ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN *SNI 1726-2012* DENGAN VARIASI JUMLAH TINGKAT

Revie Orchidentus Francies Wantalangie Jorry D. Pangouw, Reky S. Windah

Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi Email: rofw1407@gmail.com

ABSTRAK

Diterapkannya SNI 1726-2012 sebagai standar yang baru telah menambah dan mengubah ruang lingkup tata cara perhitungan gempa menjadi lebih luas sehingga dapat mengikuti perkembangan zaman yang ada. Beban gempa dapat dianalisis secara statik maupun dinamik. Untuk analisa statik digunakan metode gaya lateral ekivalen, dan untuk analisa dinamik digunakan metode spektrum respons ragam. Penelitian ini bertujuan untuk membandingkan hasil kedua metode tersebut, sehingga kita dapat mengetahui metode mana yang lebih optimal dalam merencanakan struktur gedung tahan gempa.

Struktur gedung yang dimodelkan merupakan gedung beraturan, dengan jumlah tingkat yang divariasikan. Model struktur dibagi kedalam portal 5 tingkat, 10 tingkat, dan 15 tingkat. Penelitian ini menggunakan bantuan program SAP2000 v18 untuk mempermudah proses analisa gempa. Hasil penelitian yang akan dibandingkan adalah displacement antar tingkat dan base shear yang terjadi akibat gaya gempa.

Hasil analisa telah menunjukkan bahwa analisa statik mengeluarkan hasil yang lebih besar untuk ketiga model struktur dibandingkan dengan analisa dinamik. Perbedaan displacement antar tingkat yang dihasilkan oleh kedua metode pada ketiga model struktur masih masuk dalam batasan displacement antar tingkat ijin yang disyaratkan dalam SNI 1726-2012, sehingga ketiga model masih bisa dianalisa dengan analisa statik dan analisa dinamik. Karena hasil displacement dan base shear pada analisa statik lebih besar dari analisa dinamik, maka analisa statik lebih aman jika digunakan untuk pembebanan gaya gempa dalam perhitungan struktur secara umum. Walaupun dalam analisa gempa, analisa dinamik merupakan analisa yang lebih akurat karena proses analisa yang lebih mendekati ke keadaan yang sebenarnya.

Kata Kunci: SNI 1726-2012, analisa statik, analisa dinamik, SAP2000

PENDAHULUAN

Latar Belakang

Sejak ditetapkannya SNI 1726-2012 sebagai tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung sebagai standarisasi yang berlaku saat ini, maka dari itu saat ini untuk menghitung respons bangunan akibat gempa kita harus menggunakan SNI 1726-2012. Pada standarisasi yang baru ini, ruang lingkup tata cara telah diperluas, mengingat kebutuhan akan hal-hal baru yang sangat pesat berkembang, atau yang sebelumnya belum diatur di dunia konstruksi bangunan kita, agar kita tetap berada pada perkembangan terkini kemajuan dunia dibidang rekayasa kegempaan, dikombinasikan dengan penyesuaian-penyesuaian dengan kondisi di Indonesia saat ini.

Respons bangunan akibat gempa yang terjadi dapat dianalisis secara statik maupun dinamik. Analisa statik yang umum digunakan adalah analisa gaya lateral ekivalen. Analisa dinamik dapat dibagi atas dua yaitu analisa spektrum respons ragam dan analisa riwayat repons seismik (time-history). Berdasarkan SNI 1726-2012, ada banyak batasan yang diberikan dalam prosedur analisis statik ekivalen. Pembatasan ini dilakukan karena hasil analisis statik ekivalen kurang presisi untuk berbagai macam struktur yang dibangun. Oleh karena itu diperlukan analisis secara dinamik untuk memperoleh respons bangunan yang lebih mendekati respons struktur yang sebenarnya ketika terjadi gempa.

Tujuan dan Manfaat Penelitian

Tujuan penelitian ini yaitu untuk membandingkan respons struktur portal bertingkat banyak yang akan dianalisa dengan metode gaya lateral ekivalen dan metode spektrum respons ragam. Hasil yang akan dibandingkan yaitu berupa *displacement* dan *base shear*. Dari hasil tersebut kita dapat melihat seberapa besar perbedaan hasil dari kedua metode tersebut, kemudian membandingkan penerapannya dalam perhitungan struktur gedung bertingkat secara umum.

Batasan Masalah

Adapun penelitian ini dibatasi dengan ruang lingkup sebagai berikut :

- 1. Analisa perhitungan akibat gaya gempa berdasarkan *SNI 1726-2012*.
- 2. Metode analisa yang akan digunakan dalam perhitungan adalah analisa gaya lateral ekivalen dan analisa spektrum respons ragam.
- 3. Hasil analisa yang akan dihitung berupa distribusi *displacement* dan *base shear*.
- 4. Masalah yang akan ditinjau adalah respons struktur gedung bertingkat beraturan (portal) beton bertulang 5 tingkat, 10 tingkat, dan 15 tingkat.
- 5. Dimensi (kolom dan balok), jarak, serta elevasi pada portal hanya merupakan pemisalan sebagai bagian dari model analisis. (dilampirkan)
- 6. Beban-beban juga merupakan pemodelan saja tetapi dengan angka yang cukup relevan dan merujuk pada peraturan pembebanan untuk gedung yang berlaku tanpa mereduksi beban hidup. Dengan bangunan diasumsikan mempunyai redaman sebesar 5%.
- 7. Struktur direncanakan berada di kota Manado dengan dibangun di atas tanah sedang berdasarkan klasifikasi *SNI 1726-2012* dan diasumsikan tanpa terjadi eksentrisitas.

Metodologi

Tulisan ini merupakan kajian literatur yang membandingkan hasil analisis dengan dua metode pengerjaan yang berbeda dengan bantuan software SAP 2000 v18. Langkah analisis yang akan digunakan yaitu struktur dianalisa dengan metode gaya lateral ekivalen kemudian dilanjutkan dengan metode spektrum respons ragam. Setelah itu hasil analisa dari kedua metode tersebut dibandingkan dan dibahas sesuai tujuan penelitian skripsi ini.

TINJAUAN PUSTAKA

Prosedur Analisis Gaya Gempa

Prosedur analisis gempa yang digunakan untuk merencanakan bangunan tahan gempa dapat diklasifikasikan menjadi dua, yaitu analisis statik (analisis gaya lateral ekivalen) dan analisis dinamik (analisis spektrum respons ragam dan analisis riwayat respons seismik). Dalam menganalisis perilaku struktur yang mengalami gaya gempa, semakin teliti analisis dilakukan, perencanaannya semakin ekonomis dan dapat diandalkan. Untuk bangunan satu tingkat dapat hanva menetapkan direncanakan dengan besarnya beban lateral yang dapat ditahan elemen struktur dan dengan mengikuti ketentuanketentuan dalam peraturan.

Tabel 1 Prosedur Analisis Gempa

Kategori desain setsmik	Karakteristik struktur	Analisis gaya tateral ekiralen Pasal 7.8	Analisis spekmen mapons segam Pasal 7.9	Prosedur rivayal respons seisma Pasal 11
8. C	Bangunan dengan Kategori Risiko I atau II dan konstruksi rangka migan dengan ketinggian tidak melebihi 3 tingkat	gran fidale of interal II, II par II dani II gran fatari II of atara II II an mirrum II 3,57, dan II	1	
	Bungurum laternya dengan Kategori Rasko I atau II, dengan ketinggian tidak melebih 2 Singkat	1.50	- * -	1.5
	Semus struktur barenya	1	1.	- 1
D.E.F	Bangunan dengan Kategori Risiko I atau II dari kondhaksi rangka ringan dengan ketinggian tidak melebihi 3 tingkat	想	*	8
	Bangunan tannya dengan Kategori Ruseo I atau II dengan ketinggian tidak melebih 2 tingkat	1.	T.	- 1
	Struktur benaturan dengan 7+ 3,57, dan sermus struktur dari konstruksi rangka ringan	1	1.	-1
	Struktur Islan bermann dengan Tr. 3,5T, dan reempanya hampa ketistekeraturan heriscetal Tipe 2, 3, 4, atau 5 dan Tabel 10 atau ketidakteraturan yerikai Tipe 4, 5a, atau 5b dan Tabel 11	E:	ï	- 100
	Semus struktur lannya	TI	. t	

Sumber: SNI 1726-2012

Analisa Statik

Geser Dasar Seismik

 $V = C_{\rm s}.W$

Cs adalah koefisien respons seismik. W adalah berat seismik efektif.

Berat Seismik Effektif

Berat seismik efektif struktur, *W*, harus menyertakan seluruh beban mati dan beban lainnya yang terdaftar di bawah ini:

- 1. Dalam daerah yang digunakan untuk penyimpanan: minimum sebesar 25 persen beban hidup lantai (beban hidup lantai di garasi publik dan struktur parkiran terbuka, serta beban penyimpanan yang tidak melebihi 5 persen dari berat seismik efektif pada suatu lantai, tidak perlu disertakan);
- 2. Jika ketentuan untuk partisi disyaratkan dalam desain beban lantai: diambil sebagai yang terbesar di antara berat partisi aktual atau berat daerah lantai minimum sebesar 0,48 kN/m2;
- 3. Berat operasional total dari peralatan yang permanen;

4. Berat lansekap dan beban lainnya pada taman atap dan luasan sejenis lainnya.

Perhitungan Koefisien Respons Seismik

$$C_{s} = \frac{S_{DS}}{\left(\frac{R}{I_{e}}\right)}$$

$$C_{s}max = \frac{S_{D1}}{T\left(\frac{R}{I_{e}}\right)}$$

$$C_{s}min = \frac{0.5 S_{1}}{\left(\frac{R}{I_{e}}\right)}$$

 S_{DS} adalah parameter percepatan spektrum respons desain dalam rentang periode pendek; R adalah faktor modifikasi respons;

Ie adalah faktor keutamaan gempa;

 S_{D1} adalah parameter percepatan spektrum respons desain pada perioda sebesar 1,0 detik; T adalah perioda fundamental struktur (detik); S_1 adalah parameter percepatan spektrum respons maksimum.

Perioda Fundamental

$$T_a = C_t h_n^{\chi}$$

 $T_a = C_t h_n^x$ hn adalah ketinggian struktur, dalam m, di atas dasar sampai tingkat tertinggi struktur; Ct dan x ditentukan dari:

Tabel 2 Parameter Perioda

Tipe struktur	C,	X
Sisten rangka pemikul momen di mana rangka memikul 100 persen gaya penjaa yangi disyaratkan dan tidak dilingkiapi atau dihubungkan dengan komponen yangi tebih kaku dan akan mencegah rangka dari defleksi jika dikenai gaya pempai.		0.22
Rangka baja pemikul momes	0,0724"	0,8
Rangka heton pemikul momen	0,0466*	0,9
Rangka baja dengan bresing eksentris	0,0731*	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731*	0.75
Semua sistem struktur lainnya	0.0488*	0.75

Sumber: SNI 1726-2012

Distribusi Gaya Gempa

$$F_x = C_{vx} V$$

$$C_{vx} = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k}$$

$$V_x = \sum_{i=x}^n F_i$$

 C_{vx} adalah faktor distribusi vertikal;

V adalah gaya lateral desain total atau geser di dasar struktur (kN);

 w_i and w_x adalah bagian berat seismik efektif total struktur (W) yang ditempatkan atau dikenakan pada tingkat i atau x;

 h_i and h_x adalah tinggi (m) dari dasar sampai tingkat i atau x;

k adalah eksponen yang terkait dengan perioda struktur

 F_i adalah bagian dari geser dasar seismik (V) (kN) yang timbul di Tingkat i.

Analisa Dinamik

Prinsip Analisa Spektrum Respons Ragam

Sebelum melakukan analisis (analisis spektrum respons ragam dan analisis riwayat waktu), harus dilakukan analisis modal terlebih dahulu. Analisis modal dilakukan untuk menentukan periode elastik dan ragam getaran yang dihasilkan suatu struktur atau gedung ketika mengalami gaya gempa. Analisis modal terdiri dari dua tipe yaitu vektor Eigen dan Vektor Ritz. Dalam tugas akhir ini, analisis modal yang digunakan adalah tipe vektor Eigen. Analisis vektor Eigen menghasilkan bentuk ragam getaran bebas tanpa redaman dan frekuensi dari sistem. Dari ragam getaran tersebut bisa dilihat perilaku suatu struktur ketika mengalami gaya gempa.

gerak untuk keseimbangan Persamaan dinamis:

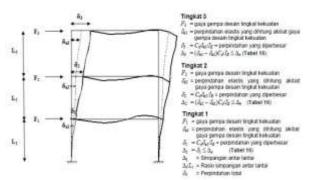
$$[M] \ddot{u}(t) + [C] \dot{u}(t) + [K] u(t) = P(t)$$

Nilai-nilai Eigen dapat diperoleh dengan menggunakan persamaan berikut:

$$[K - \omega^2 M] \Phi = 0$$

Hubungan nilai Eigen dengan waktu getar dan frekuensi, yaitu:

$$T = \frac{1}{f} \qquad \qquad f = \frac{\omega}{2\pi}$$


Parameter Respons Ragam

Nilai untuk masing-masing parameter desain terkait gaya yang ditinjau, termasuk simpangan antar lantai tingkat, gaya dukung, dan gaya elemen struktur individu untuk masingrespons masing ragam harus dihitung menggunakan properti masing-masing ragam dan spektrum respons didefinisikan dalam SNI 1726-2012 dibagi dengan kuantitas (R/I). Nilai untuk perpindahan dan kuantitas simpangan antar lantai harus dikalikan dengan kuantitas (*Cd/I*).

Parameter Respons Terkombinasi

Nilai untuk masing-masing parameter yang ditinjau, yang dihitung untuk berbagai ragam, harus dikombinasikan menggunakan metoda akar kuadrat jumlah kuadrat (SRSS) atau metoda kombinasi kuadrat lengkap (CQC), sesuai dengan SNI 1726. Metoda CQC harus digunakan untuk masing-masing nilai ragam di mana ragam

berjarak dekat mempunyai korelasi silang yang signifikan di antara respons translasi dan torsi.

Gambar 1. Simpangan Antar Lantai

Skala Gaya

Bila perioda fundamental yang dihitung melebihi (Cu)(Ta), maka (Cu)(Ta) harus digunakan sebagai pengganti dari T dalam arah itu. Kombinasi respons untuk geser dasar ragam (Vt) lebih kecil 85 persen dari geser dasar yang dihitung (V) menggunakan prosedur gaya lateral ekivalen, maka gaya harus dikalikan dengan 0.85V/Vt.

Batasan Simpangan Antar Lantai

Simpangan antar lantai (Δ) tidak boleh melebihi simpangan antar lantai ijin (Δ _a) seperti yang ditetapkan dalam table berikut ini.

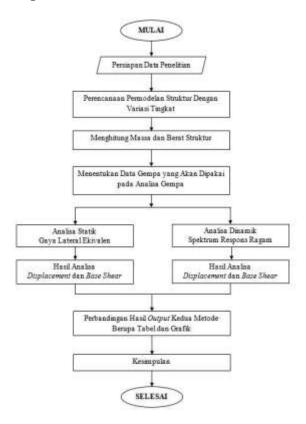
Tabel 3 Kategori Struktur

Struktur	K	ategori risi	ko
Straktur	1 stau II III 0,025k, 0,020 k 0,010 k, 0,010	III	IV:
Struktur, selain dari struktur dinding geser batu bata, 4 tingkat atau kurang dengan dinding interior, partisi, langti-langt dan sistem dinding eksterior yang telah didesain untuk mengakomodasi singangan antar lanta tingkat.	0.025k _n °	0,020 ñ _m	0,015 h _a
Struktur dinding geser kantilever batu bata ^o	0,010 //_	0,010.0_	0,010 /-
Struktur dinding geser batu bata lainnya	0,007 h _m	0.007 ii.	0,007 h
Semua struktur lainnya	0,020 //_	0,015 à	0.010 /г,
ACCUSATION NAMED IN	0,0200	WIN LAW	4/4/4

Sumber: SNI 1726-2012

METODOLOGI PENELITIAN

Langkah Perhitungan


Metode dan langkah-langkah perhitungan yang digunakan dalam penelitian ini menggunakan prosedur yang disesuaikan dengan *SNI 1726-2012* tentang perencanaan ketahanan gempa untuk struktur gedung bertingkat. Untuk proses analisa, peneliti menggunakan bantuan software SAP 2000 v18.

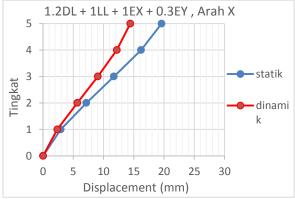
Tahapan penelitian adalah sebagai berikut:

 Memodelkan struktur gedung bertingkat yang dibagi menjadi portal 5 tingkat, 10 tingkat, dan 15 tingkat.

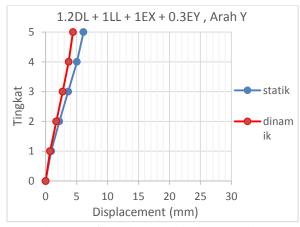
- Menentukan data gempa yang akan dianalisa berdasarkan pemilihan dimana struktur tersebut akan dibangun. Data gempa diambil dari
 - web:http://puskim.pu.go.id/Aplikasi/desain_s pektra indonesia 2011/.
- Menghitung berat dan massa struktur kemudian menginput ke dalam software SAP 2000 beserta data gempa untuk selanjutnya dianalisa terhadap metode gaya lateral ekivalen dan metode spektrum respons ragam.
- Mengoutput hasil analisa dari kedua metode tersebut, kemudian membandingkan dan membahas hasil displacement dan base shear yang dihasilkan sesuai dengan tujuan dari penelitian ini.
- Mengambil kesimpulan berdasarkan hasil dari penelitian yang didapatkan.

Diagram Alir Penelitian

Gambar 2 Diagram Alir Penelitian

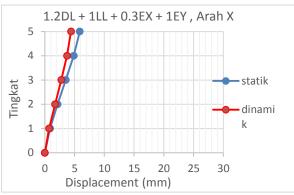

HASIL PENELITIAN

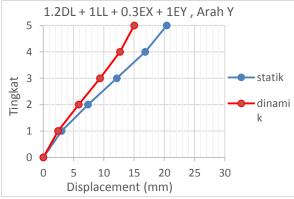
Displacement


• Portal 5 Tingkat

Tabel 4 Displacement Portal 5 Komb.1

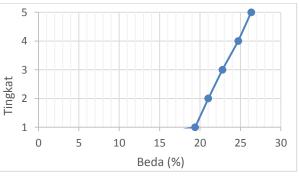
			Kon	ibinasi 1			
	Elevasi			Displacen	ent (m	m)	
Tingkat			Arah X			Arah Y	
	(m)	Statik	Dinamik	Beda (%)	Statik	Dinamik	Beda (%)
5	19.75	19.586	14.422	26	6.121	4.424	28
4	16.00	16.199	12.194	25	5.050	3.729	26
3	12.25	11.711	9.051	23	3.643	2.761	24
2	8.50	7.156	5.658	21	2.218	1.718	23
1	4.75	2.925	2,361	19	0.902	0.713	21
base	0	0	0	0	0	0	0


Gambar 3 Grafik Hubungan Displacement dengan Tingkat Portal 5 Komb.1 Arah X


Gambar 4 Grafik Hubungan Displacement dengan Tingkat Portal 5 Komb.1 Arah Y

Tabel 5 Displacement Portal 5 Komb.2

Kombinasi 2										
1 5	Elevasi			Displacen	ient (m	m)				
Tingkat			Arah X			Arah Y				
	(m)	Statik	Dinamik	Beda (%)	Statik	Dinamik	Beda (%)			
5	19.75	5.875	4.409	25	20,405	15.032	26			
4	16.00	4.859	3.728	23	16.834	12.671	25			
3	12.25	3.513	2.767	21	12.145	9.380	23			
2	8.50	2.147	1.730	19	7.394	5.840	21			
1	4.75	0.877	0.721	18	3.007	2.424	19			
base	0	0	0	0	0	0	0			

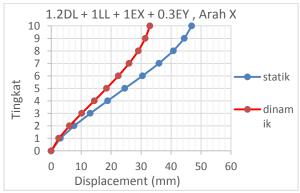

Gambar 5 Grafik Hubungan Displacement dengan Tingkat Portal 5 Komb.2 Arah X

Gambar 6 Grafik Hubungan Displacement dengan Tingkat Portal 5 Komb.2 Arah Y

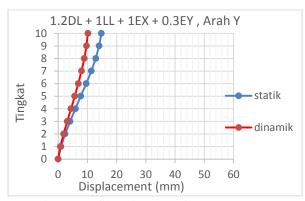
Tabel 6 Displacement Maks. Portal 5

Displacement Maks.								
Tingkat	Elevasi (m)	Statik (mm)	Dinamik (mm)	Beda (%)				
5	19.75	20.405	15.032	26				
4	16.00	16.834	12.671	25				
3	12.25	12.145	9.380	23				
2	8.50	7.394	5.840	21				
1	4.75	3.007	2.424	19				
base	0	0	0	0				

Gambar 7 Grafik Hubungan Tingkat dengan Perbedaan Hasil Displacement Kedua Metode Portal 5

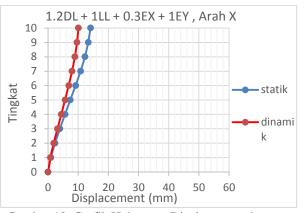

Tabel 7. Perbedaan Displacement Antar Tingkat Portal 5

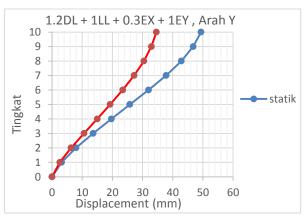
Displacement Maks.									
Tingkat	Elevasi	Statik	OCCUPANT OF THE PARTY OF THE PA	the latest terminal to the latest terminal termi	E AND DE LOS DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION D	Beda Anta	The second second		
-	(m) 19.75	(mm) 20.405	(mm)	(%)	(mm) 15.032	(mm)	(%)		
5	19.73	20.405	3.571	18	13.032	2.361	16		
4	16.00	16.834	4.689	28	12.671	3.291	26		
3	12.25	12,145	19.892.00	98.992	9.380	0.5000			
2	8.50	7.394	4.751	39	5.840	3.540	38		
	(100000	J.Creeks.	4.387	50	- (F)(-10T)	3.416	58		
1	4.75	3.007			2.424				
base	0	0	0	0	0	0	0		


Portal 10 Tingkat

Tabel 8. Displacement Portal 10 Komb.1

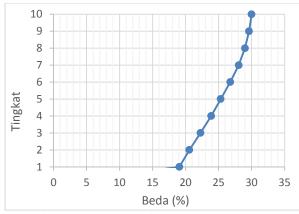
	Kombinasi 1										
	Elevasi			Displacen	ent (m	m)					
Tingkat	11000000		Arah X		A STATE OF THE STA	Arah Y	É				
and the same	(m)	Statik	Dinamik	Beda (%)	Statik	Dinamik	Beda (%)				
10	38.50	46.885	32.950	30	14.817	10.173	31				
9	34.75	44,435	31.409	20	14.025	9.682	31				
8	31.00	40.781	29.090	29	12.859	8.957	30				
7	27.25	35.978	26.011	28	11.338	8.001	29				
6	23.50	30.476	22.428	26	9.596	6.894	28				
5	19.75	24.571	18.440	25	7.729	5.662	27				
4	16.00	18.811	14.386	24	5.905	4.409	25				
3	12.25	13.035	10.179	22	4.082	3.113	24				
2	8.50	7.627	6.084	20	2,379	1.854	22				
1	4.75	3.062	2.487	19	0.949	0.753	21				
base	0	0	0	0	0	0	0				


Gambar 8. Grafik Hubungan Displacement dengan Tingkat Portal 10 Komb.1 Arah X


Gambar 9. Grafik Hubungan Displacement dengan Tingkat Portal 10 Komb.1 Arah Y

Tabel 9. Displacement Portal 10 Komb.2

Kombinasi 2										
	Elevasi			Displacen	nent (m	m)				
Tingkat	CALLEGE OF STREET	Acres and	Arah X		0.000 Block	Arah Y				
	(m)	Statik	Dinamik	Beda (%)	Statik	Dinamik	Beda (%)			
10	38.50	14.065	10.076	28	49.392	34.569	30			
9	34.75	13.330	9,605	28	46.750	32.901	30			
8	31.00	12.234	8.896	27	42.866	30.435	29			
7	27.25	10.793	7.955	26	37.793	27.190	28			
6	23.50	9.142	6.858	25	31.988	23.425	27			
5	19.75	7.371	5.639	23	25.765	19.240	25			
4	16.00	5.643	4.399	22	19.686	14.983	24			
3	12.25	3.910	3.112	20	13.607	10.578	22			
2	8.50	2.288	1.860	19	7.932	6.300	21			
1	4.75	0.918	0.760	17	3.164	2.561	19			
base	0	0	0	0	0	0	0			

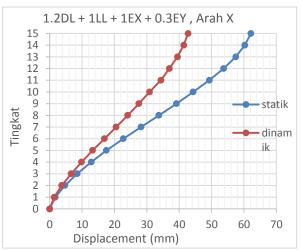

Gambar 10. Grafik Hubungan Displacement dengan Tingkat Portal 10 Komb.2 Arah X

Gambar 11. Grafik Hubungan Displacement dengan Tingkat Portal 10 Komb.2 Arah Y

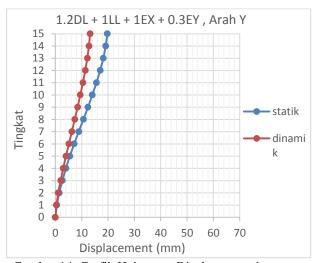
Tabel 10. Displacement Maks. Portal 10

	Displacement Maks.								
Tingkat	Elevasi (m)	Statik (mm)	Dinamik (mm)	Beda (%)					
10	38.50	49.392	34.569	30					
9	34.75	46.750	32.901	30					
8	31.00	42.866	30.435	29					
7	27.25	37.793	27.190	28					
6	23.50	31.988	23.425	27					
5	19.75	25.765	19.240	25					
4	16.00	19.686	14.983	24					
3	12.25	13.607	10.578	22					
2	8.50	7.932	6.300	21					
1	4.75	3.164	2.561	19					
base	0	0	0	0					

Gambar 12. Hubungan Tingkat dengan Perbedaan Hasil Displacement Kedua Metode Portal 10

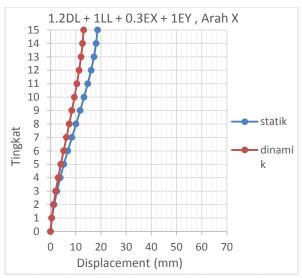

Tabel 11. Perbedaan Displacement Antar Tingkat Portal 10

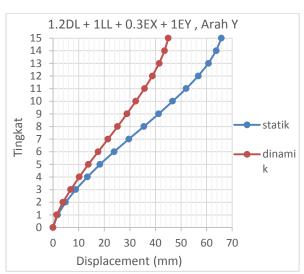
				ment Mak			
Tingkat	Elevasi (m)	Statik (mm)		r Tingkat		Beda Anta (mm)	r Tingkat (%)
10	38.50	49.392			34.569		
9	34.75	46,750	2,642	5	32.901	1.668	5
B	31.00	42.866	3.884	8	30.435	2.466	7
70	1200	100000	5,073	12	10000	3.245	11
7	27.25	37,793	5.805	15	27.190	3.765	14.
6	23.50	31.988	6.223	19	23.425	4.184	18
5	19.75	25,765	6.079		19.240		10570
4	16.00	19.686	-	24	14.983	4.257	22
3	12.25	13.607	6,079	31	10.578	4.405	29
2	8,50	7.932	5.675	42	6.300	4.278	40
1 17/1	[:::::::::::::::::::::::::::::::::::::	Lancard Control	4.768	60	0.000	3.739	59
1	4.75	3.164			2.561		
base	0	0	0	0	.0	0	0:


Portal 15 Tingkat

Tabel 12. Displacement Portal 15 Komb.1

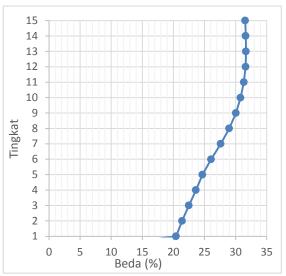
			Kon	obinasi 1						
	Elevasi			Displacen	nent (m	m)				
Tingkat			Arah X			Arah Y				
	(m)	Statik	Dinamik	Beda (%)	Statik	Dinamik	Beda (%)			
15	57.25	62.132	42.729	31	19.734	13.199	33			
14	53.50	60.267	41.411	31	19.120	12.774	33			
13	49.75	57.475	39.469	31	18.218	12.163	33			
12	46.00	53.731	36.937	31	17.020	11.373	33			
11	42.25	49.298	34.363	30	15.605	10.470	33			
10	38.50	44.297	30.818	30	14.012	9.472	32			
9	34.75	39.152	27.536	30	12.370	8.454	32			
8	31.00	33.715	24.077	29	10.639	7.382	31			
7	27.25	28.190	20.518	27	8.882	6.283	29			
6	23.50	22.730	16.893	26	7.150	5.166	28			
5	19.75	17.484	13.237	24	5.492	4.042	26			
4	16.00	12.818	9.840	23	4.019	2.999	25			
3	12.25	8.482	6.606	22	2.653	2.008	24			
2	8.50	4.687	3.701	21	1.461	1.122	23			
1	4.75	1.721	1.376	20	0.534	0.415	22			
base	0	0	0	0	0	0	0			


Gambar 13. Grafik Hubungan Displacement dengan Tingkat Portal 15 Komb.1 Arah X


Gambar 14. Grafik Hubungan Displacement dengan Tingkat Portal 15 Komb.1 Arah Y

Tabel 13. Displacement Portal 15 Komb.2

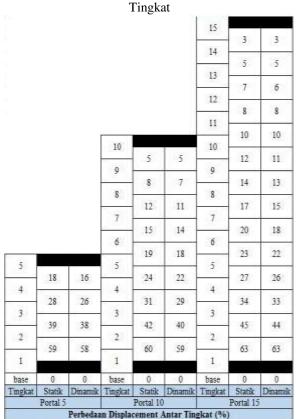
			Kon	nbinasi 2									
	Elevasi			Displacen	ient (m	(mm)							
Tingkat	And the second		Arah X			Arah Y							
	(m)	Statik	Dinamik	Beda (%)	Statik	Dinamik	Beda (%)						
15	57.25	18.639	13.118	30	65.782	45.025	32						
14	53.50	18.080	12.713	30	63.734	43.577	32						
13	49.75	17.242	12.117	30	60.729	41.491	32						
12	46.00	16.119	11.340	30	56.735	38.797	32						
11	42.25	14.789	10.448	29	52.018	35.717	31						
10	38.50	13.289	9.461	29	46.707	32.315	31						
9	34.75	11.745	8.454	28	41.234	28.840	30						
8	31.00	10.114	7.391	27	35.463	25.185	29						
7	27.25	8.457	6.299	26	29.608	21.433	28						
6	23.50	6.819	5.186	24	23.834	17.621	26						
5	19.75	5.245	4.064	23	18.308	13.789	25						
4	16.00	3.845	3.020	21	13.397	10.232	24						
3	12.25	2.544	2.028	20	8.843	6.853	23						
2	8.50	1.406	1.137	19	4.870	3.827	21						
1	4.75	0.516	0.422	18	1.781	1.417	20						
base	0	0	0	0	0	0	0						

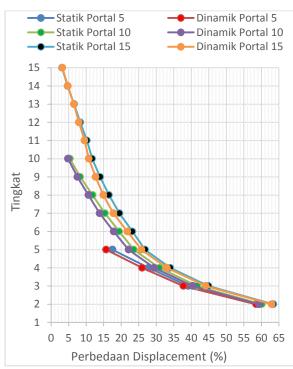

Gambar 15. Grafik Hubungan Displacement dengan Tingkat Portal 15 Komb.2 Arah X

Gambar 16. Grafik Hubungan Displacement dengan Tingkat Portal 15 Komb.2 Arah Y

Tabel 14. Displacement Maks. Portal 15

Displacement Maks.									
Tingkat	Elevasi (m)	Statik (mm)	Dinamik (mm)	Beda (%)					
15	57.25	65.782	45.025	32					
14	53.50	63.734	43.577	32					
13	49.75	60.729	41.491	32					
12	46.00	56.735	38.797	32					
11	42.25	52.018	35.717	31					
10	38.50	46.707	32.315	31					
9	34.75	41.234	28.840	30					
8	31.00	35.463	25.185	29					
7	27.25	29.608	21.433	28					
6	23.50	23.834	17.621	26					
5	19.75	18.308	13.789	25					
4	16.00	13.397	10.232	24					
3	12.25	8.843	6.853	23					
2	8.50	4.870	3.827	21					
1	4.75	1.781	1.417	20					
base	0	0	0	0					


Gambar 17. Grafik Hubungan Tingkat dengan Perbedaan Hasil Displacement Kedua Metode Portal 15


Tabel 15. Perbedaan Displacement Antar Tingkat Portal 10

Displacement Maks. Elevasi Statik Beda Antar Tingkat Dinamik Beda Antar Tingkat											
Tingkat	Elevasi	Statik	Beda Anta	ar Tingkat	Dinamik	Beda Anti	r Tingka				
Lughat	(m)	(mm)	(mms)	(%)	(mm)	(mm)	(%)				
15	57.25	65.782			45.029		17.55				
14	53.50	63.734	2.048	3	43.582	1.448	3				
13	49.75	60.729	3.005	5	41.496	2.086	5				
100	S exce	S-19782	3.994	7	ero.ea	2.695	6				
12	46.00	56,735	4.717	8	38.801	3.081	8				
11	42.25	52.018	45.01	10	35,721	7 400	35.96				
10	38.50	46.707	5.311	10	32.319	3.402	10				
9	34.75	41 234	5.473	12	28.843	3.476	11				
191		1411158	5.771	14	120000	3.655	13				
1	31.00	35.463	5.855	17	25,188	3.753	15				
7	27.25	29.608	5,774	20	21.435	3.812	18				
6	23.50	23.834		10000	17.623		100000				
5	19.75	18.308	5.526	23	13.791	3.832	22				
4	16.00	13.397	4.911	27	10.233	3.558	26				
/-	227/00	33,700	4.554	34	0.000	3,379	33				
3	12.25	8.843	3.973	45	6.854	3.026	44				
2	8.50	4.870	100000	-	3.828	2700075					
1	4.75	1.781	3.089	63	1.417	2.411	63				
buse	0	0	0	0	0	0	0				

Perbedaan Hasil Displacement Antar Tingkat

Tabel 16. Perbedaan Hasil Displacement Antar

Gambar 18. Grafik Perbedaan Besar Displacement yang Terjadi Pada Tingkat Atas Terhadap Tingkat Sebelumnya

Base Shear

Portal 5 Tingkat

Tabel 17. Base Shear Portal 5 Komb.1

				Konbin	mil				
				Base S	eer				
3	H040	Arab X	alto				Arah Y		
	tatik	Die	mek	11.1.00		tatk	Di	unk	A SAME
KN	Kg	KN	Kg	Heda (%)	KN	Kg	KN	Kg	ment (79)
3,033.906	309,372,313	2,578.820	362,966,489	15	910.172	92,811,714	759.090	17,405.650	17

Tabel 18. Base Shear Portal 5 Komb.2

				Komb	inist2				
				Bane	Shear				
	-7	Arah X		V COUR	100	300	Arak V	11	
	tatik	Di	seek:	W-10-14-5	Storik Dounds		nandk .	B-1-00	
KN	Kg.	KN	Kg	Beda (%)	NO.	Ke	KN	Kg	Beda (%)
918.172	92,811,714	788.482	80,402.762	13	1,033,906	309,372,313	2,578.820	362,966,489	15

• Portal 10 Tingkat

Tabel 19. Base Shear Portal 10 Komb.1

				Kenbin	asi I				
-				Base S	bear				
		Arah X		Arah V					
5	tatk	Di-	unik	Bela (%)	Statk		Distorik		m
KN	Ke	KN	Kg		KN	Kg	KN	KE	Detta (74)
3,237,445	330,127,515	2,752.828	280,608.409	15	971.233	99,038,203	109.569	82,583.703	43

Tabel 20. Base Shear Portal 10 Komb.2

				Komb	ingi 2					
		1000		Bine	Sheer		HUMAN			
		Arak X		, 1	1112		Arak Y			
5	tatik .	Di	rank	W-10-19-12	- 5	tutik.	Di	unik	200	
KN	Kg	NN:	Kg	Beda (%)	KN.	Kg	KN	Kg	Beds (%)	
971,234	99,035,385	841.847	85,844,492	13	3,235.445	330,127,515	2.751.828	190,608,409	15	

Portal 15 Tingkat

Tabel 21. Base Shear Portal 15 Komb.1

0				Kombi	uni l					
				Base 8	hear					
		Arak X					Ank Y			
5	tatik	Di-	unik	The Access to	- 3	brik	Di	nnek	B. A. (80)	
KN	Kg	KN	Kg.	Beds (%)	KN :	Kg	KN	Kg	28602 (79)	
3,796.005	387,966,360	9,227,613	329,124.910	15	1,139,942	116,149,959	946.150	96,480,474	-17	

Tabel 22. Base Shear Portal 15 Komb.2

				Koni	issoi 1				
eli .					Shoar				
		ArakX					Arah Y)	
	unk	Di	unik .	W. L. (84)	Stank Disambi			ank .	
KN	Kg	KN	Kg	Bedz (%)	KN	Kg	KN	Kg	Sets(%)
1,139,042	116,149,959	990,938	101,047,504	- 13	3,796.905	387,166,360	3,227,613	329,124,910	15

PENUTUP

Kesimpulan

Dari hasil penelitian ini dapat disimpulkan bahwa :

- Hasil *displacement* dan *base shear* dengan analisa gaya lateral ekivalen selalu lebih besar dibandingkan dengan analisa spektrum respons ragam pada ketiga model portal.
- Pada hasil *displacement*, semakin tinggi kenaikan elevasi tingkat maka semakin kecil

- pertambahan besar nilai *displacement* antar tingkat yang dihasilkan dari kedua metode.
- Model dari struktur yang diteliti merupakan gedung beraturan dan pembebanan tiap-tiap tingkat relatif sama, maka perbedaan besar displacement yang dihasilkan dari kedua metode selalu bertambah lebih besar seiring dengan kenaikan tinggi elevasi tingkat struktur. Namun pada portal 10 dan 15 tingkat pada tingkat atas, perbedaan displacement dari kedua metode sudah tidak bertambah besar lagi tetapi telah mendekati konstan.
- Karena hasil displacement dan base shear pada analisa gaya lateral ekivalen lebih besar dibandingkan pada analisa spektrum respons ragam, maka hasil analisa gaya lateral ekivalen lebih aman jika digunakan untuk penerapan pembebanan gaya gempa dalam perhitungan struktur. Walaupun analisa spektrum respons ragam merupakan analisa

gempa yang lebih akurat dan mendekati ke keadaan yang sebenarnya.

Saran

Saran yang bisa diberikan berhubungan dengan penelitian ini yaitu :

- Perlu dilakukan penelitian untuk variasi model struktur yang lebih banyak dan beragam.
- Untuk penelitian lebih lanjut agar dapat memperhitungkan faktor-faktor lain yang mempengaruhi gaya gempa yang terdapat pada *SNI 1726-2012*, untuk mendapatkan hasil yang lebih akurat
- Perlu dibandingkan hasil analisis berdasarkan SNI 1726-2002 dengan SNI 1726-2012, agar kita dapat mengetahui apa saja dan seberapa besar perbedaan kedua standar perhitungan pembebanan gempa tersebut.

DAFTAR PUSTAKA

- Amelia, Rica. 2005. *Perbandingan Analisis Statik dan Analisis Dinamis pada Portal Bertingkat Banyak Sesuai SNI 03-1726-2002*. Universitas Sumatera Utara.
- Badan Standarisasi Nasional. 2002. Baja Tulangan Beton (SNI 07–2052-2002). Bandung.
- Badan Standarisasi Nasional. 2002. *Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03–2847- 2002)*. Bandung.
- Badan Standarisasi Nasional. 2012. Tata Cara Perencanan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung (SNI 1726-2012). Bandung.
- Badan Standarisasi Nasional. 2013. Beban Minimum Untuk Perencangan Bangunan Gedung dan Struktur Lain (SNI 1727-2013). Jakarta.
- Budiono, Bambang. 2011. Konsep SNI Gempa 1726-201x. Seminar HAKI.
- Setiyarto. Y. Djoko., *Komputer Aplikasi Sipil 7 (SAP2000)*. Bahan Ajar Fakultas Teknik dan Ilmu Komputer UNIKOM.