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Abstract. Let M be an (R, S)-module. In this paper a generalization of the m-
system set of modules to (R, S)-modules is given. Then for an (R, S)-submodule N
of M, we define ‘""¥/N as the set of a € M such that every m-system containing
a meets N. It is shown that /N is the intersection of all jointly prime (R, S)-
submodules of M containing N. We define jointly prime radicals of an (R, S)-module
M as rad(gr,s)(M) = (7:5/0. Then we present some properties of jointly prime

radicals of an (R, .S)-module.
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Abstrak. Diberikan (R, S)-modul M. Dalam tulisan ini didefinisikan himpunan
sistem-m pada suatu (R, S)-modul sebagai perumuman dari himpunan sistem-
m suatu modul. Didefinisikan */N sebagai himpunan semua a € M yang
memenuhi sifat setiap sistem-m yang memuat a irisannya dengan N tidak kosong,
untuk suatu (R, S)-submodul N di M. Dapat ditunjukkan bahwa (F:5)/N meru-
pakan irisan dari semua (R,S)-submodul prima gabungan di M yang memuat
N. Didefinisikan radikal prima gabungan dari (R, S)-modul M sebagai himpunan
rad(r,sy(M) = (7:5/0. Kemudian, dalam tulisan ini disajikan beberapa sifat dari
radikal prima gabungan suatu (R, S)-modul.

Kata kunci: (R,S)-modul, (R,S)-submodul prima gabungan, sistem-m, radikal
prima.
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1. Introduction

All rings in this paper are arbitrary ring unless stated otherwise. Let R and
S be arbitrary rings. Khumprapussorn et al. in [3] introduced (R, S)-modules as
a generalization of (R,S)-bimodules. An (R, S)-module has an (R, S)-bimodule
structure when both rings R and S have central idempotent elements.

In their paper, Khumprapussorn et al. also defined (R, S)-submodules of M
as additive subgroups N of M such that rns € N forallr € R,n € N, and s € S.
Moreover, a proper (R,S)-submodule P of M is called a jointly prime (R,S)-
submodule if for each left ideal I of R, right ideal J of S, and (R, S)-submodule N
of M, INJ C P implies IMJ C Por N C P.

A jointly prime (R, S)-submodule P of M is called a minimal jointly prime
(R, S)-submodule if it is minimal in the class of jointly prime (R, S)-submodules
of M. Based on Goodearl and Warfield [2], we show that every jointly prime
(R, S)-submodule of M contains a minimal jointly prime (R, S)-submodule.

Let T be a ring with unity. Lam [4] has defined that a nonempty set J C T is
said to be an m-system if for each pair a,b € J, there exists t € T" such that atb € J.
Furthermore, for an ideal I of T, the set /I := {a € T | (V m-system J of T) a €
J = JN I # (0} equals to the intersection of all the prime ideals of T' containing I.
Based on this definition, Behboodi [1] has generalized the definition of m-system of
unitary rings to modules. Let M be an unitary module over a ring 7. A nonempty
set X C M \ {0} is called an m-system if for each (left) ideal I of T and for all
submodules K, L of M, (K+L)NX # () and (K+IM)NX # () imply (K+IL)NX #
(). Tt has been shown that the complement of a prime submodule is an m-system,
and for any m-system X, a submodule disjoint from X and maximal with respect
to this property is always a prime submodule. Moreover, for a submodule N of M,
the set /N := {a € M | (V m-system X of M) a € X = X NN # (}} equals to the
intersection of all prime submodules of M containing N.

In Section 2, we extend these facts to (R, S)-modules. In fact, we give a ge-
neralization of the notion of m-systems of modules to (R, S)-modules. Then for an
(R, S)-submodule N of M, we define /N := {a € M | (V m-system X of M)a €
X = X NN #0}. And then we define jointly prime radicals of an (R, .S)-module
M as radgs) (M) = ““%/0. It is shown that rad g,s)(M) is the intersection of
all jointly prime (R, S)-submodules of M (note that, if M has no any jointly prime
(R, S)-submodule, then rad g s)(M) := M). In Section 3, we present some pro-
perties of jointly prime radicals of (R, S)-modules. These properties are as follows:
every jointly prime radicals of (R, S)-submodules is contained in a jointly prime
radical of its (R, S)-module; jointly prime radicals of (R, S)-modules M is either
equal to M or the intersection of all minimal jointly prime (R,.S)-submodules of

M; and jointly prime radicals of quotient (R,.S)-modules M%ad(R $) (M) is zero.
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2. Jointly Prime Radicals of (R,S)-Modules

Before we define m-systems of an (R, S)-module, we describe first the jointly
prime (R, S)-submodule. As we have already stated earlier, a proper (R,S)-
submodule P of M is called a jointly prime (R, S)-submodule if for each left ideal
I of R, right ideal J of S, and (R, S)-submodule N of M, INJ C P implies
IMJ C Por N C P. The following are some characterizations of jointly prime
(R, S)-submodules given in [3].

Theorem 2.1. Let M be an (R, S)-module satisfying a € RaS for all a € M, and
P a proper (R, S)-submodule of M. The following statements are equivalent:
(1) P is a jointly prime (R, S)-submodule.
(2) For every right ideal I of R, m € M, and left ideal J of S, ImJ C P
implies IMJ C P orm € P.
(8) For every right ideal I of R, (R, S)-submodule N of M, and left ideal J of
S, INJ C P implies IMJ C P or N C P.
(4) For every left ideal I of R, m € M, and right ideal J of S, (IR)m(SJ) C P
implies IMJ C P orm € P.
(5) For everya € R, me€ M, andb € S, (aR)m(Sb) C P implies aMb C P or
m € P.

If the (R, S)-module M satisfies M = RMS, the necessary and sufficient
condition for a proper (R,S)-submodule P of M to be a jointly prime (R,S)-
submodule is for all ideal I of R, ideal J of S, and (R, S)-submodule N of M,
INJ C P implies IMJ C Por N C P.

Now, we define the notion of m-systems of (R, S)-modules.

Definition 2.2. Let M be an (R, S)-module. A nonempty set X C M\{0} is called
an m-system if for each left ideal I of R, right ideal J of S, and (R, S)-submodules
K, LofM,( K+L)NX#0 and (K+IMJ)NX %0 imply (K+ILJ)NX # 0.

Based on Behboodi [1], we can show that the complement of a jointly prime
(R, S)-submodule is an m-system.

Proposition 2.3. Let P be a proper (R, S)-submodule of M. Then P is a jointly
prime (R, S)-submodule of M if and only if X = M \ P is an m-system.

PROOF. (=). Suppose that P is a jointly prime (R, S)-submodule of M. Let I
be a left ideal of R, J be a right ideal of S, and K, L be (R, S)-submodules of M
such that (K + L) N X # 0 and (K + IMJ) N X # 0. If (K +ILJ)NX = 0,
then K + ILJ C P. Then, ILJ C P and K C P. Since P is a jointly prime
(R, S)-submodule of M, we have L C P or IMJ C P. Thus (K +L)NX =0 or
(K+IMJ)N X =0, a contradiction. Therefore, X is an m-system of M.

(«<). Suppose that X is an m-system of M. Let I be a left ideal of R, J be a right
ideal of S, and L be an (R, S)-submodule of M such that ILJ C P. If L ¢ P
and IMJ ¢ P, then LN X # 0 and IMJ N X # (. Since X is an m-system,
ILJNX # 0 so that ILJ ¢ P, a contradiction. Therefore, P is a jointly prime
(R, S)-submodule of M. O
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Example 2.4. Let Z be the ring of integers taken as an (2Z,37)-module. First,
we show that 67 is a jointly prime (2Z,3Z)-submodule of Z. Consider a left ideal
I = (2m)Z of 2Z, a right ideal J = (3n)Z of 3Z, and an (2Z,3Z)-submodule
N =KkZ of Z, for some m,n,k € N. It is true that INJ = ((2m)Z)(kZ)((3n)Z) =
(6mkn)Z C 6Z and N = kZ =¢ 6Z. Then for each m,n € N, it is clear that
1Z.J = ((2m)Z)(Z)((3n)Z) = (6mn)Z C 6Z. Hence, 6Z is a jointly prime (2Z,3Z)-
submodule of Z. Therefore, 7\ 6Z is an m-system of (2Z,37Z)-module Z.

It is easy to prove that every maximal (R,S)-submodule of M is a jointly
prime (R, S)-submodule. Furthermore, we prove a proposition that states that a
maximal (R, S)-submodule P of M which is disjoint from an arbitrary m-system
of M is a jointly prime (R, S)-submodule.

Proposition 2.5. Let M be an (R,S)-module, X an m-system of M, and P a
proper (R, S)-submodule of M maximal with respect to the property that PNX = (.
Then, P is a jointly prime (R, S)-submodule of M.

PROOF. Let I be a left ideal of R, J a right ideal of S, and N an (R, S)-submodule
of M such that INJ C P. Suppose that N ¢ P and IMJ ¢ P. Since P is
maximal with respect to the property that PN X = ), we have (P+ N)NX # 0
and (P+IMJ)NX # (. Since X is an m-system of M, then (P+INJ)NX # (.
Since INJ C P, it follows that PN X # ), a contradiction. Therefore, P must be
a jointly prime (R, S)-submodule of M. O

We recall the set introduced by Behboodi in [1],
VN :={a € M | (V m-system X of M) a e X = X NN # 0}

Now, we present a generalization of the notion of v/N for any (R, S)-submodules
N of M and we denote it as ““¥/N.

Definition 2.6. Let M be an (R, S)-module. For an (R, S)-submodule N of M, if
there is a jointly prime (R, S)-submodule containing N, then we define /N :=
{a € M | (V m-system X of M) a€ X = X NN # 0}. If there is no jointly prime
(R, S)-submodules containing N, then we define "N := M.

Let M be an (R, S)-module. Then, the jointly prime spectrum of M is the
set Specir(M) := {P | P is a jointly prime (R, S)-submodule of M}. If N be an
(R, S)-submodule of M, then we define V7»(N) := {P € Spec’»(M) | N C P}.
Next, we show that ““%/N equals to the intersection of all jointly prime (R, S)-
submodules of M.

Theorem 2.7. Let M be an (R, S)-module and N be an (R, S)-submodule of M.

Then either ““3/N = M or /N = N P.
PeVIir(N)

PROOF. Suppose that /N # M. It follows from Definition 2.6 that V7» (N) # (.

We will show that YN = N P Let m € “"YN and P € VI»(N).
PeVir(N)
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Consider the m-system X := M \ P in M. Since N C P, we have X N N = 0.
Consequently, we get m ¢ X so that m € P. Thus, we obtain “"¥/N C n P
PeVir(N)
Conversely, let a € N P Ifa¢ 3/N, then there exists an m-system X
PeVir(N)
such that a € X but NN X = . Consider the following set:

J={J| N CJ,Jis an (R, S)-submodule of M and JN X = 0}.

By Zorn’s Lemma, J has a maximal element, which is an (R, .S)-submodule K O N
maximal with respect to the property K N X = (. By Proposition 2.5, K is a
jointly prime (R, S)-submodule of M, so K € VJ»(N). Therefore, we have a € K.
Whereas a € X, so we get K N X # 0, a contradiction. Thus, a € ““¥/N and it

follows that () P C “%/N. Hence, "YN= [ P. O
PeVir(N) PeVir(N)

Example 2.8. Let Z be an (2Z,27Z)-module and 8Z be an (2Z,27)-submodule of
Z. We obtain the set VIr(87) = {P € Specir (Z) | 8% C P} = {27Z,47}. Therefore,
C2R8L = [ P=4ZN27Z=4L.

PeVir (82)

Let I be an ideal of an unitary ring 7. By Lam [4], VT is equal to T or the
intersection of all prime ideals of T' containing I. From Khumprapussorn et al. [3],

we know that the annihilator from Mﬁ\f of the ring R, that is (N : M) :={r €
R | rMS C N}, is an ideal of R when the ring S satisfies S = S. Therefore,
when S? = S, \/(N : M) is equal to R or the intersection of all prime ideals of R
containing (N : M)g. Next, we present a connection between /(N : M)rM S and
*YN.

Proposition 2.9. Let M be an (R, S)-module and N be an (R,S)-submodule of
M. If S? = S, then /(N : M)pMS C /N

PROOF. Since S? = S, by [3] (N : M)g is an ideal of R. Also \/(N : M) is equal
to R or equal to the intersection of all prime ideals of R that contain (N : M)g.
Suppose that %/N = M. Since \/(N : M)g C R, so

V(N : M)gMS C RMS C M = “%/N.

Suppose that “%/N # M. Then “Y/N= [ P. Let P € V/»(N), then P
PcVIp(N)

is a jointly prime (R, S)-submodule of M and N C P. Moreover, by Proposition

2.12 of [3], (P : M)g is a prime ideal of R. Furthermore, since N C P, it is clear

that (N : M)g C (P : M)R. Since (P : M)g is a prime ideal of R and contains

(N : M)g, we obtain
\/(N:M)R g (P:M)R.

VN M)gMS C (P: M)zMS C P.

Thus,
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Therefore, this shows that /(N : M)gpMSC (| P= "YN. O
PEVIr(N)

The definition of jointly prime radicals of an (R, S)-module is given below.

Definition 2.10. Let M be an (R, S)-module. If there is a jointly prime (R, S)-
submodule of M, then we define jointly prime radicals of M as:

rad sy (M) = 0 = ﬂ P.
PeSpecip (M)

If there is no jointly prime (R, S)-submodule of M, then we define jointly prime
radicals of M as rad g sy(M) := M.

Example 2.11. Let Z be an (27Z,27)-module. It is easy to show that {0} is a jointly
prime (2Z,27Z)-submodule of Z. Since every jointly prime (2Z,27)-submodule of Z
contains {0}, then jointly prime radical of (22, 27)-module Z is rad 27,27y (Z) = {0}.

3. Some Properties of Jointly Prime Radicals of (R, S)-Modules

In this section, we present some properties of jointly prime radicals of (R, S)-
modules. Let N be an (R, S)-submodule of M. We show that the jointly prime
radical of N is contained in the jointly prime radical of M.

Proposition 3.1. Let N be an (R,S)-submodule of M. Then, radg s)y(N) C
rad(R,S)(M),

PRrROOF. Let P € Speci»(M). If N C P then rad(g s)(N) € P. If N ¢ P then it
is easy to check that N N P is a jointly prime (R, S)-submodule of N, and hence
rad(p,sy(N) € NN P C P. So, in any case we get rad(p,s)(N) € P. Thus, it
follows that rad g g)(N) C radg,s)(M). O

In module theory, we know that if T-module M is a direct sum of its sub-
modules then the prime radicals of M is also a direct sum of prime radicals of
its submodules. Evidently, this property is still maintained on (R, S)-modules M
when M satisfies a € RaS for all a € M.

Proposition 3.2. Let M be an (R, S)-module and {N;};c1 be a collection of (R, S)-
submodules of M. If M satisfies a € RaS for alla € M and M = @ N; then we

i€l
have rad g, s)(M) = G%Tad(R,S) (V).
i€

PROOF. Since each Nj; is an (R, S)-submodule of M, we get radg g)(N;) C
radgr,s)(M) for each i € I. Thus, it follows that

B rad(r,s)(N;) C rad(g,sy(M). (1)
iel
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Now, let m € M. Then, m = > m; with m; € N; for each i € I and m; = 0
i€l
except for finitely many indices 7 € I. Suppose that m ¢ € rad g, s)(N;). We will
i€l

prove that m & rad(g,s)(M). Since m ¢ @ rad(p,s)(N;), then there exists k € I
i€l
such that my & rad(g, s)(Ny). Thus, there exists a jointly prime (R, S)-submodule
N}t of Ny such that my ¢ Nj. Consider K = N; @ ( &b Ni). First, we prove
ik
that K is a jointly prime (R, S)-submodule of M. Let I be a right ideal of R, J
be a left ideal of S, and a € M such that IaJ C K. Since M satisfies a € RaS
for all @ € M, then based on Theorem 2.1 we will prove that IMJ C K or a € K.
Since a € M, a = _ a; where a; € N; for each i € I and a; = 0 except for finitely
i€l
many indices ¢ € I. Thus we get TaJ = I(Zaz)J = IakJ—i—I( > ai)J C K,
i€l ik
so that TagpJ C Nj. Since N} is a jointly prime (R, S)-submodule of Ny, we have
IN,J C Nj or a € Nj. Since a; € N; for each i € I, >~ a;, € @ N;. Since for

i#k ik
all i € I, N; is an (R, S)-submodule of M, I( D Nl-)J C @ N;. Thus, it follows
itk itk
that a = Y a; € K or I(@Ni)J — IMJ C K. Hence, K is a jointly prime

icl icl
(R, S)-submodule of M. Furthermore, because my ¢ N} then m ¢ K. Since K is
a jointly prime (R, S)-submodule of M, m ¢ rad(g s)(M). Thus, it follows that

rad(p,s) (M) € € radr,s)(N:). (2)
il
From (1) and (2), we obtain rad(g,s)(M) = @ rad(g,s)(N;). O
iel
It is easy to show that every jointly prime (R, S)-submodule of M contains
a minimal jointly prime (R, S)-submodule of M. Based on this property, we get a
relationship between jointly prime radicals of (R, .S)-modules and minimal jointly
prime (R, S)-submodules.

Proposition 3.3. Let M be an (R, S)-module. The jointly prime radical of M s
equal to M or the intersection of all minimal jointly prime (R, S)-submodules of
M.

PROOF. Since every jointly prime (R,S)-submodule of M contains a minimal
jointly prime (R, S)-submodule then for each P € Spec’» (M) there exists a minimal
jointly prime (R, S)-submodule P’ € Spec’» (M) such that P’ C P. Furthermore,
we can form the set:
§ = {P'| P’ is a minimal jointly prime (R, S)-submodule}.
Suppose that rad(g,sy(M) # M. We will prove that rad(g (M) = (] P'. Since
Pes

S C Speci»(M), we get rad(p,sy(M) € () P'. On the other hand, for any
Pes
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P € Spec?»(M) there is P* € § with P* C P. Thus (| P’ C P* C P, which
P'eS
implies that (] P’ C radg,s)(M). Hence radg s (M) = (] P’. Therefore,
P'eS P'ES
this shows that rad g, s)(M) is equal to the intersection of all minimal jointly prime
(R, S)-submodules of M. O

Now, we give an important lemma which will be used in the proof of the next
property of jointly prime radicals of an (R, S)-module.

Lemma 3.4. Let Py and P> be jointly prime (R,S)-submodules of M, and let
P%ad(R,S)(M) and 12 rad s (M) be (R, S)-submodules Oerad(Rys)(M)' Then,

Py P NP

P _
rad(g,s) (M) " %ad(R,S)(M) = Q%Gd(R,S)(M)'

Given an (R, S)-module M and (R, S)-submodules A, P of M with A C P.
Then, it is easy to check that the necessary and sufficient condition for P to be a

jointly prime (R, S)-submodule of M is % being a jointly prime (R, S)-submodule
of M/4 By using this property, we can show that the jointly prime radical of the

quotient (R, S)-module M%ad(R ) (M) is zero.

Proposition 3.5. Let M be an (R, S)-module. Then,

radins) (Mfadn 5 (00) =0

PROOF. Suppose that M has no jointly prime (R,.S)-submodules, then we get
that quotient (R,S)-modules M%ad(R’S)(M) also has no jointly prime (R,S)-
submodules. Thus, radg,s)(M) = M and then we obtain

rad(g,s) (M%ad(&s)(M)) = rad(p,s) (M/M> = radg,s)(0) = 0.

Suppose that M has a jointly prime (R, S)-submodule, then we obtain that quotient

(R, S)-module M/

rad g,y (M) also has a jointly prime (R, S)-submodule. From the

definition,

rad(g,s) (M%ad(R,S) (M)) - ﬂ "
PeSpecip (M/ﬂad(R,S) (M))

Since Lemma 3.4 can be generalized for infinite number of P; jointly prime (R, S)-
submodules of M, then we get

N b= <P€SijP(M) P%adeS)(M )y
_ J M
PeSpeciv ( /"ad(R,S)(M))
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So,

QI

md(R,S) (M%ad(R,S) (M)) = rad(R,S) (M) Tad(R“g) (M) =
Hence, it’s proved that radr (M%adT(M)) =0. O

Given an (R, S)-module M and an ideal I of R such that I C Anng(M).
We can show that an (R, S)-module M is also an (1“%, S)-module under the scalar

multiplication operation that defined as follows:
_~_~_:I%><M><S — M
(@,m,s) — a-m-s:=ams
forallELEI%,meM,andSES.

Moreover, it is easy to check that P is a jointly prime (R, S)-submodule of
M if and only if P is a jointly prime (-’%, S)-submodule of M.

Proposition 3.6. Let M be an (R, S)-module and I be an ideal of R such that
I C Anng(M). Then, radr,s)(M) = radr;r,s)(M).
PrOOF. Let a € radr,g) (M) and P be a jointly prime (R, S)-submodule of
M. Then, a € P. Since P is also a jointly prime (R/I, S)-submodule of M,
a € rad(g/1,s)(M). Thus, we obtain

rad(g,s)(M) C rad(r;1,5)(M). (3)

Furthermore, let b € radg/r,s)(M) and N a jointly prime (]%, S)-submodule
of M. Then, b € N. Since N is also a jointly prime (R, S)-submodule of M,
b € rad(g,s)(M). Thus, we get

rad(R/LS)(M) g md(R,S)(M). (4)
Based on (3) and (4), it’s proved that rad(g, s)(M) = radg/r,s)(M). O

4. Concluding Remarks

Further work on the properties of jointly prime radicals of an (R, S)-module
can be carried out. For example, the investigation of properties of jointly prime
radicals can be done on any left multiplication (R, S)-module. The concept of left
multiplication (R, S)-modules has been described by Khumprapussorn et al. [3].
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