
Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

44

A Novel Approach to Communicate Secret

Message between Users Using Sponge

Function Technique on NTRU

S.Varaprasad
(1)#

, K.Venkata Rao
(2)*

, and P.S.Avadhani
(1)@

(1)
Dept.of Computer Science & Systems Engineering Andhra University,Visakhapatnam, INDIA

(2)
Dept.of Computer Science Vignan Instuite of Information Technology,Visakhapatnam,INDIA

e-mail:

#
Vara996@gmail.com; *vrkoduganti@gmail.com;

@
psavadhani@yahoo.com

Abstract - This paper presents a novel approach for a (key

distribution) for secret message communication among a group (G).

In order to increase security to distribute secret message (key), we

introduce sponge functions using these at a specific permutation. We

generate a key and distribute this key using (PKCS)(public key crypto

systems), the absorbing, squeezing functions are used. In this paper

an introduction part which briefs regarding sponge functions, key

distribution centre, group communication and NTRU, key generation

authentication, in literature review we describe about the research

states of sponge functions, lightweight hash functions-KDC – NTRU.

In proposed work we propose how the group communication

establishes registration of users, entry and exit of a user. The

encryption and decryption algorithm are used between sender and

receiver. The entire proposed work is verified in VHDL and

‘MATLABS’.

[Keywords : Sponge function; NTRU; encryption; decryption;

Keydistributioncenter (KDC) Absorbing; Squeezing functions]

I. INTRODUCTION

Designers of lightweight cryptographic algorithms or protocols

have to trade off between two opposite design phi mlosophies.

The first consists in creating new schemes from scratch,

whereas the second consists in reusing available schemes and

adapting them to system constraints. They are more in line

with the latter approach—as illustrated by their DM-

PRESENT proposal—we ten more towards the former.

Although QUARK borrows components from previous works,

it integrates a number of innovations that make it unique and

that optimize its light weightness. As explained in this section,

QUARK combines a sponge construction with a capacity c

equal to the digest length n, a core permutation inspired by

previous primitives, optimized for reduced resources

consumption. This design strategy as an attempt to optimize its

security-performance ratio. Subsequent proposals of

lightweight hash functions followed a similar strategy, with

PHOTON and SPONGENT respectively building their core

permutations on AES- and SERPENT-like algorithms.

II. MATERIALS AND METHODS

I. Separating digest length and security level

We observe that the digest length of a hash function has

generally been identified with its security level, with (say) n-

bit digests being equivalent to n-bit security against preimage

attacks. However, this rule restricts the variety of designs, as it

forces designers to exclude design paradigms that may

otherwise increase usability or performance the notation

introduced in the context of sponge finctions[13] was first step

towards a separation of digest length and security level, and

thus towards more inventive designs. In particular, the

necessity of n-bit (second) preimage resistance is questionable

from a pragmatic standpoint, when one needs to assume that

2
n
/
2
 is an infeasible effort, to avoid birthday collision search.

Designers may thus relax the security requirements against

(second) preimages—as informally suggested by several

researchers in the context of the SHA-3 Competition—so as to

propose more efficient algorithms[13].

III Working with shift registers

In cryptography, linear or non-linear feedback shift registers

have been widely used as a building block of stream ciphers,

thanks to their simplicity and efficiency of implementation (be

it in terms of area or power consumption). In the design of

QUARK, we opt for an algorithm based on bit shift registers

combined with(non-linear) Boolean functions, rather than for a

design based on S-boxes combined with a linear layer (as

PHOTON and SPONGENT). This is motivated by the

simplicity of description and of implementation, and by the

close-to-optimal area requirements it induces. Indeed, the

register serves both to store the internal state (mandatory in

any construction) and to perform the operations bringing

confusion and diffusion .

IV Description of the QUARK hash family

This section gives a complete specification of QUARK and of

its three proposed instances: U-QUARK, D-QUARK, and S-

QUARK. In particle physics, the u-quark is lighter than the d-

quark, which itself is lighter than the s-quark; our eponym

hash functions compare similarly.

Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

45

Fig.1 Sponge Construction of a 4-block padded Message

2..Sponge construction

QUARK uses the sponge construction, depicted in Fig. 1, and

a 6-bit permutation P (that is, a bijective function over {0,1}
b
).

Following the notations introduced a QUARK instance is

parameterized by a rate (or block length) r, a capacity c, and

an output length n. The width b = r+c of a sponge construction

is the size of its internal state. We denote this internal state s =

(S0 . .., Sb-1), where S0 is referred to as the first bit of the state.

Given a predefined initial state of b bits (specified for each

instance of Quark) the sponge construction processes a

message m in three steps [4].

1. Initialization: the message is padded by appending a '1' bit

followed by the minimal (possibly zero) number of '0' bits

to reach a length that is a multiple of r.

2. Absorbing phase: the r-bit message blocks are XOR's

with the last r bits of the state (that is Sb-r ,….. Sb-2,,

Sb-1)

interleaved with applications of the permutation P. The

absorbing phase starts with an XOR between the first block

and the state, and it finishes with a call to the permutation

P.

3. Squeezing phase: the last r bits of the state are returned as

output, interleaved with applications of the permutation P,

until n bits are returned. The squeezing phase starts with

the extraction of r bits, and also finishes with the extraction

of r bits.

2.1.Permutation

As depicted in Fig. the internal state of P is viewed as three

feedback shift registers (FSRs) two non-linear ones (NFSRs)

of b/2 bits each, and a linear one (LFSR) of [log 4b] bits. The

state at epoch t ≥ 0 is thus composed of
a. AnNFSRX ofb/2bits, denoted X

t
 = (X0

t
,...X

t
b/2-1).

b. An NFSRY of b/2 bits, denoted Y
t
=(Y0

t
,.....Y

t
b/2-

1).

c. An LFSR L of [log 4b] bits,denoted L
t
= (L0

t
......L

t
 (1-׀log4b׀

d. Given a b-bit input, P proceeds in three stages, as

described below.

e. Initialization. Upon input of the b-bit internal state of the

sponge construction s = (S0, .. ., sb-1), P initializes its

internal state as follows:

 X is initialized with the first b/2 input

 bits:(X0
0
,,... ,X

0
b/2-1):=(s0,......,Sb/2-1).

 Y is initialized with the last b/2 input

bits: (Y0
0

,……..Y
0

b/2-1):=(sb/2,…..sb-1).

L is initialized to the all-one string:

(L0
0
,…….,L

0
 .(1..…,1)= : (1-׀log4b׀

4. State update
From an internal state (X

t
, Y

t
, L

t
), the next state (X

t+1
 ,Y

t+1
,

L
t+1

) is determined by clocking the internal mechanism as

follows

a. The function h is evaluated upon input bits from X
t
,Y

t
, and

L
t
, and the result is written h

t
::= h(x

t
,Y

t
,L

t
).

b. X is clocked using Y0
T
, the function f, andh

t
:

c. (X0
t+1

,…..Xb/2-1
t+1

):=(X1
t
,…..Xb/2-1,Y0

t
+f(X

t
) +h

t
).

d. Y is clocked using the function g and H=

(Y0
t+1

,…..Yb/2-1
t+1

):= (Y1
t
,…..Yb/2-1,g(Y

t
) +h

t
).

e. L is clocked using the function p:

(L0
t+1

,…..L
t
│log4b│-1):= (L1

t
,….. L

t
│log4b│-1 ,p(L

t
)).

Table 1 summarizes the parameters of the three instances

proposed.

U-QUARK is the lightest flavor of QUARK. It was designed

to provide 128-bit preimage resistance and at least 64-bit

security against all other attacks, and to admit a parallelization

degree of 8. It has parameters r=8,c=128, b=136,n=136.

Function f. Given a 68-bit register,x,f returns:-

X0+X9+X14+X21+X28+X33+X37+X45+X50+X5+X55X59

+X33X37+X9X15+X45X52X55+X21+X28+X33

X9X28X45X59+X33X37X52X55+X21X28X33+X9X28X45X59+

X33X37X52X55+X15X21X55X59+X37X45X52X55X59+

X37X45X52X55X59+X9X15X21X28X33+X21X28X33X37X45X52 .

 D-QUARK is the second-lightest flavor of QUARK. It

was designed to provide 160-bit preimage resistance and at

least 80-bit security against all other attacks, and to admit a

parallelization degree of 8. It has parameters r = 16, c = 160, b

= 176, n = 176.

Function f. D-QUARK uses the same function / as U-

QUARK, but with taps 0, 11, 18, 19, 27, 36, 42, 47, 58, 64, 67,

71, 79 instead of 0, 9, 14, 15, 21, 28, 33, 37, 45, 50, 52, 55, 59,

respectively.

S-QUARK is the heaviest flavor of QUARK. It was designed

to provide 224-bit preimage resistance and at least 112-bit

security against all other attacks, and to admit a parallelization

Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

46

degree of 16. It has parameters r = 32, c = 224, b =

256, n = 256.

Function f. S-QUARK uses the same function / as U-

QUARK, but with taps 0, 16, 26, 28, 39, 52, 61, 69, 84, 94,

97,103,111 instead of 0, 9, 14, 15, 21, 28, 33, 37, 45, 50, 52,

55, 59, respectively.

3.Keying QUARK

As a sponge function, all results known on the sponge

construction apply to QUARK. This includes proofs of

security for keyed modes of operation, as described in . A

keyed sponge function processes its input by simply hashing

the string composed of the key followed by the said input. The

following primitives can then be realized:

Message authentication code (MAC);

Pseudorandom generator;

Stream cipher;

Random-access stream cipher;

Key derivation function.

Furthermore, the QUARK instances can easily be modified to

operate in the duplex construction (a variant of the sponge

construction), to allow the realization of functionalities as

authenticated encryption or

3.1.A Brief Description of the Present Block Cipher

Present is a 31-round SPN structure block cipher with block

size of 64 bits, the cipher is described in fighre-. It supports 80

and 128 –bit secret key. Firstly, the plaintext Xored subkey K
׀

as the input of the 1
st

 round alter 31 rounds iterations, the 31
st

round output Xored with the subkey K
32

 is the cipher text.

Encryption Procedure. Each encryption round consists of the

following 3 steps :-

(1). Add RoundKey –AK : At the beginning of each round 64

bits output of the last round function is Xored with the

subkey.

(2) SBoxlayer–SL: The SL function{ }0,1 maps input

(x0,x1,x2,x3) to output (y0,y1,y2,y3) , 16 identical 4-bit S-

boxes are used in parallel. The Boolean function of S-box

is y0= x0 +x2 +x3+x1x2.

(3) Player PL : the i
th

 bit is moved to bit position P(i) by a

constant permutation table Figure 1.Overview of Present

Encryption Algorithm

4. KEY DISTRIBUTION

Cryptography has for a long time conformed to the idea

that the techniques used to protect sensitive data had

themselves to be kept secret. Such principle, known as

"cryptography by obscurity" has however become inadequate

in our modern era. Cryptography, that has developed as a

science in the 1970s and 1980s allowed to move away from

this historical picture and most of the modern cryptographic

systems are now based on publicly announced algorithms

while their security lies in the use of secret keys

Distributing keys among a set of legitimate users while

guaranteeing the secrecy of these keys with respect to any

potential opponent is thus a central issue in cryptography,

known as the Key Establishment Problem.

Fig 3. Over view of Present Encryption Algorithm

There are currently five families of cryptographic methods that

can be used to solve the Key Establishment Problem between

distant users:

1. Classical Information-theoretic schemes

2. Classical public-key cryptography

3. Classical computationally secure symmetric-key

cryptographic schemes

4. Quantum Key Distribution

5. Trusted couriers

We will present how each of those cryptographic families can

provide solutions to the Key Establishment problem and

discuss, in each case, the type of security that can be provided.

We will also consider a sixth type of Key Establishment

schemes: hybrid schemes built by combining some of the

methods listed above.

4.1.Key Establishment based on public-key cryptography:-
As shown by Whitfield Diffie and Martin Hellman in 1976 ,

public-key cryptography can be used to establish a shared

secret key over an unprotected classical communication

channel, without using a prior shared secret. It thus provides a

practical way to implement key distribution over open

networks.

4.1.1.Security of public-key cryptography Current

asymmetric classical cryptographic schemes, such as RSA, are

based on the difficulty to compute logarithms within a finite

field. Today's implementations of RSA require to use private

and public keys of at least 1024 bits, in order to offer a

reasonable security margin against the computational efforts of

an eavesdropper
1
, and asymmetric keys of 2048 bits are

preferable. It is also important to note that most of the

currently used public-key cryptographic schemes (for example

Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

47

RSA) could be cracked in polynomial time with a quantum

computer: this results from Shor's algorithm for discrete log

and factoring, that has a complexity of O(n
3
) [13].

4.1.2. Performance of public-key cryptography. Making the

computations relative to the asymmetric cryptographic

protocols (over keys longer than 1024 bits) is a rather

computational intensive and time-consuming task. The

performance of RSA-based key distribution implementations

depend heavily on hardware : for RSA 2048 implemented on a

recent PC (Pentium IV with a 2.1 GHz processor running

under Windows XP), the computations needed for one key

exchange (essentially one RSA encryption and one decryption)

take roughly 30 ms . The same key exchange would be

approximately 10 times faster (thus in the ms range) on

dedicated coprocessors and 10 times slower (in the time range

of a few tens of a second) on smart card coprocessors ,

Because of those relatively low exchange rates, public-key

cryptography is most commonly used solely for initial session

key distribution (in network protocols like SSL for example),

and classical symmetric-key cryptography is then generally

used for symmetric encryption and/or authentication of data.

4.1.3.ClassicalComputationally Secure Symmetric key

Cryptography and key Establishment
Symmetric-key cryptography refers to cryptography methods

in which both the sender and receiver share the same key.

Symmetric-key encryption was the only kind of encryption

publicly known until the discovery of public-key cryptography

in 1976. Symmetric-key ciphers are used to guarantee the

secrecy of the encrypted messages. The modern study of

symmetric-key ciphers relates mainly to the study of block

ciphers and stream ciphers and to their applications. AES is a

block cipher that had been designed by a team of Belgium

cryptographers (Joan Daemen et Vincent Rijmen) and has

been adopted as an encryption standard by the US government

(in replacement of DES). Block ciphers can be used to

compute Message Authentication Codes (MACs) and can thus

also be used to guarantee integrity and authenticity of

messages. Stream ciphers, in contrast to the block ciphers,

create an arbitrarily long stream of key material, which is

combined with the plaintext bit-by-bit or character-by-

character, somewhat like the One-Time-Pad. We will not

consider stream ciphers in the remaining part of this sub-

section, since, unlike block ciphers, they cannot be easily used

to perform Key Establishment.

4.1.4..Key Establishment based on Classical

Computationally. Secure Symmetric-Key Cryptography Key

Establishment can be realised by making use of only

symmetric-key cryptographic primitives. Indeed, the

combination of a symmetric-key encryption scheme with a

symmetric-key authentication scheme allows one to build a

Key Establishment primitive. Provided that a secret key is

previously shared, symmetrically, by Alice and Bob, one can

use a symmetric-key cipher to encrypt a message that will

constitute the secret key for the key distribution protocol (this

message can be random or not). Part of the previously shared

symmetric key material can also be used to symmetrically

compute (on Alice's side) and check (on Bob's side) a message

authentication tag. Key Establishment based on symmetric-key

cryptographic primitives are always based on a pre-established

symmetric secret, needed for authentication. In this sense, they

only allow Key Expansion more than Key Establishment.

4.1.5. Security of classical computationally secure

symmetric-key cryptography. The security of key distribution

based on classical symmetric-key cryptography depends on the

security of the cryptographic primitives that are used, and on

the composability of those crypto primitives. Shannon has

proven that there is no unconditionally secure encryption

scheme which requires less key than a One-Time Pad, i.e., the

number of key bits is at least as large as the length of the

message . Hence, if we consider the possibility of building an

unconditionally secure symmetric key expansion scheme, i.ev a

method to symmetrically generate secret key out of a short

initial symmetric shared secret key, the former results from

Shannon tell us that such a scheme is impossible to achieve in

the framework of classical cryptography. This is a

fundamental limitation of any communication scheme relying

solely on the exchange of classical messages since, in contrast

to quantum messages, classical messages can be copied

without errors. It is however possible to use classical

symmetric-key encryption and authentication schemes, that are

not unconditionally secure, to build a Key Establishment

scheme. AES can for example be used for symmetric-key

encryption and can be also used to compute message

authentication codes (using AES-MAC). Note that the security

model that applies to such symmetric-key classical encryption

schemes (symmetric-key block ciphers and stream ciphers) is

not unconditional security (the entropy of the key is smaller

than the entropy of the message) and not even "provable

computational security" (based on some proven upper bounds

or on some equivalence between the complexity of the crypt-

analysis of a given cipher and another well-studied problem
2
).

The security model that applies to classical symmetric-key

cryptography can be called "practical computational security":

a cryptographic scheme is considered "practically

computationally secure" if the best-known attacks require too

much resource (such as computation power, time, memory) by

an acceptable margin The main problem with such a security

model is that it is unable to guarantee anything about yet

unknown attacks . There are no publicly known efficient

quantum attacks on classical symmetric-key cryptographic

schemes (but no proof that efficient attacks cannot be found),

and the crypt-analysis of symmetric-key classical

cryptography on a quantum computer reduces to exhaustive

search. Here a quantum computer would thus still give an

advantage: the complexity of exhaustive search in a unsorted

database of N elements is of O(N) on a classical computer but

only of O(VN) on a quantum computer.

Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

48

Performances In terms of performance, symmetric-key

classical cryptography is much faster and less computational

intensive than asymmetric cryptography
3
. In terms of speed,

there are now 128-bit AES encryptors able to encrypt data at

rates in the Gbit/s range , This is the reason why it is widely

preferred to use symmetric-key schemes for encryption and/or

authentication over currently deployed communication

networks. AES is currently the chosen standard for symmetric-

key classical block ciphers. Under the assumption that the best

way to break a symmetric-key cryptographic scheme is

exhaustive search within the key space
4
, then, a symmetric key

modulus of 77 bits is roughly comparable, in terms of

computational requirements, to an asymmetric key modulus of

2048 bits . Note that doubling the length of a symmetric key

implies squaring the computational efforts needed for

exhaustive search; on the other hand, the computational efforts

scale not as fast with key length in the case of asymmetric

cryptography.

5.NTRU

Description of NTRU :- NTRU is based on the algebraic

structures of certain polynimal rings.The ‘hard problem” on

which NTRU is based is the Short Vector Problem (finding a

short vector in a lattice).

a. Notation. Before we proceed, we set some notation. The

following are all part of the domain parameters for an

implementation of NTRU.

n The dimension of the polynomial ring used in NTRU. (The

polynominals will have degree n-1.)

p A positive integer specifying a ring Z/PZ over which the

coefficients of a certain product of polynomials will be

reduced during the encryption and decryption processes.

q A positive integer specifying a ring Z/qZ over which the

coefficients of a certain product of polynomials will be

reduced during the encryption and decryption processes,

also used in the construction of the public key.

k A security parameter which controls resistance to certain

types of attack including plain text awareness.

df The distribution of the coefficients of the polynomial f,

below (f is part of the private key).

dg The distribution of the coefficients of the polynomial g,

below(g is used to construct the public key).

dr The number of 1s and -1s used in a certain random

polynomial r, below , in the encryption process.

We will also use the following notation.

f A polynomial in
[]X

Z (X
n—

1)

fp A polynomial in
[]X

Z /(p,X
n
-1)

this is part of the

private key). This polynomial is obtained by reducing the

coefficients of f modulo p.

fq A polynomial in
[]X

Z /(q,X
n
-1). This polynomial is

obained by reducing the coefficients of f modulo q.

Lf The set of polynomials in
[]X

Z /(x
n
-1) whose coefficients

satisfy df .

 A polynomial in
[]X

Z /(q,X
n
-1) (used with fq to construct

the public key).

Lg The set of polynomials in
[]X

Z /(x
n
-1) whose cofficients

satisfy dg .

Lr The set of polynomials in
[]X

Z /(x
n
-1) whose coefficients

satisfy dr .

fp
-1

. The inverse of fq in
[]X

Z / (q, X
n
-1).

h The public key, a polynomial in
[]X

Z /(q,X
n
-1).

r A polynomial in
[]X

Z (q,X
n
-1 (used with h to encode a

message).

m The plaintext message, a polynomial in
[]X

Z / (p,X
n
-1).

e The encrypted message, a polynomial in
[]X

Z /(q,X
n
-1).

G A generating function (defined below).
H A hashing function (defined below).

Case 2 and 3 show that none of the operations used in the key

generation process is effective if the cipher key is made of all

0’s or all 1’s. These types of cipher keys need to be avoided,

as discussed in Chapter 6.

S-DES is very vulnerable to brute-force attack because of its

key size (10bits)

Throughout this paper, we work in the ring

[] ()/ 1nR X x= -¢
. An element

f RÎ
 will be written as

a polynormal or a vector.

[]
1

0 1 1

0

, ,........,
n

i

i n

i

f f x f f f
-

-
=

= =å

We write * to denote multiplication in R. This star

multiplication is given explicitly as a cyclic convolution

product,

f g h* =
 with

1

0 1 mod

.
k n

k i k i i n k i i j

i i k i j k n

h f g f g f g
-

- + -
= = + + =

= + =å å å

When we do a multiplication modulo (say) q, we mean to

reduce the coefficients modulo q, so the result lies in

[] ()/ , 1nX q X -¢ .

Remark. The naive computation of a product *f S requires

2n multiplications. However, in a typical product used by

NTRU, one of f or g has small coefficients that are all 0’s

and 1'± s, so *f g may be computed extremely rapidly.

Further, for large values of n one may choose n to be highly

divisible by 2, in which case the convolution product can be

computed in O ()logn n operations by using Fast Fourier

Transforms.

 In addition to this convolution product, there are two other

operations we need to define on rings of polynomials. These

are a generating function and a hashing function. They are

Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

49

required in order to build a digital envelope into the NTRU

protocol. We first let

()pP n = {polynomials of degree at most 1n - with

mode p coefficients}, and we will write.

[]
p

g { g with its coefficients reduced modulo p into the

range ()/ 2, / 2p p- }.

 We may now describe more precisely what we mean by a

generating function G and a hashing function H,

() (): p pG P N P N® and

() () (): p p pH P N P N P K´ ®

 These should be easy to compute, highly non-linear and

unpredictable. There are numerous examples of such

functions, constructed out of shits and other primitive

operations, in the literature.

 The NTRU PKC digital, envelope depends on the choice

of the functions G and H, and on an integer k. The probability

of forging a valid ciphertext will be
kp-

.

 Remark : The original presentation of NTRU [HPS] did

not suggest the use of a digital envelope (i.e., in the present

discussion, both G and H would be functions which, no matter

what the input, produce an output of 0). This provides an

insecure digital envelope as described in [NT7] (cf.[BKS]).

 Key Creation. To create an NTRU key, Bob randomly choose

2 polynomials ff LÎ and gg LÎ . The polynomial f must

satisfy the additional requirement that it have inverses modulo

q and modulo p. For suitable parameter choices, this will be

true for most choices of f (see [NT9]), and the actual

computation of these inverses is easy using a modification of

the Euclidean algorithm (see [NT1, NT14] for details). As

noted above, we will denote these inverses by
1

qf
-

 and
1

pf -
,

that is

1)
1 * 1qf f- º mod q and

1 * 1pf f- º mod p

 Bob next computes the quantity

2)
1 *qh pf g-º mod q .

Bob’s public key is the polynomial h . Bob’s private key is the

polynomial f , although in practice he will also want to

store
1

pf -
. For an extremely efficient algorithm to compute

1

pf -
 and

1

qf
-

, please see [NT14]; for an efficient algorithm

for multiplication, please see [NT10]

 Encryption. We now describe how Alice wraps and sends a

message to Bob using Bo’s NTRU public key h . Alice

chooses her plaintext m from the set

()pm P n kÎ -

She also choosen a random polynomial
rr LÎ . She computes

[]() []()
()

* , * *

mod

n k

p p
p

e r h m H m r h X G r h

q

-é ùº + + +
ë û

Sender then sends e to Receiver.

6.1. Decryption. Suppose that Bob has received the message

e from Alice and wants to decrypt it using his private key f .

To do this efficiently, Bob should have precomputed the

polynomial
1

pf -
 described in Section 1.1.

 In order to decrypt e , Bob first computes the

temporary polynomial a by

* mod ,a f e qº Throughout this paper , we work in

the ring R =
[]X

Z /(X
n
-1). An element f € R

Will be written as a polynomial or a vector.

 f = i x
i
 = [f0, f1,…….,fn-1] .where he

chooses the coefficients of a in the interval from
/ 2q-

to

/ 2q
. Now treating a as polynomial with integer

coefficients, Bob computes the temporary polynomial

[] ()/ , 1
n

t X p XÎ -¢

1

pt f a-= Ä
 (mod

p
),

Further computes the two temporary quantities b e tº -

(mod
p

) and
()c t G bº -

 (mod
p

),

And then writes c in the form
" n kc c X -= + with

deg
()'c n k< -

 and deg
()"

.c k<

(Note that the quantity b is supposed to play the role of

[]
.p

r h*
 Finally, he compares the quantities.

"c and
()'

, .H c b

If they are the same, he accepts
'c as a valid decryption.

Otherwise he rejects the message as invalid.

Remark. For appropriate parameter values, there is an

extremely high probability that the decryption procedure will

recover the original message. However, some parameter

choices may cause occasional decryption failure, so one

should probably include a few check bits in each message

block. The usual cause of decryption failure will be that the

message is improperly centered. In this case Bob will be able

to recover the message by choosing the coefficients of

a f eº Ä
 mod

q
 in a slightly different interval, for

example from
/ 2q x- +

 to
/ 2q x+

 for some small

(positive or negative) value of .x If not value or x works,

then we say that we have gap failure and the message cannot

Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

50

be decrypted as easily. For well-chosen parameter values, this

will occur so rarely that it can be ignored in practice.

 6.Why Decryption Works. The polynomial a that Bob

computes satisfies

a f eº Ä

mod
q

)

1

qf pr f g-= Ä Ä Ä +

[]() [], (n k

p p
p

f m H m r h X G r h-é ùÄ + Ä + Ä
ë û

mod
q

From (1),

 pr g f= Ä + Ä

[]() []()n k

p p
p

m H m r h X G r h
-é ù+ Ä + Ä

ë û
From (2).

Consider this last polynomial. For appropriate parameter

choices, we can ensure that (almost always) all of its

coefficients lie between
/ 2q-

 and
/ 2q

, so that it doesn’t

change if its coefficients are reduced modulo
q

. This means

that when Bob reduces the coefficients of
f eÄ

 modulo
q

into the interval from
/ 2q-

 and
/ 2q

, he recovers exactly

the polynomial.

a pr g f= Ä + Ä

[]() []()ni k

p p
p

m H m r h X G r h
-é ù+ Ä + Ä

ë û
in R .

Reducing a modulo
p

 then gives him the

polynomial

[](), ([]n k

pp
p

f m H m r h X G r h-é ùÄ + Ä + Ä
ë û

 in
,R

And then multiplying by

1

pf -

 produces

(,[]) ([])n k

p pt m H m r h X G r h-= + Ä + Ä
 in

[] ()/ , 1 .
n

X p X -¢

 Thus when Bob computes b e t= - above, he is

really recovering .b r h= Ä

Therefore his computation of c yields

[](), .n k

p
c m H m r h X -= + Ä

Accordingly, 'c is the original message
,m
 and

nc should

match up with the hash
(,[]) (,),pH m r h H m bÄ =

 as

noted above.

Parameter choices – notation and a norm estimate. We

define the width of an element
f RÎ

 to be

{ } { }
0 1 0 1
max max .i i

i n i n
f f f

¥ £ £ - £ £ -
= -

As our notation suggests, this is a sort of L¥ norm on R .

Similarly, we define a centered
2L norm on R by

1/2
2

1

2
0

,
n

i
i

f f f
- -

=

æ öæ ö= å -ç ÷ç ÷ç ÷è øè ø where

1

0

1
.

n

i

f fi
n

- -

=
= å

(Equivalently, 2
/f n

 is the standard deviation of the

coefficients of
.)F

 The following proposition was suggested

to us by Don Coppersmith.

Proposition. For any 0Î> there are constants
1, 2 0,g g >

depending on Î and N, such that for randomly chosen

polynomials
, ,f g RÎ

 the probability is greater than 1-Î

that they satisfy

1 22 2 2 2
.f g f g f gg g

¥
£ Ä £

 Of course, this proposition would be useless form a

practical viewpoint if the ratio 2 1/g g
 were very large fro

small ' .sÎ However, it turns out that even for moderately

large values on N and very small values of
,Î

 the constants

1 2,g g
 are not at all extreme. We have verified this

experimentally for a large number of parameter values.

 Sample spaces. The space of messages mL
consists of all

polynomials modulo
.p
 Assuming

p
 is odd, it is most

convenient to take

() ()

:

1 1
1 1 deg 1

2 2
m

m R m has coefficients lyingbetween

L p and p and has ree at most n k

Îì ü
ï ïï ï

= - - - - -í ý
ï ï
ï ïî þ

To describe the other sample spaces, we will use sets of the

form

1

1 2

2

: 1,
(,) .

1, 0

f R f has d coefficients equal
L d d

d coefficientsequal the rest

Îì ü
=í ý

-î þ
With this notation, we choose three positive integers

, ,f g rd d d
 and set

(), 1 ,f f fL L d d= -

(), ,g g gL L d d=
 and

(),r r rL L d d=
.

(The reason we don’t set
(),f f fL L d d=

 is because we

want
f

 to be invertible, and a polynomial satisfying

(1) 0f =
 can never be invertible) Notice that

,ff LÎ

,gg LÎ
 and rr LÎ

 have
2L norms

Internat. J. of Sci. and Eng., Vol. 4(2)2013:44-51, April 2013, Varaprasad et al. ISSN: 2086-5023

51

1

2
2 1 ,ff d n-= - -

 2
2 ,gg d=

2
2 .rr d=

Later we will give values for
, ,f g rd d d

 that allow decryption

while maintaining various security levels.

A Decryption Criterion. To ease notation, we let

[]() []()' , n k

p p
p

m m H m r h X G r h-é ù= + Ä + Ä
ë û

Be

the polynomial used by Alice for encryption. (That is,

'e r h mº Ä + mod
.)q

In order for the decryption process

to work, it is necessary that

' .f m pr g q
¥

Ä + Ä <

We have found that this will virtually always be true if we

choose parameters so that

' / 4f m q
¥

Ä £
 and

/ 4;pr g q
¥

Ä £

In view of the above Proposition, this suggests that we take

(3) 22 2
/ 4f m q g»

 and 22 2
/ 4r g q pg»

for a 2g corresponding to a small value for Î . For example,

experimental evidence suggests that for 167N = and

503.N = appropriate values for 2g are 0.27 and 0.17

respectively.

Table : Table shows three cases of key generation-
Steps Illustration

Cipher Key

Absorbing

Squeezing

Squeezing

1011100110

1100101110

L: 11001

R : 01110

0000000000

0000000000

L : 00000

R : 00000

1111111111

1111111111

L : 11111

R : 11111

Round 1 :

Shifted Keys :

Combined Key

:

Round Key 1 :

L : 10011

R : 11100

1001111100

101111100

L : 00000

R : 00000

0000000000

0000000000

L : 11111

R : 11111

1111111111

1111111111

Round 2 :

Shifted Keys

:

Combined

Keys :

Round Key :

2

L ; 01110

R : 10011

0111010011

11010011

L : 00000

R : 00000

0000000000

0000000000

L : 11111

R : 11111

1111111111

1111111111

CONCLUSION

In this paper we propose the secret message transmission

between group using sponge function technique, every user

has to register in order to communicate in the group. This

entire process will be examined in KDC(Key Distribution

Center) based on NTRU Technique. The Encryption and

Decryption will be taken place.

REFERENCES

[1]. Gilles Van Assche. Errata for Keccak presentation. Email sent to the

NIST SHA-3 mailing list on Feb 7 2011, on behalf of the Keccak team.

[2]. Itai Dinur, Tim G uneysu, Christof Paar, Adi Shamir, and Ralf

Zimmermann. An experimentally verified_attack on full Grain-128

using dedicated recon_gurable hardware. Cryptology ePrint Archive,

Report 2011/282, 2011. to appear at Asiacrypt 2011.

[3] .Guang Gong and Kishan Chand Gupta, editors. Progress in Cryptology -

INDOCRYPT 2010 - 11th International Conference on Cryptology in

India, Hyderabad, India, December 12-15, 2010. Proceedings,volume

6498 of LNCS. Springer, 2010.

 [4]. Simon Knellwolf, Willi Meier, and Mar__a Naya-Plasencia. Conditional

di_erential cryptanalysis of NLFSR-based cryptosystems. In Masayuki

Abe, editor, ASIACRYPT, volume 6477 of LNCS, pages 130{145.

Springer, 2010.

[5]. Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi

Shamir. E_cient FPGA implementations of highly-dimensional cube

testers on the stream cipher Grain-128. In SHARCS, 2009.

[6]. Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash

domain extension and the EMD transform. In Xuejia Lai and Kefei

Chen, editors, ASIACRYPT, volume 4284 of LNCS, pages 299{314.

Springer, 2006.

[7]. Martin _Agren, Martin Hell, Thomas Johansson, and Willi Meier. A new

version of Grain-128 with authentication. In ECRYPT Symmetric Key

Encryption Workshop 2011. Available at http://skew2011.mat.dtu.dk/.

[8]. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of

lightweight hash functions. In Phillip Rogaway, editor, CRYPTO,

volume 6841 of LNCS, pages 222{239. Springer, 2011.

[9]. Simon Knellwolf, Willi Meier, and Mar__a Naya-Plasencia. Conditional

di_erential cryptanalysis of Trivium and KATAN. In Selected Areas in

Cryptography, 2011. to appear.

[10]. Guido Bertoni, Joan Daemen, Micha el Peeters, and Gilles Van Assche.

Keccak sponge function family main document (version 2.1).

Submission to NIST (Round 2), 2010.

[11]. Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-

middle attack: Cryptanalysis of the lightweight block cipher

KTANTAN. Cryptology ePrint Archive, Report 2010/532, 2010. Full

version of [25].

[12]. Daniel J. Bernstein. CubeHash appendix: complexity of generic attacks.

Submission to NIST, 2008.

http://cubehash.cr.yp.to/submission/generic.pdf

[13]. Guido Bertoni, Joan Daemen, Micha el Peeters, and Gilles Van

Assche. On the indi_erentiability of the sponge construction. In Nigel P.

Smart, editor, EUROCRYPT, volume 4965 of LNCS, pages 181{197.

Springer, 2008.

