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Abstract - When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh
adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit
geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an
adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called “Free-Form Deformation”
approach based on 3D tensorial Bézier parameterization. The proposed procedure leads to efficient numerical simulations with

highly reduced computational costs.
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1. Introduction

Within few years, numerical shape optimization is
playing a great role in aerodynamic aircraft design. It
enables to design and improve the shape of some or all of
the components of the aircraft by minimising a cost
functional subject to physical and geometrical constraints.
This cost function trusts in the prior solution of a complex
set of partial-differential equations (PDEs), such as those
governing compressible aerodynamics (e.g. the Euler
equations). Whence, the optimization process suffers
from the high computational effort for the flow
simulations around 3D configurations when the accuracy
requirement is high. Thus, our efforts is mostly
concentrated on improving the convergence rate of the
numerical procedures both from the viewpoint of cost-
efficiency and accuracy by handling the parametrization
of the shape to be optimized.

When solving a PDE problem numerically, a certain
mesh-refinement process is always implicit, and very
classically, mesh adaptivity instead of, or in conjunction
with increasing the number of degrees of freedom, is a
very effective means to accelerate grid convergence.
Similarly, when optimizing a shape by means of an
explicit geometrical representation, as we advocate, it is
natural to seek for an analogous concept of
parameterization adaptivity. We propose here a self-

adaptive procedure for a three-dimensional optimum-
design in aerodynamics by using the so-called Free-Form
Deformation (FFD) method [12]. This approach is studied
initially in the framework of the Bézier parametrization
and applied to a geometrical arc reconstruction [3].
This paper is organized as follows. sections 2.1 introduces
some properties of the classical Bézier paramerization.
Then, we recall the concept of Free-Form Deformation
which allows to extend the concept of shape
representation to three-dimensional cases. In section 3,
we present the notion of parametrization adaption within
the framework of FFD approach. We apply the self-
adaptivity approach to optimum shape design in 3D
aerodynamics. Finally, we conclude and give some
prespectives.

2. Shape representation
2.1 Bézier parameterization

We begin with the simplest situation of a two-
dimensional geometry for which we employ a Bézier
shape representation:

n

x(©) = ) BEOx, y©=) BEO
k=0 k=0

in which the parameter t varies from 0 to 1, n is the
degree of the parameterization,
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BE(t) = Cktk (1 —t)nk

n!

k!(n-k)! and

is a Bernstein polynomial, Cj} =

=)

is the generic control point. The coordinates of these
control points are split into two vectors
X={x}, Y={n} k=01,..,n

(k=01,...,n)

and we refer to the vector X as the support of the
parameterization, and the vector Y as the design vector.
Typically, we optimize the design vector for fixed support
according to some physical criterion, such as drag
reduction in aerodynamics. The somewhat unsymmetrical
roles dispensed to the vectors X and Y are chosen to
reduce (to n essentially) the dimension of the search
space in the optimization phase, which is the most
numerically costly and subject to numerical stiffness.
We also use the notation:
x()=B,M"X, y®)=B,@®"Y,
in which the vector B, ()T = (B2(t), BX(¢),..., B(t)). In
all this article, only supports for which the sequence {x;}
is monotone increasing are said to be admissible and
considered throughout. Thus, the function x(t) is
monotone-increasing and defines a one-to-one mapping
of, say, [0,1] onto itself.

2.2 Free-Form Deformation approach
A critical issue in aerodynamic design is the choice of

the shape parameterization. Parameterization techniques

for practical 3D aerodynamic shape optimization have to
fulfill several criteria :

e the parameterization should be able to take into
account complex geometries, possibly including
constraints and singularities ;

e the number of parameters should be as small as
possible, since the stiffness of the shape optimization
numerical formulation increases abruptly with the
number of parameters;

e the parameterization should allow to control the
smoothness of the resulting shapes.

A survey of shape parameterization techniques for
multi-disciplinary optimization, which are analyzed
according to the previous criteria, is proposed by
Samareh [6]. Following his recommendation, conclusions,
the Free-Form Deformation (FFD) [12] technique is
adopted in the present study, since it provides an easy
and powerful framework for the deformation of complex
shapes, such as generic or elaborate aerodynamic
configuration.

The FFD technique originates from the Computer
Graphics field [12]. It allows the deformation of an object
in a 2D or 3D space, regardless of the representation of
this object. Instead of manipulating the surface of the
object directly, by using classical B-Splines or Bézier

parameterization of the surface, the FFD technique
defines a deformation field over the space embedded in a
lattice which is built around the object. By modifying the
space coordinates inside the lattice, the FFD technique
deforms the object, regardless of its geometrical
description. In particular, the initial geometry, in our
applications, is usually defined by a general, Finite-
Element-type unstructured simplicial grid.

More precisely, consider a three-dimensional
hexaedral lattice embedding the object to be deformed.
Figure [fig:ffd1] shows an example of such a lattice built
around a typical wing. A local coordinate system (§,7, ()
is defined in the lattice, with (§,7n,{) € [0,1] X [0,1] X
[0,1]. As a result of the deformation, the displacement Aq
of each point q inside the lattice is here defined by a third-
order Bézier tensor product:

n; My ong

4q= "3 Bl (5) B (1) B, Gy) APy

=0 j=0 k=0

By, B,{j and B, are again Bernstein polynomials of order
n;, n; and n. (APijk)Osisni,osjsnj,osksnk are weighting
coefficients, or control points displacements, which are
used to monitor the deformation and are considered as
design variables during the shape optimization
procedure. The critical point is that only the shape
deformation is represented not the shape itself.

This technique is illustrated by Figure 1. A lattice is
built around a wing and a Bézier tensor product of
degreen; =4, n; =1 and n, =1 is defined over this
lattice. Corner control points (filled markers) are
supposed to be frozen in order to keep leading and
trailing edges fixed during the deformation, whereas
other control points (empty markers) are allowed to
move vertically (Figure 1(a)). When these control points
are moved, their displacements define a continuous
deformation inside the lattice according to [6], yielding a
shape deformation. The deformed lattice and shape can
be seen in Figure 1(b).

The FFD technique described above is well suited to
complex shape optimization, thanks to the following
properties:

e the initial shape can be exactly represented (no
deformation occurs when all weighting coefficients are
zero);

e the deformation is performed whatever the
complexity of the shape (this is a free-form technique);

e geometric singularities can be taken into account (the
initial shape including its singularities is deformed);

e the smoothness of the deformation is controlled (the
deformation is ruled by Bernstein polynomials);

e the number of design variables depends on the user’s
choice (the deformation is independent of the shape
itself);
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(a) initial FFD lattice 4-1-1

(b) Deformed FFD lattice 4-1-1

Figure 1: Example of Free-Form Deformation: by moving some control points of the lattice, a deformation field is defined
continuously inside the lattice, yielding a shape deformation.

3. 3D parameterization adaptivity

31 Motivations

Before defining our concept of parameterization
adaptivity, we discuss some elements that has motivated
its construction. For this purpose, we use an intrinsic
formulation of shape-reconstruction problem, initially
introduced in [5]:

o~ — 1 o Zd
min 3(): = fy S - FPdx

where y is the unknown shape analytically represented
by y(x); y(x) is the analogous analytical representation of
a given target curve y(x), subsequently assumed, without
great loss of generality, to be a Bézier curve of degree n
and support X. This problem is transformed into a
parametric  optimization by  assuming  Bézier
representations of the curves over the support X:

1
min _j,(Y): = f %[Bn(t)T(Y—7)]2an_1(t)TAth

0

YeRN+T

The symbol 4 represents the forward-difference operator
that appears when differentiating Bernstein polynomials.

Since the functional is quadratic, the parametric gradient
is linear (in Y):

J'n(¥) = AX)Y — b(X)
where

AX) = j B, (t)B, (t)"nB,_,(t)TAXdt
0

and
1

b(X) = f B, (t)B,(t)"YnB,_,(t)TAXdt
0

In particular, for a uniform support X, the matrix A

reduces to the simple form :
1

AX) =f B, (t)B,(t)Tdt = Aij
in which the coefficignts Aij are obtained by a simple
calculation :
1 cic!
TIn+1 Czi-:lj
For this shape-inverse problem, the optimization

problem is equivalent to solving the linear system (X is
fixed during the optimization process),

Aij

AY = b(X)

The matrix A indicates how does the parametrization
condition the stifness of the optimization iteration. By
computing the condition number for differente values of
the parametrization degree n, we observe, as shown in
figure 2, that the condition number of the matrix A
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increase with n. Because, in practice, the parameter n
must be sufficienty fine subject to obtain efficient
solution, the linear system AY = b(X) is ill-conditioned
due to the cluster of small singular values of the matrix A
(as depicted in figure 3). Thus, the vector ¥ = A~1b(X)
(A~ is the inverse of A) is a usually meaningless bad
approximation to the exact solution Y. Hence, the so-
called regularization techniques are needed to stabilize
such ill-conditioned problem and obtain meaningful
solution estimates.

Undoubtedly, the most common and well-known form
of regularization is the one known as Tikhonov
regularization. The idea is to seek the regularized solution
Y, as the minimizer of the following weighted functional

¢, (Y) = IIAY — bl + pliY1I3,

where the first term corresponds to the residual norm,
and the second to a side constraint imposed on the
solution. the regularization parameter p is an important
quantity which controls the properties of the regularized
solution, and p should therefore be chosen with care.

Intuitively, the Tikhonov regularization tries to find a
good trade-off between two requirements:

1. Y, should give a small residual AY, — b.

2. Y, should be regularized with respect to the 2-norm.

Condtion numbar of A
°

s e 7 & 0 0
Perarmut aton dogtee

Figure 2: The condition number of A for different values
of the parameterization degree
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Figure 3: The singular values of the matrix A

This above reasoning explains why, for this shape-
recontruction problem, the regularization of the
parametrization is necessary to reduce the stifness of the
optimization problem. In two-dimentional cases, our
algorithm require two complementary phases:

1. Optimization: optimize the design vector Y for fixed
support X = X% according to some criterion; let Y° be
the result of this phase.

2. Regularization: given the parametrization (X° Y?) of
an approximate optimum shape y°, the new support
X1 is taken to be the better support for which the total
variation (TV) in the components of the corresponding
vector Y! is minimal, such that the correspondant
shape y! to (X1,Y!) approximates y° in the sense of
least squares; subtitute X! to X°.

We note that the support of the parametrization is the
regularization parameter; it plays the same role as the
parameter p in Tikhonov regularization.

3.2 Principles
For complex three-dimentional problems, such as

those encountered in aerodynamics, the Free-Form

Deformation (FFD) approach is adopted. In this case, one

proposes here the notion of parametrization adaptivity. In

the framework of aerodynamic shape optimization, two
outcomes are expected:

e reach a shape of better fitness (i.e. decrease the
distance between reachable shapes and the best
existing shape) ;

e increase the convergence rate (i.e. improve the
conditioning of the numerical optimization problem
by modifying the topology of the cost function).

Representing the shape by Free-Form Deformation
allows to deform mesh and shape simultaneously. The
quality of the shape is kept and a costly re-meshing is
avoided. During the optimization, The shape together
with the grid embedded into the FFD control volume are
deformed. Continuity with the CFD mesh outside of the
volume is guaranteed by fixing the control point of the
boundary.

The parameterization adaptivity in this general
context is inspired from the approach in two-dimensional
presented in the previous section. The main idea consiste
to yield the control volume more regular during the shape
optimization process. In fact, it was observed that the
control volume become very irregular after some
iterations. So, we use the parametrization adaptivity
process, explained below, in order to change the actual
neighboring control points by a new one which is more

regularized.
Denote by (Xmin’ Ymin' Zmin) and (Xmax: Ymax: Zmax)
the corners of a deformation region.

Let (x° y°,z%) a Cartesian coordinates of an interior point
Q° of the initial mesh.
The deformation of the lattice around an object is
specified by changing the initial control points P°;
defined by,
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i j k
Poijk = (Xmin + E (Xmax - Xmin' Ymin + E (Ymax - Ymin' Zmin + T (Zmax - Zmin))

In order to find the current mesh before fitness evaluation, we add each node Q° of the initial mesh with the

corresponding deformation, it follows that

n m 1
Q=0Q%+ > "> Bi(§00) Bhalings) B (Gg0) Poije
i=0 j=0 k=0
where,
€o= xo_Xmin Moo = O_Ymin Zo: ZO_Zmin
@ Xmax - Xmin , ? Ymax - Ymin e Zmax - Zmin

After performing k optimization steps, the shape and the
computational grid follow all deformation applied to the
control volume; the resulting control volume P"”k is

irregular as illustrated by Figure 4. The current mesh
inside the lattice volume is achieved by adding the initial
mesh to the current control points,

n m 1
Q¥ =00+ ) > 3" Bl (50) Ba(ng) BEGo) P

i=0 j=0 k=0
Our approach of parametrization adaptivity consist to
restart the optimization by both the current mesh and the
n
QF = Q"+

i=0 j=0

where,

’ nQ:

So, the optimization restarts with exactly the same
deformed mesh/shape but a new regular control volume
as depicted in Figure 4. This adaption pocedure happens
at some steps during the optimization process. It is not
clear practically when the adaptivity procedure takes
place optimally.

4. Results

4.1 Test-case description

The test-case considered here corresponds to the
optimization of the wing shape of a business aircraft
(courtesy of Piaggio Aero Industries) in a transonic
regime. The free-stream Mach number is M, = 0.83 and
the incidence ¢ = 2°. Initially, the wing section
corresponds to the NACA 0012 airfoil. An unstructured

y— Ymin

Ymax - Ymin

initial volume P?; jk» it follows that for each node Q(x,y, z)
of the current mesh,

m 1
Z Z B (£0) B, (ng) B (3o) Pk
k=0

2z — Zmin

P I
¢ Zmax - Zmin

mesh, composed of 31124 nodes and 173 445 elements, is
generated around the wing, including a refined area in the
vicinity of the shock (Figure 5). Flow fields are obtained
by solving compressible Euler equations using a finite-
volume method.

The goal of the optimization is to reduce the drag
coefficient C, subject to the constraint that the lift
coefficient C;, should not decrease more than 0.1%. The
constraint is taken into account using a penalization
approach. Then, the resulting cost function is :

o 4 Cy
Jopr = =— + 10* max(0,0.999 — —).
CDO CLO
Cp, and Cy,, are respectively the drag and lift coefficients

corresponding to the initial shape (NACA 0012 section).
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Figure 4: The control points of the lattice before and after adaption.
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Figure 5: Initial wing shape and mesh in the symmetry plane.

The FFD lattice is built around the wing with &, n and
¢ in the chord-wise, span-wise and thickness directions
respectively. The lattice is chosen in order to fit the
planform of the wing. Then, the leading and trailing edges
are kept fixed during the optimization by freezing the
control points that correspond to i =0 and i=n,.
Moreover, control points are only moved vertically.
Results are presented for three parameterizations. The
coarsest one corresponds to n; =3, n; =1 and n;, = 1.
Therefore, (4 —2) X2 X 2 =8 degrees of freedom are
taken into account in the optimization. The medium
parameterization corresponds to n; =6, n; =1 and
n,=1 and counts (7—2)X2xX2=20 degrees of

freedom. Finally, the finest parameterization corresponds
ton; =9, n;=1 and n, =1 and counts (10 —2) X 2 X
2 = 32 degrees of freedom. In this study,
The Nelder-Mead simplex method [7]
optimization algorithm.

is used as

For the coarse parameterization (3 X 1 X 1) two stratgies

are compared:

e Basic method : optimization without adaption until full
convergence;

e Adaptive method: optimization with adaption.
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In this test case, the adaption process occurs after 100
iterations of the shape optimization process.

4.2 Aerodynamic coefficients
The aerodynamic coefficients obtained for each
method are compared in Table 1. The lift coefficient is

approximately maintained or slightly increased by the
shape optimization process. Important reductions of the
drag coefficient are reported. As observed, the utilization
of adaption method improve significantly the
aerodynamic performance.

Table 1: Comparison of aerodynamic coefficients and cost function values.

Method 3 Cp Cost
Reference 0.319192893 0.026352608 1.
Basic method 0.318874966 0.017450289 0.662184501
Adaptive method 0.318999078 0.016299483 0.618515468

4.3 Convergence history plots

Figure 6 shows a comparison of the convergence for
the two strategies under consideration. The adaptive
method is significantly efficient than the basic method,
ylelding a shape of better fitness using a smaller
computational effort.

4.4 Flows
A comparison of the flow fields for the final shapes
obtained with the different strategies is presented in

Figures 7 to 9. The Mach number field on the wing surface
and Mach number contours in the symmetry plane are
represented. Visibly, this drag reduction exercise results
in a strong reduction of the shock wave. Using a basic
method, the shock reduction is not as important, whereas
in the adaption approaches, the shock at the root section
disappears.

COUPLING OPTIMIZATION AND ADAPTION (3x1x1)

1 T T T
095 |- \
09 |
085 -

08

Cost function

075 |-

ozt tTTUTW

065

T T
Pure Optimization
Optimization + Adaption --------

06 1 1 1

400 S00 600

Simplex iterations

Figure 6: Comparison of the convergence history for the two strategies.

Figure 7: Mach number field on the wing and Mach number contours in the symmetry plane: initial shape.
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Figure 8: Mach number field on the wing and Mach number contours in the symmetry plane: basic method.
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Figure 9: Mach number field on the wing and Mach number contours in the symmetry plane: adaptive method.

5. Conclusion

A self-adaptive procedure was developped for 3D
optimum design in aerodynamics by using Free-Form
Deformation (FFD). This approach which regularize the
shape representation during the optimization process, is
very effective in accelerating the convergence rate as
shown by the numerical results. It follows clearly that the
parametrization has a great impact on the results of
aerodynamic shape optimization. this self-adaptive
approach can be used to support a multilevel strategies
developed in [4] .

This study can be extended for more complex
engineering designs by using isogeometric analysis based
on advanced techniques like non-uniform rational B-
splines (NURBS) [2] due to its compact and shape
representation capability [8]. Isogeometric analysis was
introduced at first by Hughes et al. [9] to close the gap
between computer aided design (CAD) and finite element
analysis. Since then, many researchers in the fields of
computational mechanical and geometric computation
were involved in this topic [10][11][12]. The main idea
behind isogeometric analysis is that the basis used to
exactly parametrize the geometry will also serve as the
basis for the solution space of the numerical method. This
technique allows to best represent the shape and reduce
the time required for its analysis. Although both positions
and weights of control points affect the NURBS geometry
instead of taking only the positions of control points as
design variables when using the Bézier parameterization.
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