do

Hitung jarak berpasangan antara pusat klaster;

for do

for do

end

Buat matrik M ukuran K × K dimana setiap baris i adalah

permutasi dari 1, 2, &, K  yang mewakili klaster dengan

urutan jarak menaik dari pusat dari ;

for do

Nyatakan sebagai klaster dimana dimasukkan pada

iterasi sebelumnya;

Hitung ulang pusat terdekat jika diperlukan;

for do

if then

Tidak ada pusat terdekat lagi. Hentikan pengecekan;

break;

end

if then

lebih dekat dari pada ;

end

end

end

Hitung ulang pusat klaster;

for do

Hitung pusat baru sebagai rata-rata bobot dari

titik yang dekat dengan pusat baru;
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end

end

Gambar 2. Algoritma weighted sort-means.

C. Model Skema Inisialisasi K-means

Tahap inisialisasi merupakan tahap yang paling penting

karena sangat mempengaruhi hasil klasterisasi. Penelitian ini

menggunakan beberapa model skema inisialisasi, antara lain:

1. Forgy (FGY) [5]: Pusat klaster dipilih secara acak dari

kumpulan data. Kompleksitas dari skema ini adalah

2. Minmax (MMX) [6]: Pusat pertama 1 dipilih secara acak.

Pada  pusat ke- , dipilih menjadi titik

yang memiliki jarak minimum terbesar ke pusat

sebelumnya yang dipilih. Kompleksitas skema ini adalah

.

3. Subset Farthest First (SFF) [7]: Salah satu kelemahan

MMX adalah skema tersebut cenderung menemukan

outlier (titik data yang letaknya jauh dari kumpulan titik

data lainnya). Dengan menggunakan subset ukuran

terkecil dari , jumlah total outlier yang dapat

ditemukan oleh MMX dapat dikurangi sehingga proporsi

titik non-outlier yang didapatkan sebagai pusat menjadi

lebih banyak. Kompleksitas skema ini adalah .

4. K-Means++ (KPP) [8]: Pusat pertama 1 dipilih secara

acak dan pada pusat ke , dipilih

menjadi , dengan probabilitas dimana

menotasikan jarak minimal dari titik ke pusat

sebelumnya yang dipilih.

IV. UJI COBA DAN EVALUASI

A. Data Citra Tes dan Kriteria Ujicoba

Kumpulan data yang digunakan adalah citra tes yang biasa

dipakai dalam literatur kuantisasi, yaitu citra airplane (29%

warna unik), baboon (58% warna unik), boats (31% warna

unik), lenna (57% warna unik), parrots (13% warna unik),

peppers (42% warna unik), fish (47% warna unik), dan

poolballs (7% warna unik).

Citra dikuantisasi menjadi 32 warna (nilai = 32) dengan

menggunakan skema inisialisasi forgy untuk semua citra.

Kondisi terminasi dilakukan setelah 20 kali iterasi dengan

threshold (ambang konvergensi) ditentukan sebesar

Citra error didapatkan dari pengurangan absolut

antara citra asli dengan citra terkuantisasi. Untuk mendapatkan

bentuk visualisasi agar mudah dibaca, maka nilai piksel dari

citra error dikalikan 4 kemudian dijadikan citra negatifnya.

Efektivitas metode kuantisasi dinyatakan dengan

menggunakan pengukuran nilai mean square rrror (MSE):

åå
= =

-=
H

h

W

w

whxwhx
HW

XXMSE
1 1

2

2
),(~),(

1
)

~
,( (2)

dimana menyatakan citra asli dan X
~ menyatakan

citra terkuantisasi dan ruang warna RGB. MSE

menyatakan rata-rata distorsi dan umum digunakan untuk

mengevaluasi citra pada literatur kuantisasi [1]. Efisiensi dari

metode kuantisasi diukur dengan waktu komputasi CPU dalam

satuan detik. Semua program diimplementasikan

menggunakan bahasa pemrograman ANSI C dengan
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perangkat pengembang Code::Block, dan dieksekusi pada Intel(R) Core(TM)2 Duo CPU T6500 @ 2.10GHz.

Tabel 1. Perbandingan waktu komputasi CPU antara algoritma KM dan WSM.

B. Perbandingan Efisiensi antara KM dan WSM

Pada bagian ini dilakukan kuantisasi warna citra dengan

menggunakan algoritma KM dan WSM. Kedua algoritma

diinisialisasi dengan skema yang sama, yaitu forgy. Nilai

yang digunakan adalah 32, 64, 128, dan 256. Program

melakukan terminasi setelah 20 kali iterasi dengan nilai

ambang konvergensi ditentukan sebesar 61 -= eε . Tabel 1

menunjukkan perbandingan waktu komputasi antara algoritma

KM dan algoritma WSM. Dapat dilihat bahwa algoritma

WSM lebih cepat sekitar 12 sampai 20 kali dibandingkan

dengan algoritma KM. Hal ini dikarenakan algoritma WSM

menghindari perhitungan warna yang redundan pada citra asli

dan dengan mengurangi jumlah data sebelum melakukan fase

klasterisasi.

C. Perbandingan Model Skema Inisialisasi Algoritma WSM

Pada bagian ini dilakukan kuantisasi citra menggunakan

algoritma WSM dengan menggunakan empat skema

inisialisasi, yaitu forgy (FGY), minmax (MMX), subset

farthest first (SFF), dan k-means++ (KPP). Nilai yang

digunakan adalah 32, 64, 128, dan 256 dengan nilai ambang

konvergensi ditentukan sebesar 61 -= eε untuk semua skema

inisialisasi. Ujicoba ini dilakukan untuk mengetahui skema

inisialisasi yang paling efisien digunakan pada algoritma

WSM untuk kuantisasi warna citra. Tabel 2 menunjukkan

perbandingan waktu komputasi CPU terhadap skema

inisialiasai yang diterapkan pada algoritma WSM. Dari Tabel

2 didapatkan bahwa skema inisialisasi SFF secara konsisten

menghasilkan waktu komputasi CPU paling cepat

dibandingkan dengan skema inisialisasi lainnya. Untuk

mengetahui skema inisialisasi yang memberikan kualitas

visualisasi yang paling baik, dilakukan pengukuran nilai MSE

pada masing-masing citra terkuantisasi. Seperti yang

dijelaskan sebelumnya bahwa semakin kecil nilai MSE, citra

terkuantisasi semakin menyerupai citra asli, artinya hasil

visual yang diperoleh lebih baik. Tabel 5 menunjukkan

perbandingan nilai MSE yang dihasilkan dari skema-skema

inisialisasi yang diterapkan pada algoritma WSM. Dari Tabel

5 dapat diketahui bahwa algoritma WSM dengan skema KPP

secara konsisten menghasilkan kualitas yang lebih baik (nilai

MSE terkecil) jika dibandingkan dengan skema inisialisasi

lainnya. Gambar 3 menunjukkan contoh hasil citra

terkuantisasi dari masing-masing skema inisialisasi.

Pengaruh pada kompleksitas algoritma WSM dapat

ditunjukkan oleh Gambar 4. Berbeda dengan algoritma KM,

kompleksitas algoritma WSM sublinier terhadap . Sebagai

contoh, pada citra Parrots, kenaikan dari 32 ke 256,

menghasilkan kenaikan waktu komputasi CPU dengan

kelipatan sebesar 2.9 (dari 4.48 sekon ke 14.46 sekon).

Tabel 2. Perbandingan waktu komputasi CPU algoritma WSM dengan beberapa model skema inisialisasi.

K Algoritma Airplane Baboon Boats Lenna Parrot Peppers Fish Poolballs Mean

32
KM 5.59 3.36 7.27 4.63 30.9 3.33 0.96 4.01 5.59

WSM 0.99 0.94 1.74 1.12 4.88 1.06 0.24 0.72 0.99

64
KM 6.6 6.62 10.45 7.68 35.4 6.28 1.69 4.52 9.90

WSM 1.77 1.29 2.42 1.49 6.68 1.29 0.39 0.83 2.02

128
KM 11.6 13.36 21.11 12.76 70.7 11.6 2.99 9.1 19.1

WSM 2.44 1.79 2.68 2.63 8.70 1.93 0.62 1.23 2.75

256
KM 23.0 23.2 40.15 22.11 134.9 22.8 6.19 18 36.2

WSM 4.05 3.39 5.13 3.90 14.35 3.74 1.81 2.17 4.81

K Skema Airplane Baboon Boats Lenna Parrot Peppers Fish Poolballs Mean

32

FGY 0.99 0.94 1.74 1.12 4.88 1.06 0.24 0.72 1.46

MMX 0.87 1.00 2.2 1.00 4.94 1.14 0.3 0.61 1.50

SFF 0.68 1.05 1.38 1.11 4.55 0.89 0.22 0.62 1.31
KPP 2.34 1.95 2.98 2.27 9.72 2.42 0.54 1.25 2.93

64

FGY 1.32 1.28 2.05 1.61 6.48 1.41 0.37 0.92 1.93

MMX 1.81 1.76 2.65 1.65 7.96 1.83 0.42 0.99 2.38

SFF 0.92 1.4 1.72 1.23 7.30 1.55 0.35 0.74 1.90
KPP 2.95 3.3 5.24 3.39 17.69 4.6 1.05 2.83 5.13

128

FGY 2.25 2.26 2.76 2.65 9.93 2.31 0.65 1.34 3.01

MMX 2.04 2.99 4.04 3.32 13.18 2.71 0.73 1.61 3.82

SFF 1.28 2.24 3.49 2.28 7.73 2.12 0.72 1.55 2.67
KPP 5.41 6.06 9.98 7.27 35.48 6.32 1.72 3.51 9.46

256

FGY 3.38 4.04 5.41 4.83 14.46 3.31 1.88 2.68 4.99

MMX 4.29 6.17 7.8 5.81 22.15 4.74 2.24 3.23 7.05

SFF 3.21 3.87 4.98 3.32 15.00 3.51 2.01 2.34 4.78
KPP 10.89 11.62 18.96 11.68 64.41 12.8 3.87 7.91 17.7



JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: 2301-9271 A-201

Gambar 3. Hasil kuantisasi citra Baboon dengan beberapa skema inisialisasi pada algoritma WSM ( = 256).

Tabel 3 memberikan peringkat nilai MSE dan Tabel 4

menunjukkan waktu komputasi CPU dari algoritma WSM

dengan empat model skema inisialisasi. Nilai MSE terbaik

dihasilkan oleh skema inisialisasi KPP, sementara  waktu

komputasi CPU terbaik dihasilkan oleh skema SFF. Walaupun

skema inisialiasai KPP memberikan kualitas hasil visualisasi

paling baik, skema inisialiasiasi ini ternyata memakan biaya

komputasi paling besar. Skema inisialisasi forgy diujicobakan

karena skema ini adalah skema yang paling sederhana dan

umum digunakan. Skema inisialisasi minmax diujicobakan

karena skema ini termasuk skema sederhana untuk

diimplementasikan pada data multidimensi. Sementara itu,

skema inisialisasi subset farthest first dipakai untuk

memperbaiki skema minmax yang cenderung menghasilkan

data outlier (titik data yang letaknya jauh dari kumpulan titik

data lainnya.

Gambar 4. Grafik pengaruh K terhadap waktu komputasi CPU.

Tabel 3. Peringkat nilai MSE algoritma WSM dengan beberapa skema

inisialisasi.

Skema
Nilai MSE

32 64 128 256 Mean

FGY 189.7 113.6 66.95 40.57 102.70

MMX 173.5 104.7 62.98 39.38 95.14

SFF 160 93.7 57.34 35.87 86.72

KPP 157.7 91.28 55.16 34.26 84.6

Tabel 4. Peringkat waktu komputasi CPU algoritma WSM dengan beberapa

skema inisialisasi.

Skema
Waktu Komputasi CPU

32 64 128 256 Mean

FGY 1.46 1.93 3.01 4.99 2.84

MMX 1.50 2.38 3.82 7.05 3.68

SFF 1.31 1.90 2.67 4.78 2.66
KPP 2.93 5.13 9.46 17.7 8.80

a) Citra asli

b) Random c) Random err d) Minmax e) Minmax err

f) SFF g) SFF err h)KPP i) KPP err
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Tabel 5.

Perbandingan nilai MSE algoritma WSM dengan beberapa skema inisialisasi.

V. SIMPULAN DAN SARAN

Dari ujicoba yang telah dilakukan dan setelah menganalisis

hasil pengujian terhadap implementasi algoritma WSM, dapat

diambil beberapa kesimpulan antara lain:

a. Pada permasalahan kuantisasi wana citra, algoritma WSM

menghasilkan waktu komputasi 12 hingga 20 kali lebih

cepat daripada algoritma KM konvensional.

b. Kompleksitas WSM sublinier terhadap K.

c. Dilihat dari perspektif biaya waktu komputasi CPU,

skema inisialisasi subset farthest first secara konsisten

menghasilkan waktu komputasi yang lebih cepat

dibanding dengan skema inisialisasi lainnya.

d. Dilihat dari perspektif kualitas hasil visual citra

terkuantisasi, skema inisialisasi k-means++ secara

konsisten menghasilkan kualitas yang lebih baik jika

dibandingkan dengan skema inisialisasi lainnya.

e. Skema inisialisasi forgy menghasilkan nilai MSE dan

waktu komputasi CPU yang tidak konsisten. Hal ini

disebabkan karena setiap kali iterasi, selalu dilakukan

pemilihan pusat klaster secara acak tanpa mekanisme

cerdas untuk menghindari pemilihan pusat klaster yang

kurang representatif.

Untuk pengembangan lebih lanjut, algoritma WSM dapat

diuji dengan menggunakan skema inisialisasi yang lain antara

lain: splitting, density-based dan skema maximum variance,

karena selain dapat diterapkan pada data multidimensi seperti

pada data citra, kompleksitas skema-skema ini tidak kuadratik

atau lebih besar. Algoritma WSM dikaji dan dibandingkan

dengan algoritma kuantisasi citra yang telah populer seperti

algoritma median-cut, metode otto, octree, variance-based,

greedy, binary splitting, dan modified minmax.
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K Skema Airplane Baboon Boats Lenna Parrot Peppers Fish Poolballs Mean

32

FGY 119.9 370.6 123.4 123.5 264.5 228.9 148.8 138 189.7

MMX 85.83 332.3 120.3 127.7 234.9 224.1 157 106.1 173.5

SFF 58.57 326.4 115.7 119.6 237.6 220.4 140.3 62.2 160.0

KPP 58.66 326.1 117.1 118.8 227.4 222.5 141.3 50.36 157.7

64

FGY 60.3 204.9 72.79 73.23 148.6 139.3 99.4 110.7 113.6

MMX 46.05 201.2 68.21 76.46 133.7 137 95.73 79.75 104.7

SFF 36.55 197.7 66.51 72.86 127.6 131.4 88.31 28.79 93.7

KPP 33.97 195.2 63.22 72.43 127.4 132.2 84.38 21.48 91.28

128

FGY 32.6 124.4 42.95 48 82.09 82.55 57.37 65.64 66.95

MMX 31.02 125.7 42.05 48.76 82.79 84.2 60.12 29.27 62.98

SFF 23.03 124 39.31 46.29 75.45 80.89 56.44 13.37 57.34

KPP 21.49 123.2 37.13 45.95 73 79.81 50.72 10.05 55.16

256

FGY 21.3 79.47 28.43 31.3 49.37 53.33 38.57 22.81 40.57

MMX 18.93 82.34 26.4 31.81 48.96 53.3 37.21 16.14 39.38

SFF 15.13 80.42 25 30.66 45.07 51 33.91 5.82 35.87

KPP 14.05 78.48 23.09 30.03 42.64 49.6 31.27 4.97 34.26


