Kefir: a new role as nutraceuticals
Hanny Setyowati*1, Wahyuning Setyani2
1Department of Research and Development, Borobudur Natural Industry, Semarang
2Faculty of Pharmacy, Sanata Dharma University, Yogyakarta

ABSTRACT

Nutraceutical is the fusion of “nutrition” and pharmaceutical”. This products, in broad, are food or part of food that provides medical or health benefits including the prevention and or treatment of a disease. Kefir is renowned nutraceutical dairy products produced through fermentation of bacteria and yeasts and naturally present in grains of kefir. The nutritional attributes are due to presence of vital nutrients such as carbohydrates, amino acids, proteins, minerals, phosphorus, vitamin, calcium, and certain biogenic compounds. Intestinal immunity, antimicrobial, antitumorogenic, hypcholesterolemia effect, antidiabetic, effect on blood pressure level, antioxidant, wound healing, and lactose intoleran can be achieved using this products. The purpose of this review is to gather information about composition, methods of production, and therapeutic properties of kefir products to provide justification for its consumption. This review confirms that kefir can be a new role of nutraceutical products.

INTRODUCTION

Nutraceuticals are a diverse product category with various synonyms used internationally. The term nutraceuticals were coined from “nutrition” and “pharmaceutical” by Stephen Defelice MD, founder and chairman of the foundation for innovation in medicine (FIM) Cranford, New Jersey, in 1989. According to Defelice “nutraceuticals are food or part of food that provides medical or health benefits including the prevention and/or treatment of a disease.”1,2 Other words used in the context are dietary supplements, functional food, multi-functional food, etc. Functional foods are ordinary foods that have components,
ingredients that incorporated into giving them a specific medicinal or health benefit moreover nutritional effect.

NUTRACEUTICAL CATEGORIES

Due to minimal international regulations different types of products fall under the nutraceutical category. Because of this some of them have overlapping definitions. The most usual are herbals, dietary supplements, functional food and products labeled "nutraceutical". These can be grouped into the following three broad categories:

1. **Nutrients**: Substances with established nutritional functions, such as vitamins, minerals, amino acids and fatty acids.
2. **Herbals**: Herbs or botanical products as concentrates and extracts.
3. **Dietary supplements**: Reagents derived from other sources (e.g. pyruvate, chondroitin sulphate, steroid hormone precursors) serving specific functions, such as sports nutrition, weight-loss supplements and meal replacements.

Das et al. also organize nutraceutical in several ways depending upon its easier understanding and application, i.e. for academic instruction, clinical trial design, functional food development or dietary recommendations. Some of the most common ways of classifying nutraceuticals can be based on food sources, mechanism of action, chemical nature etc. The food sources used as nutraceuticals are all natural and classified as:

1. Dietary Fibre
2. Probiotics
3. Prebiotics
4. Polyunsaturated fatty acids
5. Antioxidant vitamins
6. Polyphenols
7. Spices

KEFIR

Kefir (or known as kefiran) is an EPS classified as a heteropolysaccharide comprising glucose and galactose in high concentrations, and it is classified as a water-soluble gluco galactan, which makes it suitable to be used as an additive.

Exopolysaccharides (EPSs) of microbial origin are long chain, high-molecular-mass water-soluble polymers which may be ionic or non-ionic and have potential applications in food industries as texturizers, viscosifiers, emulsifiers and syneresis-lowering agents due to their pseudoplastic rheological behaviour and water-binding capacity. Kefiran has excellent rheological properties and can significantly improve the viscosities of lactic products by favoring and maintaining gel properties and avoiding the loss of water during storage. With respect to the biological activity of kefiran, several studies have demonstrated that this EPS can be used as a nutraceutical.

Figure 1. Kefir structure

Origin of kefir

Kefir is a viscous, slightly carbonated dairy beverage that contains small quantities of alcohol and, like yoghurt, is believed to have its origins in the Caucasian mountains of the former USSR. It is also manufactured under a variety of names including kephir, kiaphur, kefer, knapon, kepi, and kippi. It is not clear whether all kefirs originate from a single original starter culture since microbial analyses of kefir samples taken from different locations indicate microflora population differences.

Kefiran, which is mainly produced by...
homofermentative *Lactobacillus* species and yeasts, is a branched polysaccharide containing equal amounts of glucose and galactose. The kefir grain contains *lactococci*, *leuconostocs*, *thermophilic* and *mesophilic* lactobacilli, yeasts (lactose negative and lactose positive), and acetic acid bacteria. These microorganisms maintain a symbiotic life in kefir grain. In this microflora, there are lots of microorganisms such as *Lb. brevis*, *Lb. kefir*, *Lb. acidophilus*, *Lb. bulgaricus*, *Lb. casei*, *Lb. kefiranofaciens*, *Lb. helveticus*, *Lactococcus lactis* subsp. *lactis*, and *Lactococcus lactis* subsp. *Cremoris*. Yeast was isolated from kefir were identified as *Kluyveromyces marxianus*, *Kluyveromyces wickerhamii*, *Saccharomyces cerevisiae*, *Pichia angusta*, *Pichia guilliermondii*, *Candida glaeosa*. *Kluyveromyces marxianus* was identified in the isolates from all the kefir samples, followed by *Kluyveromyces wickerhamii*.

Kefir production

The traditional way of producing kefir is using raw unpasteurized, pasteurized, or UHT treated milk. The milk is poured into a clean suitable container with the addition of kefir grains, the content is left to stand at room temperature for approximately 24 hours. The cultured-milk is filtered in order to separate and retrieve the milk grains from the liquid-kefir. This fermented milk is appropriate for consumption. The grains are added to more fresh milk and the process is simply repeated. This simple process can be performed on an indefinite basis, since kefir grains are a living ecosystem complex that can be preserved forever as long as it is feeded. As active kefir grains are continually cultured in fresh milk to prepare kefir, the grains increase in volume or in biological mass. Dailin et al found that the optimum medium for production was composed of (g/L): lactose, 50.0; yeast extract, 12.0; KH$_2$PO$_4$, 0.25; sodium acetate, 5.0; Triammonium citrate, 2.0; MgSO$_4$·7H$_2$O, 0.2; MnSO$_4$·5H$_2$O, 0.05. This new medium formula not only increased the kefiran volumetric production from 0.23 up to 1.29 g/L, but also shorten the production time from 72 hours to only 60 hours. The kefir grain biomass increased significantly by addition of mineral sources and vitamins in conventional medium, using organic milk as culture medium and incubation parameters: 24 hours at 25°C with agitation rate at 125 rpm. Another studies by Purmomo et al and Lengkey et al resulted that the optimum of milk kefir can be prepared with 7% (w/v) and 10% (w/v) Indonesian kefir grains and incubation time of 24 hours.

Kefir product also can be made from a mixture of water, dried figs, a slice of lemon and sucrose. The water kefir was prepared in a sucrose solution (100 g/l) in 1 l tap water containing two dry figs and a slice of organic lemon. The predominant genus in water kefirs was *Lactobacillus*, which the most abundant species were *Lb. hordei* and *Lb. nagelii* followed by considerably lower numbers of *Lb. casei*.

Figure 2. Kefir production. Kefir grains (1) are added to milk, (2) are left to stand at room temperature for fermentation 18-24 h, (3) after which they are filtered, (4) and ready to start another cycle. The fermented milk that results form step 4 is appropriate for consumption

Characteristics of Kefir

The kefir grains are insoluble in water and common solvents, gelatinous and irregular in size, varying from 0.3-3.5 cm in diameter. Kefir grains resemble small cauliflower florets: they measure 1-3 cm in length, are lobed, irregularly shaped, white to yellow-white in color, and have a slimy but firm texture (Fig. 3). Grains are kept...
viable by transferring them daily into fresh milk and allowing them to grow for approximately 20 hours; during this time, the grains will have increased their mass by 25%. Grains must be replicated in this way to retain their viability, since old and dried kefir grains have little or no ability to replicate.

Identification the kefiran (extracted from kefir grains) using FTIR spectroscopy showed that the structural integrity was maintained in biofilms. The best characteristics (transparency and elasticity) obtained from kefiran solution with 7.5% w/w glycerol.

Figure 3 Physical appearance of a typical kefir grain

Composition of kefir

Kefir has the high levels of nutritional value, such as amino acids, proteins, minerals, phosphorus, vitamin, and calcium. Suriasih et al. have observed the chemical composition of pasteurised Bali cattle milk. Kefir prepared through 24 hours fermentation showed the highest microbial population, lactose content and pH, but the lowest titratable acidity and protein concentration. There were two species of lactic acid bacteria found in kefir samples, namely, *Lactobacillus paracasei* and *Lactobacillus brevis*, and only one species of yeast, namely *Candida famata* was identified from the kefir samples in this study. *Lactobacillus paracasei* represented the largest and most commonly identified LAB isolates, with 89 of a total of 249 isolates, followed by *Lactobacillus parabuchneri* (41 isolates), *Lactobacillus casei* (32 isolates), *Lactobacillus kefiri* (31 isolates) and *Lactococcus lactis* (24 isolates) in the Brazilian kefir. *Lactobacillus kefiri* is another important bacterium found during kefir fermentation. There are reports on the presence of *Lactobacillus kefiri* as a prevailing member of the lactic acid microbiota in milk kefir. The FAO/WHO (2001) have proposed a definition of kefir based on the microbial composition of both kefir grains (the starter culture used to produce kefir) and the final kefir product (see Table 1).

Table 1 Codex Alimentarius description of kefir

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter culture prepared from kefir grains, Lactobacillus kefiri, and species of the genera Leuconostoc, Lactococcus and Acetobacter growing in a strong specific relationship. Kefir grains constitute both lactose-fermenting yeasts (Kluyveromyces marxianus) and non-lactose-fermenting yeasts (Saccharomyces unisporus, Saccharomyces cerevisiae and Saccharomyces exigus).</td>
</tr>
<tr>
<td>Composition</td>
</tr>
<tr>
<td>Milk protein (% w/w)</td>
</tr>
<tr>
<td>Milk fat (% m/m)</td>
</tr>
<tr>
<td>Titratable acidity, expressed as % of lactic acid(% m/m)</td>
</tr>
<tr>
<td>Ethanol (% vol./w)</td>
</tr>
<tr>
<td>Sum of specific microorganisms constituting the starter culture (cfu/g. in total)</td>
</tr>
<tr>
<td>Yeasts (cfu /g)</td>
</tr>
</tbody>
</table>

THERAPEUTIC PROPERTIES

Intestinal immunity

Kefir colonizes in the intestine and produces favorable factors (probiotic). To work as probiotic intestinal adhesion to epithelium or/and transit are vital factors in determining the
host’s immune reactivity. *Lactobacillus* species isolated from kefir have the capacity to resist oxgall and many of them are able to adhere to enterocyte like cells24.

Probiotics are live microorganisms which exert a benefit effects on the host. The Food and Agriculture Organization of the United Nations defines them as “live microorganisms which when administered in adequate amounts confer a health benefit on the host”. Members of general *Lactobacillus* and *Bifidobacterium* are the most common probiotics used not only for human consumption but also in pharmaceutical preparations or in biomedicine25. One of the main criteria for selection of oral administration of probiotics is their ability to adhere to the intestinal mucosa allowing a transitory colonization of the gastrointestinal tract. Probiotics maintain the balance within such complex ecosystem as human intestine in many ways: inhibition of the proliferation of pathogens by competition between bacteria and pathogens for adhesion, suppression of production of virulent factors by pathogens secreting bacteriocins, or modulation of the host immune system via interaction between probiotic bacteria and intestinal epithelial cells 26.

Bekar et al 27 found that kefir improves eradication rates in patients infected with *Helicobacter pylori* treated by triple therapy during 14-days. This product can enhances the specific intestinal mucosal immune response against cholera holotoxin. Increased immunoglobulin secretion appears to be associated with a higher number of antibody-secreting cells in the gut-associated lymphoid tissues. These probiotic foods may have a common adjuvant effect on the mucosal immune system 28.

Antimicrobial activity

Kefir possesses antimicrobial activity in vitro against a wide variety of Gram-positive and Gram-negative bacteria, as well as some fungi. Some coliforms are actively inhibited by kefir microorganisms, and pathogenic bacteria such as *Candida albicans*, *Salmonella typhi*, *Shigella sonnei*, *Staphylococcus aureus*, and *Escherichia coli* 29. The exact cause of inhibition is not known, but may be due to the antagonist action of various species of LAB (Lactic Acid Bacteria), which are also capable to preventing the adherence, establishment, replication, and/or pathogenic action of certain enteropathogens which related to their function as probiotics 30.

Anticarcinogenic Activity

The anticarcinogenic role of fermented dairy products like kefir, can be attributed to cancer prevention and the suppression of early-stage tumors. The bioactive components in fermented milk have the capacity to prevent the cancer initiation (antimutagenic); these also work by suppressing the initiated tumor growth by hindering certain enzymes so that conversion of procarcinogen to carcinogen is eliminated 31. Kefir which made from milk and soymilk showed significant antimutagenic by reducing the glutathione peroxidase activity 32. The other mechanism by which cancer initiation process slows down is the activation of the immune system (Fig. 4).

Hypocholesterolemic Effect

Hypolipidemic nutraceuticals help improve serum lipid profiles as reducing total cholesterol, triglyceride, and low-density lipoprotein cholesterol, while elevating high-density lipoprotein cholesterol 33,34. Possible mechanisms proposed for the hypocholesterolemic activity in kefir may involve different ways: (i) through the binding to and absorption into the cell before it can be absorbed into the body; (ii) producing
free and deconjugating bile acids; (iii) inhibiting the enzyme HMG-CoA reductase.

Figure 5 Cholesterol biosynthesis pathway

Two substances, i.e, orotic acids and/or hydroxymethylglutaric are thought to restrict rate-limiting enzyme that is important in synthesis of cholesterol (Fig. 5). The mechanism of deconjugation of bile acids was done by increasing the formation of new bile acids needed to replace those that have escaped the enterohepatic circulation, resulting in the decrease of serum cholesterol levels (Fig. 6). These findings demonstrate that kefir or its components have greater potential to be used as hypocholesterolaemic substance.

Antidiabetic activity

Kefir that was produced in conjunction with soymilk and Rhodiola extracts exhibited a better anti-diabetic functionality. This product mobilized the phenolics compounds, which alter the postprandial hyperglycemia. Consumption of probiotic-fermented milk (kefir) in diabetic patients in comparison with conventionally fermented milk decreased the fasting blood glucose and HbA1C levels. These probiotics affected gut bacteria to produce insulinotropic polypeptides and glucagon-like peptide-1 so induce uptake of glucose by muscle. As well as liver stimulates the absorption of more blood glucose in the form of glycogen.

Effect on blood pressure level

Lactobacillus kefiranofaciens, isolated from kefir grains, produces an extracellular polysaccharide which can decrease the blood pressure in rats after 30 days. A commercial kefir which made from caprine milk can manage blood pressure in the presence of two out of sixteen peptides. This effect on blood pressure may be attributed to suppressing the angiotensin-converting enzyme (ACE). ACE activity influences blood pressure through different means. ACE converts AT I to AT II. AT II is a potent vasoconstrictor and it also stimulates aldosterone in kidney to retain more liquid in the body, thus increases blood pressure (Fig. 7).
Antioxidant activity
Kesenkas et al. evaluated antioxidant activity of kefirs produced from full and half fat cow/soy milk mixtures. The inhibition of ascorbate autoxidation from cow/soy milk kefirs ranged from 8.34–17.00%, which related to their reduction activity. Similarly with the ascorbate autoxidation ability and reducing the activity of kefir samples, the superoxide anion scavenging effect of samples showed satisfy results. It has been indicated that some Lactococcus spp. are responsible to expressing antioxidative enzyme superoxide dismutase activity.

Another study possessed that addition of kefir grains to the goat milk, the DPPH radical scavenging activity appeared to have increased. The goat milk-kefir is a good scavenger for DPPH radical; thus, kefir can afford protection against proton free radicals. The fresh water kefir drink showed a high ability for inhibition ascorbate autoxidation, which attributed to its contains of lactic acid, acetic acid bacteria, and yeasts. It can refered to their simultaneously existing, and their intracellular and extracellular metabolites and also to the products of its cell lysis.

Wound healing activity
Kefir gels had a protective effect on skin connective tissue and 7 days treatment enhanced wound healing compared with 5 mg/kg of neomycin–clostebol emulsion. This product which prepared from an extract of continuously cultured kefir grains, resulted the lower inflammation and the higher epithelization and scar formation compared to conventional silver sulfadiazine treatment.

Lactose intoleran
The term lactose intolerance indicates that lactose malabsorption causes gastrointestinal symptoms. Lactose malabsorption occurs when a substantial amount of lactose is not absorbed in the intestine. These symptoms are common in the absence of lactose ingestion and are highly susceptible to the placebo effect. The strategy to treat lactose intolerance is to restrict consumption of dairy foods containing lactose. Commercial products developed for lactose-intolerant persons include lactose-reduced milk and lactase supplements taken at the time of milk ingestion, one of them is fermented milk, like kefir.

Kefir can reduce the perceived severity of flatulence by 54% to 71% relative to milk. Abdominal pain and diarrhea symptoms were negligible among the kefir treatment. Many subjects with lactose intolerance can consume milk and dairy products without getting symptoms and fermented milk products may be helpful in improving tolerance. Other individuals do benefit significantly from lactose restriction but care needs to be taken to ensure that calcium intake is sufficient. A greater understanding of the complexity of lactose intolerance, lactase deficiency and symptom generation would help clinicians treat patients more effectively.

CONCLUSIONS
Due to high nutraceutical and therapeutic potential, kefir is ranked at top position. The characteristics in kefir are attributed to amino acids, proteins, minerals, phosphorus, vitamin, calcium, and certain biogenic compounds. The microbiota of kefir has especially affected kefir grain from various origins and production methods. The beneficial health associated with kefir are numerous, including, intestinal immunity, antimicrobial, anticarcinogenic, hypcholesterolemic effect, antidiabetic, the effect on blood pressure level, antioxidant, wound healing, and lactose intolerance.

REFERENCES
3. Chauhan B, Kumar G, Kalam N, Ansari SH. Current concepts and prospects of herbal

43. Muneer AMS, Aldhehar I, Al Jawfi Y, Belarbi M, Sabri FZ. Antioxidant potency of water kefir. The Journal of Microbiology, Biotech-

