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Abstract - This paper presents a novel approach for a (key 

distribution) for secret message communication among a group (G). 

In order to increase security to distribute secret message (key), we 

introduce sponge functions using these at a specific permutation. We 

generate a key and distribute this key using (PKCS)(public key crypto 

systems), the absorbing, squeezing functions are used. In this paper 

an introduction part which briefs regarding sponge functions, key 

distribution centre, group communication and NTRU, key generation 

authentication, in literature review we describe about the research 

states of sponge functions, lightweight hash functions-KDC – NTRU. 

In proposed work we propose how the group communication 

establishes registration of users, entry and exit of a user. The 

encryption and decryption algorithm are used between sender and 

receiver. The entire proposed work is verified in VHDL and 

‘MATLABS’.     

[Keywords : Sponge function; NTRU; encryption; decryption; 

Keydistributioncenter (KDC) Absorbing; Squeezing functions] 

 

I. INTRODUCTION 

Designers of lightweight cryptographic algorithms or protocols 

have to trade off  between two opposite design phi mlosophies. 

The first consists in creating new schemes from scratch, 

whereas the second consists in reusing available schemes and 

adapting them to system constraints. They are more  in line 

with the latter approach—as illustrated by their DM-

PRESENT proposal—we ten more towards the former. 

Although QUARK borrows components from previous works, 

it integrates a number of innovations that make it unique and 

that optimize its light weightness. As explained in this section, 

QUARK combines    a sponge construction with a capacity c 

equal to the digest length n, a core permutation inspired by 

previous primitives, optimized for reduced resources 

consumption. This design strategy as an attempt to optimize its 

security-performance ratio. Subsequent proposals of 

lightweight hash functions followed a similar strategy, with 

PHOTON and SPONGENT respectively building their core 

permutations on AES- and SERPENT-like algorithms. 

 

II. MATERIALS AND METHODS 

I. Separating digest length and security level  

We observe that the digest length of a hash function has 

generally been identified with its security level, with (say) n-

bit digests being equivalent to n-bit security against preimage 

attacks. However, this rule restricts the variety of designs, as it 

forces designers to exclude design paradigms that may 

otherwise increase usability or performance the notation 

introduced in the context of sponge finctions[13] was first step 

towards a separation of digest length and security level, and 

thus towards more inventive designs. In particular, the 

necessity of n-bit (second) preimage resistance is questionable 

from a pragmatic standpoint, when one needs to assume that 

2
n
/
2
 is an infeasible effort, to avoid birthday collision search. 

Designers may thus relax the security requirements against 

(second) preimages—as informally suggested by several 

researchers in the context of the SHA-3 Competition—so as to 

propose more efficient algorithms[13].  

 

III Working with shift registers  

In cryptography, linear or non-linear feedback shift registers 

have been widely used as a building block of stream ciphers, 

thanks to their simplicity and efficiency of implementation (be 

it in terms of area or power consumption). In the design of 

QUARK, we opt for an algorithm based on bit shift registers 

combined with(non-linear) Boolean functions, rather than for a 

design based on S-boxes combined with a linear layer (as 

PHOTON and SPONGENT). This is motivated by the 

simplicity of description and of implementation, and by the 

close-to-optimal area requirements it induces. Indeed, the 

register serves both to store the internal state (mandatory in 

any construction) and to perform the operations bringing 

confusion and diffusion .  

 

IV Description of the QUARK hash family 

This section gives a complete specification of QUARK and of 

its three proposed instances: U-QUARK, D-QUARK, and S-

QUARK. In particle physics, the u-quark is lighter than the d-

quark, which itself is lighter than the s-quark; our eponym 

hash functions compare similarly. 
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Fig.1 Sponge Construction of a 4-block padded  Message 

 

2..Sponge construction 

QUARK uses the sponge construction, depicted in Fig. 1, and 

a 6-bit permutation P (that is, a bijective function over {0,1}
b
). 

Following the notations introduced a QUARK instance is 

parameterized by a rate (or block length) r, a capacity c, and 

an output length n. The width b = r+c of a sponge construction 

is the size of its internal state. We denote this internal state s = 

(S0 . .., Sb-1), where S0 is referred to as the first bit of the state. 

Given a predefined initial state of b bits (specified for each 

instance of Quark) the sponge construction processes a 

message m in three steps [4].  

  

1. Initialization: the message is padded by appending a '1' bit 

followed by the minimal (possibly zero) number of '0' bits 

to reach a length that is a multiple of r. 

2. Absorbing phase:   the r-bit message blocks are XOR's 

with the last r bits of the state (that is Sb-r ,….. Sb-2,,
 
Sb-1) 

interleaved with applications of the permutation P.  The 

absorbing phase starts with an XOR between the first block 

and the state, and it finishes with a call to the permutation 

P. 

3. Squeezing phase: the last r bits of the state are returned as 

output, interleaved with applications of the permutation P, 

until n bits are returned. The squeezing phase starts with 

the extraction of r bits, and also finishes with the extraction 

of r bits. 

 

2.1.Permutation    

As depicted in Fig. the internal state of P is viewed as three 

feedback shift registers (FSRs) two non-linear ones (NFSRs) 

of b/2 bits each, and a linear one (LFSR) of [log 4b] bits. The 

state at epoch t ≥ 0 is thus composed of 
a. AnNFSRX ofb/2bits, denoted X

t
 = (X0

t
,...X

t
b/2-1). 

b. An NFSRY of b/2 bits, denoted Y
t
=(Y0

t
,.....Y

t
b/2-

1).   

c. An LFSR L of [log 4b] bits,denoted  L
t
= (L0

t
......L

t
    (1-׀log4b׀

d. Given a b-bit input, P proceeds in three stages, as          

described below. 

e. Initialization. Upon input of the b-bit internal state of the 

sponge construction  s = (S0, .. ., sb-1), P initializes its 

internal state as follows: 

  X is initialized with the first b/2 input                           

  bits:(X0
0
,,... ,X

0
b/2-1):=(s0,......,Sb/2-1). 

  Y is initialized with the last b/2 input             

bits: (Y0
0

,……..Y
0

b/2-1):=(sb/2,…..sb-1).  

L is  initialized to the all-one string:   

(L0
0
,…….,L

0
 .(1..…,1)= : (1-׀log4b׀

 

4. State update 
From an internal state (X

t
, Y

t
, L

t
), the next state (X

t+1
 ,Y

t+1
, 

L
t+1

) is determined by clocking the internal mechanism as 

follows 

a. The function h is evaluated upon input bits from X
t
,Y

t
, and 

L
t
, and the result is written h

t
::= h(x

t
,Y

t
,L

t
).       

b. X is clocked using Y0
T 
, the function  f, andh

t
:   

c. (X0
t+1

,…..Xb/2-1
t+1

):=(X1
t
,…..Xb/2-1,Y0

t
+f(X

t
) +h

t
 ).  

d. Y is clocked using the function g and H=          

(Y0
t+1

,…..Yb/2-1
t+1

):= (Y1
t
,…..Yb/2-1,g(Y

t
)  +h

t
 ). 

e. L is clocked using the function p:          

(L0
t+1

,…..L
t
│log4b│-1):= (L1

t
,….. L

t
│log4b│-1 ,p(L

t
)). 

 

Table 1 summarizes the parameters of the three instances 

proposed. 

U-QUARK is the lightest flavor of QUARK. It was designed 

to provide 128-bit preimage resistance and at least 64-bit 

security against all other attacks, and to admit a parallelization 

degree of 8. It has parameters r=8,c=128, b=136,n=136. 

 
 

 

Function f. Given a 68-bit register,x,f returns:-          

X0+X9+X14+X21+X28+X33+X37+X45+X50+X5+X55X59 

+X33X37+X9X15+X45X52X55+X21+X28+X33                         

X9X28X45X59+X33X37X52X55+X21X28X33+X9X28X45X59+     

X33X37X52X55+X15X21X55X59+X37X45X52X55X59+                  

X37X45X52X55X59+X9X15X21X28X33+X21X28X33X37X45X52 .  

           D-QUARK is the second-lightest flavor of QUARK. It 

was designed to provide 160-bit preimage resistance and at 

least 80-bit security against all other attacks, and to admit a 

parallelization degree of 8. It has parameters r = 16, c = 160, b 

= 176, n = 176. 

 

Function f. D-QUARK uses the same function / as U-

QUARK, but with taps 0, 11, 18, 19, 27, 36, 42, 47, 58, 64, 67, 

71, 79 instead of 0, 9, 14, 15, 21, 28, 33, 37, 45, 50, 52, 55, 59, 

respectively. 

S-QUARK is the heaviest flavor of QUARK. It was designed 

to provide 224-bit preimage resistance and at least 112-bit 

security against all other attacks, and to admit a parallelization 
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degree of 16. It has parameters r = 32,              c = 224, b = 

256, n = 256. 

Function f. S-QUARK uses the same function / as U-

QUARK, but with taps 0, 16, 26, 28, 39, 52, 61, 69, 84, 94, 

97,103,111 instead of 0, 9, 14, 15, 21, 28, 33, 37, 45, 50, 52, 

55, 59, respectively. 

 

3.Keying QUARK 

As a sponge function, all results known on the sponge 

construction apply to QUARK. This includes proofs of 

security for keyed modes of operation, as described in . A 

keyed sponge function processes its input by simply hashing 

the string composed of the key followed by the said input. The 

following primitives can then be realized: 

Message authentication code (MAC); 

Pseudorandom generator; 

Stream cipher; 

Random-access stream cipher; 

Key derivation function. 

Furthermore, the QUARK instances can easily be modified to 

operate in the duplex construction (a variant of the sponge 

construction), to allow the realization of functionalities as 

authenticated encryption or  

 

3.1.A Brief Description of the Present Block Cipher 

Present is a 31-round SPN structure block cipher with block 

size of 64 bits, the cipher is described in fighre-. It supports 80 

and 128 –bit secret key. Firstly, the plaintext Xored subkey K
׀  

  

as the input of the 1
st 

 round alter 31 rounds iterations, the 31
st
  

round output Xored with the subkey K
32

 is the cipher text. 

Encryption Procedure. Each encryption round consists of the 

following  3 steps :- 

(1). Add RoundKey –AK : At the  beginning of each round 64 

bits output of the last round  function is  Xored with the 

subkey. 

(2) SBoxlayer–SL: The SL function{ }0,1  maps input 

(x0,x1,x2,x3) to output (y0,y1,y2,y3) , 16 identical 4-bit S-

boxes are used in parallel. The Boolean function of S-box 

is  y0= x0 +x2 +x3+x1x2.    

(3) Player PL : the i
th

 bit is moved to bit position P(i) by a 

constant permutation table Figure 1.Overview of Present 

Encryption Algorithm 

 

4. KEY DISTRIBUTION 

Cryptography has for a long time conformed to the idea 

that the techniques used to protect sensitive data had 

themselves to be kept secret. Such principle, known as 

"cryptography by obscurity" has however become inadequate 

in our modern era. Cryptography, that has developed as a 

science in the 1970s and 1980s  allowed to move away from 

this historical picture and most of the modern cryptographic 

systems are now based on publicly announced algorithms 

while their security lies in the use of secret keys 

Distributing keys among a set of legitimate users while 

guaranteeing the secrecy of these keys with respect to any 

potential opponent is thus a central issue in cryptography, 

known as the Key Establishment Problem. 

 

 
Fig 3. Over view of Present Encryption Algorithm 

 
There are currently five families of cryptographic methods that 

can be used to solve the Key Establishment Problem between 

distant users: 

1. Classical Information-theoretic schemes 

2. Classical public-key cryptography 

3. Classical computationally secure symmetric-key 

cryptographic schemes 

4. Quantum Key Distribution 

5. Trusted couriers 

We will present how each of those cryptographic families can 

provide solutions to the Key Establishment problem and 

discuss, in each case, the type of security that can be provided. 

We will also consider a sixth type of Key Establishment 

schemes: hybrid schemes built by combining some of the 

methods listed above. 

 

4.1.Key Establishment based on public-key cryptography:- 
As shown by Whitfield Diffie and Martin Hellman in 1976 , 

public-key cryptography can be used to establish a shared 

secret key over an unprotected classical communication 

channel, without using a prior shared secret. It thus provides a 

practical way to implement key distribution over open 

networks.  

 

4.1.1.Security of public-key cryptography Current 

asymmetric classical cryptographic schemes, such as RSA, are 

based on the difficulty to compute logarithms within a finite 

field. Today's implementations of RSA require to use private 

and public keys of at least 1024 bits, in order to offer a 

reasonable security margin against the computational efforts of 

an eavesdropper 
1
, and asymmetric keys of 2048 bits are 

preferable. It is also important to note that most of the 

currently used public-key cryptographic schemes (for example 
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RSA) could be cracked in polynomial time with a quantum 

computer: this results from Shor's algorithm for discrete log 

and factoring, that has a complexity of O(n
3
) [13]. 

 

4.1.2. Performance of public-key cryptography. Making the 

computations relative to the asymmetric cryptographic 

protocols (over keys longer than 1024 bits) is a rather 

computational intensive and time-consuming task. The 

performance of RSA-based key distribution implementations 

depend heavily on hardware : for RSA 2048 implemented on a 

recent PC (Pentium IV with a 2.1 GHz processor running 

under Windows XP), the computations needed for one key 

exchange (essentially one RSA encryption and one decryption) 

take roughly 30 ms . The same key exchange would be 

approximately 10 times faster (thus in the ms range) on 

dedicated coprocessors and 10 times slower (in the time range 

of a few tens of a second) on smart card coprocessors , 

Because of those relatively low exchange rates, public-key 

cryptography is most commonly used solely for initial session 

key distribution (in network protocols like SSL for example), 

and classical symmetric-key cryptography is then generally 

used for symmetric encryption and/or authentication of data. 

 

4.1.3.ClassicalComputationally Secure Symmetric key    

Cryptography and key Establishment  
Symmetric-key cryptography refers to cryptography methods 

in which both the sender and receiver share the same key. 

Symmetric-key encryption was the only kind of encryption 

publicly known until the discovery of public-key cryptography 

in 1976. Symmetric-key ciphers are used to guarantee the 

secrecy of the encrypted messages. The modern study of 

symmetric-key ciphers relates mainly to the study of block 

ciphers and stream ciphers and to their applications. AES is a 

block cipher that had been designed by a team of Belgium 

cryptographers (Joan Daemen et Vincent Rijmen) and has 

been adopted as an encryption standard by the US government 

(in replacement of DES). Block ciphers can be used to 

compute Message Authentication Codes (MACs) and can thus 

also be used to guarantee integrity and authenticity of 

messages. Stream ciphers, in contrast to the block ciphers, 

create an arbitrarily long stream of key material, which is 

combined with the plaintext bit-by-bit or character-by-

character, somewhat like the One-Time-Pad. We will not 

consider stream ciphers in the remaining part of this sub-

section, since, unlike block ciphers, they cannot be easily used 

to perform Key Establishment. 

 

4.1.4..Key Establishment based on Classical 

Computationally. Secure Symmetric-Key Cryptography Key 

Establishment can be realised by making use of only 

symmetric-key cryptographic primitives. Indeed, the 

combination of a symmetric-key encryption scheme with a 

symmetric-key authentication scheme allows one to build a 

Key Establishment primitive. Provided that a secret key is 

previously shared, symmetrically, by Alice and Bob, one can 

use a symmetric-key cipher to encrypt a message that will 

constitute the secret key for the key distribution protocol (this 

message can be random or not). Part of the previously shared 

symmetric key material can also be used to symmetrically 

compute (on Alice's side) and check (on Bob's side) a message 

authentication tag. Key Establishment based on symmetric-key 

cryptographic primitives are always based on a pre-established 

symmetric secret, needed for authentication. In this sense, they 

only allow Key Expansion more than Key Establishment. 

 
4.1.5. Security of classical computationally secure 

symmetric-key cryptography. The security of key distribution 

based on classical symmetric-key cryptography depends on the 

security of the cryptographic primitives that are used, and on 

the composability of those crypto primitives. Shannon has 

proven that there is no unconditionally secure encryption 

scheme which requires less key than a One-Time Pad, i.e., the 

number of key bits is at least as large as the length of the 

message . Hence, if we consider the possibility of building an 

unconditionally secure symmetric key expansion scheme, i.ev a 

method to symmetrically generate secret key out of a short 

initial symmetric shared secret key, the former results from 

Shannon tell us that such a scheme is impossible to achieve in 

the framework of classical cryptography. This is a 

fundamental limitation of any communication scheme relying 

solely on the exchange of classical messages since, in contrast 

to quantum messages, classical messages can be copied 

without errors. It is however possible to use classical 

symmetric-key encryption and authentication schemes, that are 

not unconditionally secure, to build a Key Establishment 

scheme. AES can for example be used for symmetric-key 

encryption and can be also used to compute message 

authentication codes (using AES-MAC). Note that the security 

model that applies to such symmetric-key classical encryption 

schemes (symmetric-key block ciphers and stream ciphers) is 

not unconditional security (the entropy of the key is smaller 

than the entropy of the message) and not even "provable 

computational security" (based on some proven upper bounds 

or on some equivalence between the complexity of the crypt-

analysis of a given cipher and another well-studied problem
2
). 

The security model that applies to classical symmetric-key 

cryptography can be called "practical computational security": 

a cryptographic scheme is considered "practically 

computationally secure" if the best-known attacks require too 

much resource (such as computation power, time, memory) by 

an acceptable margin The main problem with such a security 

model is that it is unable to guarantee anything about yet 

unknown attacks . There are no publicly known efficient 

quantum attacks on classical symmetric-key cryptographic 

schemes (but no proof that efficient attacks cannot be found), 

and the crypt-analysis of symmetric-key classical 

cryptography on a quantum computer reduces to exhaustive 

search. Here a quantum computer would thus still give an 

advantage: the complexity of exhaustive search in a unsorted 

database of N elements is of O(N) on a classical computer but 

only of O(VN) on a quantum computer. 
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Performances In terms of performance, symmetric-key 

classical cryptography is much faster and less computational 

intensive than asymmetric cryptography
3
. In terms of speed, 

there are now 128-bit AES encryptors able to encrypt data at 

rates in the Gbit/s range , This is the reason why it is widely 

preferred to use symmetric-key schemes for encryption and/or 

authentication over currently deployed communication 

networks. AES is currently the chosen standard for symmetric-

key classical block ciphers. Under the assumption that the best 

way to break a symmetric-key cryptographic scheme is 

exhaustive search within the key space
4
, then, a symmetric key 

modulus of 77 bits is roughly comparable, in terms of 

computational requirements, to an asymmetric key modulus of 

2048 bits . Note that doubling the length of a symmetric key 

implies squaring the computational efforts needed for 

exhaustive search; on the other hand, the computational efforts 

scale not as fast with key length in the case of asymmetric 

cryptography. 

 

5.NTRU 

Description of NTRU :- NTRU is based on the algebraic 

structures of certain polynimal rings.The ‘hard problem” on 

which NTRU is based is the Short Vector Problem (finding a 

short vector in a lattice). 

a. Notation. Before we proceed, we set some notation. The 

following are all part of the domain parameters for an 

implementation of NTRU. 

n    The dimension of the polynomial ring used in NTRU. (The 

polynominals will have degree n-1.) 

p     A positive integer specifying a ring Z/PZ over which the 

coefficients of a  certain product of polynomials will be 

reduced during the encryption and  decryption processes. 

q      A positive integer specifying a ring Z/qZ over which the 

coefficients of a certain product of polynomials will be 

reduced during the encryption and decryption processes, 

also used in the construction of the public key. 

k     A security parameter which controls resistance to certain 

types of attack  including plain text awareness. 

df    The distribution of the coefficients of the polynomial f, 

below (f is part of the    private key). 

dg    The distribution of the coefficients of the polynomial g, 

below(g is used to construct the public key). 

dr The number of  1s and -1s used in a certain random 

polynomial r, below , in  the encryption process. 

We will also use the following notation. 

f  A polynomial in 
[ ]X

Z  (X
n—

1) 

fp  A polynomial in 
[ ]X

Z /(p,X
n
-1)  

      
this is part of the 

private key). This polynomial is obtained by reducing the 

coefficients of  f modulo p. 

fq  A polynomial in 
[ ]X

Z /(q,X
n
-1). This polynomial is  

obained by reducing  the coefficients of f  modulo q. 

Lf  The set of polynomials in 
[ ]X

Z /(x
n
-1) whose coefficients 

satisfy df . 

 A polynomial in 
[ ]X

Z /(q,X
n
-1) (used with fq to construct 

the public key). 

Lg      The set of polynomials in 
[ ]X

Z /(x
n
-1) whose cofficients 

satisfy dg . 

Lr  The set of polynomials in 
[ ]X

Z /(x
n
-1) whose coefficients 

satisfy dr .  

fp
-1

.     The inverse of fq  in 
[ ]X

Z / (q, X
n
-1). 

h   The public key, a polynomial in 
[ ]X

Z /(q,X
n
-1). 

r      A polynomial in 
[ ]X

Z  (q,X
n
-1 (used with h to encode a 

message). 

m    The plaintext message, a polynomial in 
[ ]X

Z / (p,X
n
-1). 

e     The encrypted message, a polynomial in 
[ ]X

Z /(q,X
n
-1). 

G   A generating  function (defined below). 
H      A hashing function (defined below). 
 

Case 2 and 3 show that none of the operations used in the key 

generation process is effective if the cipher key is made of all 

0’s or all 1’s.  These types of cipher keys  need to be avoided, 

as discussed in Chapter 6. 

S-DES is very vulnerable to brute-force attack because of its 

key size (10bits) 

Throughout this paper, we work in the ring 

[ ] ( )/ 1nR X x= -¢
. An element 

f RÎ
 will be written as 

a polynormal or a vector.  

[ ]
1

0 1 1

0

, ,........,
n

i

i n

i

f f x f f f
-

-
=

= =å
 

We write * to denote multiplication in R. This star 

multiplication is given explicitly as a cyclic convolution 

product,  

f g h* =
 with 

1

0 1 mod

.
k n

k i k i i n k i i j

i i k i j k n

h f g f g f g
-

- + -
= = + + =

= + =å å å
 

When we do a multiplication modulo (say) q, we mean to 

reduce the coefficients modulo q, so the result lies in 

[ ] ( )/ , 1nX q X -¢ .  

Remark. The naive computation of a product *f S  requires 

2n  multiplications. However, in a typical product used by 

NTRU, one of f  or g  has small coefficients that are all 0’s 

and 1'± s, so *f g  may be computed extremely rapidly. 

Further, for large values of n  one may choose n  to be highly 

divisible by 2, in which case the convolution product can be 

computed in O  ( )logn n operations by using Fast Fourier 

Transforms.  

 In addition to this convolution product, there are two other 

operations we need to define on rings of polynomials. These 

are a generating function and a hashing function. They are 
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required in order to build a digital envelope into the NTRU 

protocol. We first let  

( )pP n = {polynomials of degree at most 1n -  with 

mode p  coefficients}, and we will write. 

[ ]
p

g  { g  with its coefficients reduced modulo p  into the 

range ( )/ 2, / 2p p- }. 

 We may now describe more precisely what we mean by a 

generating function G and a hashing function H,  

( ) ( ): p pG P N P N®  and 

( ) ( ) ( ): p p pH P N P N P K´ ®  

 These should be easy to compute, highly non-linear and 

unpredictable. There are numerous examples of such 

functions, constructed out of shits and other primitive 

operations, in the literature.  

 The NTRU PKC digital, envelope depends on the choice 

of the functions G and H, and on an integer k. The probability 

of forging a valid ciphertext will be 
kp-

.  

 Remark : The original presentation of NTRU [HPS] did 

not suggest the use of a digital envelope (i.e., in the present 

discussion, both G and H would be functions which, no matter 

what the input, produce an output of 0). This provides an 

insecure digital envelope as described in [NT7] (cf.[BKS]). 

 Key Creation. To create an NTRU key, Bob randomly choose 

2 polynomials ff LÎ  and gg LÎ . The polynomial f must 

satisfy the additional requirement that it have inverses modulo 

q and modulo p. For suitable parameter choices, this will be 

true for most choices of f  (see [NT9]), and the actual 

computation of these inverses is easy using a modification of 

the Euclidean algorithm (see [NT1, NT14] for details). As 

noted above, we will denote these inverses by 
1

qf
-

 and 
1

pf -
, 

that is  

1) 
1 * 1qf f- º  mod q  and 

1 * 1pf f- º  mod p  

 Bob next computes the quantity  

2)  
1 *qh pf g-º  mod q . 

Bob’s public key is the polynomial h . Bob’s private key is the 

polynomial f , although in practice he will also want to 

store
1

pf -
. For an extremely efficient algorithm to compute 

1

pf -
 and 

1

qf
-

, please see [NT14]; for an efficient algorithm 

for multiplication, please see [NT10]  

 Encryption. We now describe how Alice wraps and sends a 

message to Bob using Bo’s NTRU public key h . Alice 

chooses her plaintext m  from the set 

( )pm P n kÎ -  

She also choosen a random polynomial 
rr LÎ . She computes  

[ ]( ) [ ]( )
( )

* , * *

mod

n k

p p
p

e r h m H m r h X G r h

q

-é ùº + + +
ë û  

Sender then sends e  to Receiver.  

 

6.1. Decryption. Suppose that Bob has received the message 

e  from Alice and wants to decrypt it using his private key f . 

To do this efficiently, Bob should have precomputed the 

polynomial 
1

pf -
 described in Section 1.1. 

 In order to decrypt e , Bob first computes the 

temporary polynomial a  by  

* mod ,a f e qº    Throughout this paper , we work in 

the ring R = 
[ ]X

Z /(X
n
-1). An element f € R 

Will be written as a polynomial or a vector. 

                   f = i x
i
 =  [ f0, f1,…….,fn-1] .where he 

chooses the coefficients of a  in the interval from 
/ 2q-

to 

/ 2q
. Now treating a  as polynomial with integer 

coefficients, Bob computes the temporary polynomial 

[ ] ( )/ , 1
n

t X p XÎ -¢
  

1

pt f a-= Ä
 (mod 

p
),  

Further computes the two temporary quantities b e tº -  

(mod 
p

) and  
( )c t G bº -

 (mod 
p

),  

And then writes c in the form 
" n kc c X -= +  with 

deg
( )'c n k< -

 and deg
( )"

.c k<
 

(Note that the quantity b is supposed to play the role of 

[ ]
.p

r h*
 Finally, he compares the quantities. 

"c  and  
( )'

, .H c b
 

If they are the same, he accepts 
'c  as a valid decryption. 

Otherwise he rejects the message as invalid.  

Remark. For appropriate parameter values, there is an 

extremely high probability that the decryption procedure will 

recover the original message. However, some parameter  

choices may cause occasional decryption failure, so one 

should probably include a few check bits in each message 

block. The usual cause of decryption failure will be that the 

message is improperly centered. In this case Bob will be able 

to recover the message by choosing the coefficients of 

a f eº Ä
 mod 

q
 in a slightly different interval, for 

example from 
/ 2q x- +

 to 
/ 2q x+

 for some small 

(positive or negative) value of .x  If not value or x  works, 

then we say that we have gap failure and the message cannot 
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be decrypted as easily. For well-chosen parameter values, this 

will occur so rarely that it can be ignored in practice.  

 

 6.Why Decryption Works.  The polynomial a that Bob 

computes satisfies  

a f eº Ä
 

mod 
q

) 

 
1

qf pr f g-= Ä Ä Ä +  

[ ]( ) [ ], (n k

p p
p

f m H m r h X G r h-é ùÄ + Ä + Ä
ë û

 

mod 
q

 

From (1),  

   pr g f= Ä + Ä  

[ ]( ) [ ]( )n k

p p
p

m H m r h X G r h
-é ù+ Ä + Ä

ë û
From (2).  

Consider this last polynomial. For appropriate parameter 

choices, we can ensure that (almost always) all of its 

coefficients lie between 
/ 2q-

 and  
/ 2q

, so that it doesn’t 

change if its coefficients are reduced modulo 
q

. This means 

that when Bob reduces the coefficients of  
f eÄ

 modulo 
q

 

into the interval from 
/ 2q-

 and  
/ 2q

, he recovers exactly 

the polynomial.  

a pr g f= Ä + Ä  

[ ]( ) [ ]( )ni k

p p
p

m H m r h X G r h
-é ù+ Ä + Ä

ë û
in R .  

Reducing a  modulo 
p

 then gives him the 

polynomial

[ ]( ), ([ ]n k

pp
p

f m H m r h X G r h-é ùÄ + Ä + Ä
ë û

 in 
,R

 

And then multiplying by 

1

pf -

 produces 

( ,[ ] ) ([ ] )n k

p pt m H m r h X G r h-= + Ä + Ä
 in 

[ ] ( )/ , 1 .
n

X p X -¢
 

 Thus when Bob computes b e t= -  above, he is 

really recovering .b r h= Ä  

Therefore his    computation of c  yields 

[ ]( ), .n k

p
c m H m r h X -= + Ä

  

Accordingly, 'c  is the original message 
,m
 and 

nc  should 

match up with the hash  
( ,[ ] ) ( , ),pH m r h H m bÄ =

 as 

noted above.  

  

Parameter choices – notation and a norm estimate.  We 

define the width of an element 
f RÎ

 to be 

{ } { }
0 1 0 1
max max .i i

i n i n
f f f

¥ £ £ - £ £ -
= -

 

As our notation suggests, this is a sort of  L¥  norm on R . 

Similarly, we define a centered 
2L norm on R by 

1/2
2

1

2
0

,
n

i
i

f f f
- -

=

æ öæ ö= å -ç ÷ç ÷ç ÷è øè ø where 

1

0

1
.

n

i

f fi
n

- -

=
= å

 

(Equivalently, 2
/f n

 is the standard deviation of the 

coefficients of 
.)F

 The following proposition was suggested 

to us by Don Coppersmith.  

Proposition.  For any 0Î> there are constants 
1, 2 0,g g >

 

depending on Î  and N, such that for randomly chosen 

polynomials 
, ,f g RÎ

 the probability is greater than 1-Î 

that they satisfy 

1 22 2 2 2
.f g f g f gg g

¥
£ Ä £

 
  Of course, this proposition would be useless form a 

practical viewpoint if the ratio 2 1/g g
 were very large fro 

small ' .sÎ  However, it turns out that even for moderately 

large values on N  and very small values of 
,Î

 the constants 

1 2,g g
 are not at all extreme. We have verified this 

experimentally for a large number of parameter values.  

 Sample spaces.  The space of messages mL
consists of all 

polynomials modulo 
.p
 Assuming 

p
 is odd, it is most 

convenient to take 

( ) ( )

:

1 1
1 1 deg 1

2 2
m

m R m has coefficients lyingbetween

L p and p and has ree at most n k

Îì ü
ï ïï ï

= - - - - -í ý
ï ï
ï ïî þ

 

To describe the other sample spaces, we will use sets of the 

form 

1

1 2

2

: 1,
( , ) .

1, 0

f R f has d coefficients equal
L d d

d coefficientsequal the rest

Îì ü
=í ý

-î þ  
With this notation, we choose three positive integers 

, ,f g rd d d
 and set 

( ), 1 ,f f fL L d d= -
   

( ), ,g g gL L d d=
 and  

( ),r r rL L d d=
. 

(The reason we don’t set 
( ),f f fL L d d=

 is because we 

want 
f

 to be invertible, and a polynomial satisfying 

(1) 0f =
 can never be invertible) Notice that 

,ff LÎ
 

,gg LÎ
 and rr LÎ

 have 
2L  norms 
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1

2
2 1 ,ff d n-= - -

       2
2 ,gg d=

         

2
2 .rr d=

 

Later we will give values for 
, ,f g rd d d

 that allow decryption 

while maintaining various security levels.  

  

A Decryption Criterion.  To ease notation, we let 

[ ]( ) [ ]( )' , n k

p p
p

m m H m r h X G r h-é ù= + Ä + Ä
ë û

Be 

the polynomial used by Alice for encryption. (That is, 

'e r h mº Ä +  mod 
.)q

In order for the decryption process 

to work, it is necessary that  

' .f m pr g q
¥

Ä + Ä <
 

We have found that this will virtually always be true if we 

choose parameters so that 

' / 4f m q
¥

Ä £
    and   

/ 4;pr g q
¥

Ä £
 

In view of the above Proposition, this suggests  that we take 

(3) 22 2
/ 4f m q g»

   and    22 2
/ 4r g q pg»

 

for a 2g  corresponding to a small value for Î . For example, 

experimental evidence suggests that for 167N =  and 

503.N = appropriate values for 2g  are 0.27 and 0.17 

respectively.  

 

Table : Table shows three cases of key generation- 
Steps Illustration 

Cipher Key 

Absorbing  

Squeezing  

Squeezing  

1011100110 

1100101110 

L: 11001    

R : 01110 

0000000000 

0000000000 

L : 00000     

R : 00000 

1111111111 

1111111111 

L : 11111    

R : 11111 

Round 1 : 

Shifted Keys : 

Combined Key 

: 

Round Key 1 : 

 

L : 10011    

R : 11100 

1001111100 

101111100 

 

L : 00000    

R : 00000 

0000000000 

0000000000 

 

L : 11111     

R : 11111 

1111111111 

1111111111 

Round 2 : 

Shifted Keys 

: 

Combined 

Keys : 

Round Key : 

2 

 

L ; 01110     

R : 10011 

0111010011 

11010011 

 

L : 00000     

R : 00000 

0000000000 

0000000000 

 

L : 11111       

R : 11111 

1111111111 

1111111111 

 

CONCLUSION 

In this paper we propose the secret message transmission 

between group using sponge function technique, every user 

has to register in order to communicate in the group. This 

entire process will be examined in KDC(Key Distribution 

Center) based on NTRU Technique. The Encryption and 

Decryption will be taken place. 
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