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Abstract - When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh 

adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit 

geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an 

adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called “Free-Form Deformation” 
approach based on 3D tensorial Bézier parameterization. The proposed procedure leads to efficient numerical simulations with 

highly reduced computational costs. 
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1. Introduction 

Within few years, numerical shape optimization is 

playing a great role in aerodynamic aircraft design. It 

enables to design and improve the shape of some or all of 

the components of the aircraft by minimising a cost 

functional subject to physical and geometrical constraints. 

This cost function trusts in the prior solution of a complex 

set of partial-differential equations (PDEs), such as those 

governing compressible aerodynamics (e.g. the Euler 

equations). Whence, the optimization process suffers 

from the high computational effort for the flow 

simulations around 3D configurations when the accuracy 

requirement is high. Thus, our efforts is mostly 

concentrated on improving the convergence rate of the 

numerical procedures both from the viewpoint of cost-

efficiency and accuracy by handling the parametrization 

of the shape to be optimized. 

When solving a PDE problem numerically, a certain 

mesh-refinement process is always implicit, and very 

classically, mesh adaptivity instead of, or in conjunction 

with increasing the number of degrees of freedom, is a 

very effective means to accelerate grid convergence. 

Similarly, when optimizing a shape by means of an 

explicit geometrical representation, as we advocate, it is 

natural to seek for an analogous concept of 

parameterization adaptivity. We propose here a self-

adaptive procedure for a three-dimensional optimum-

design in aerodynamics by using the so-called Free-Form 

Deformation (FFD) method [12]. This approach is studied 

initially in the framework of the Bézier parametrization 

and applied to a geometrical arc reconstruction [3]. 

This paper is organized as follows. sections 2.1 introduces 

some properties of the classical Bézier paramerization. 

Then, we recall the concept of Free-Form Deformation 

which allows to extend the concept of shape 

representation to three-dimensional cases. In section 3, 

we present the notion of parametrization adaption within 

the framework of FFD approach. We apply the self-

adaptivity approach to optimum shape design in 3D 

aerodynamics. Finally, we conclude and give some 

prespectives. 

2. Shape representation 

2.1 Bézier parameterization 
 

We begin with the simplest situation of a two-

dimensional geometry for which we employ a Bézier 

shape representation:  ( )  ∑         ( )       ( )  ∑         ( )    

in which the parameter   varies from 0 to 1,   is the 

degree of the parameterization, 
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   ( )         (   )    

 

is a Bernstein polynomial,         (   ) , and 

    .    /  (           ) 
 

is the generic control point. The coordinates of these 

control points are split into two vectors   *  +     *  +                
 

and we refer to the vector   as the support of the 

parameterization, and the vector   as the design vector. 

Typically, we optimize the design vector for fixed support 

according to some physical criterion, such as drag 

reduction in aerodynamics. The somewhat unsymmetrical 

roles dispensed to the vectors   and   are chosen to 

reduce (to   essentially) the dimension of the search 

space in the optimization phase, which is the most 

numerically costly and subject to numerical stiffness. 

We also use the notation:  ( )    ( )       ( )    ( )      
 

in which the vector   ( )  (   ( )    ( )        ( )). In 

all this article, only supports for which the sequence *  + 
is monotone increasing are said to be admissible and 

considered throughout. Thus, the function  ( ) is 

monotone-increasing and defines a one-to-one mapping 

of, say, [0,1] onto itself. 

2.2 Free-Form Deformation approach 
A critical issue in aerodynamic design is the choice of 

the shape parameterization. Parameterization techniques 

for practical 3D aerodynamic shape optimization have to 

fulfill several criteria : • the parameterization should be able to take into 

account complex geometries, possibly including 

constraints and singularities ; • the number of parameters should be as small as 

possible, since the stiffness of the shape optimization 

numerical formulation increases abruptly with the 

number of parameters; • the parameterization should allow to control the 

smoothness of the resulting shapes. 

 

A survey of shape parameterization techniques for 

multi-disciplinary optimization, which are analyzed 

according to the previous criteria, is proposed by 

Samareh [6]. Following his recommendation, conclusions, 

the Free-Form Deformation (FFD) [12] technique is 

adopted in the present study, since it provides an easy 

and powerful framework for the deformation of complex 

shapes, such as generic or elaborate aerodynamic 

configuration. 

The FFD technique originates from the Computer 

Graphics field [12]. It allows the deformation of an object 

in a 2D or 3D space, regardless of the representation of 

this object. Instead of manipulating the surface of the 

object directly, by using classical B-Splines or Bézier 

parameterization of the surface, the FFD technique 

defines a deformation field over the space embedded in a 

lattice which is built around the object. By modifying the 

space coordinates inside the lattice, the FFD technique 

deforms the object, regardless of its geometrical 

description. In particular, the initial geometry, in our 

applications, is usually defined by a general, Finite-

Element-type unstructured simplicial grid. 

More precisely, consider a three-dimensional 

hexaedral lattice embedding the object to be deformed. 

Figure [fig:ffd1] shows an example of such a lattice built 

around a typical wing. A local coordinate system (     ) 
is defined in the lattice, with (     )  ,   -  ,   -  ,   -. As a result of the deformation, the displacement    

of each point   inside the lattice is here defined by a third-

order Bézier tensor product: 

    ∑∑∑      
   

  
   

  
   (  )     (  )     (  )        

     ,      and      are again Bernstein polynomials of order   ,    and   . (     )                     are weighting 

coefficients, or control points displacements, which are 

used to monitor the deformation and are considered as 

design variables during the shape optimization 

procedure. The critical point is that only the shape 

deformation is represented not the shape itself.  

This technique is illustrated by Figure 1. A lattice is 

built around a wing and a Bézier tensor product of 

degree    ,      and      is defined over this 

lattice. Corner control points (filled markers) are 

supposed to be frozen in order to keep leading and 

trailing edges fixed during the deformation, whereas 

other control points (empty markers) are allowed to 

move vertically (Figure 1(a)). When these control points 

are moved, their displacements define a continuous 

deformation inside the lattice according to [6], yielding a 

shape deformation. The deformed lattice and shape can 

be seen in Figure 1(b). 

The FFD technique described above is well suited to 

complex shape optimization, thanks to the following 

properties: 

 the initial shape can be exactly represented (no 

deformation occurs when all weighting coefficients are 

zero); 

 the deformation is performed whatever the 

complexity of the shape (this is a free-form technique); 

 geometric singularities can be taken into account (the 

initial shape including its singularities is deformed); 

 the smoothness of the deformation is controlled (the 

deformation is ruled by Bernstein polynomials); 

 the number of design variables depends on the user’s 
choice (the deformation is independent of the shape 

itself); 
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(a) initial FFD lattice 4-1-1 

 

 
(b) Deformed FFD lattice 4-1-1 

 
Figure 1: Example of Free-Form Deformation: by moving some control points of the lattice, a deformation field is defined 

continuously inside the lattice, yielding a shape deformation. 

 

3. 3D parameterization adaptivity 

3.1 Motivations 
 

Before defining our concept of parameterization 

adaptivity, we discuss some elements that has motivated 

its construction. For this purpose, we use an intrinsic 

formulation of shape-reconstruction problem, initially 

introduced in [5]: 

       ( )  ∫    , ( )    ( )-    

 

where   is the unknown shape analytically represented 

by  ( );  ( ) is the analogous analytical representation of 

a given target curve  ( ), subsequently assumed, without 

great loss of generality, to be a Bézier curve of degree   

and support  . This problem is transformed into a 

parametric optimization by assuming Bézier 

representations of the curves over the support  :            ( )  ∫     [  ( ) (   )]      ( )      
 

The symbol   represents the forward-difference operator 

that appears when differentiating Bernstein polynomials. 

 

Since the functional is quadratic, the parametric gradient 

is linear (in  ): 

    ( )   ( )   ( ) 
where  ( )  ∫     ( )  ( )      ( )      
and  ( )  ∫     ( )  ( )       ( )      
 

In particular, for a uniform support  , the matrix   

reduces to the simple form :  ( )  ∫     ( )  ( )        
in which the coefficients     are obtained by a simple 

calculation :                       

For this shape-inverse problem, the optimization 

problem is equivalent to solving the linear system (  is 

fixed during the optimization process), 

     ( ) 
 

The matrix   indicates how does the parametrization 

condition the stifness of the optimization iteration. By 

computing the condition number for differente values of 

the parametrization degree  , we observe, as shown in 

figure 2, that the condition number of the matrix   
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increase with  . Because, in practice, the parameter   

must be sufficienty fine subject to obtain efficient 

solution, the linear system     ( ) is ill-conditioned 

due to the cluster of small singular values of the matrix   

(as depicted in figure 3). Thus, the vector  ~     ( ) 
(    is the inverse of  ) is a usually meaningless bad 

approximation to the exact solution  . Hence, the so-

called regularization techniques are needed to stabilize 

such ill-conditioned problem and obtain meaningful 

solution estimates. 

Undoubtedly, the most common and well-known form 

of regularization is the one known as Tikhonov 

regularization. The idea is to seek the regularized solution    as the minimizer of the following weighted functional 

   ( )  ∥    ∥    ∥ ∥    
 

where the first term corresponds to the residual norm, 

and the second to a side constraint imposed on the 

solution. the regularization parameter   is an important 

quantity which controls the properties of the regularized 

solution, and   should therefore be chosen with care.  

 

Intuitively, the Tikhonov regularization tries to find a 

good trade-off between two requirements: 

1.    should give a small residual      . 

2.    should be regularized with respect to the 2-norm. 

 

 
Figure 2: The condition number of A for different values 

of the parameterization degree   

 

 
Figure 3: The singular values of the matrix A 

 

This above reasoning explains why, for this shape-

recontruction problem, the regularization of the 

parametrization is necessary to reduce the stifness of the 

optimization problem. In two-dimentional cases, our 

algorithm require two complementary phases: 

1. Optimization: optimize the design vector   for fixed 

support      according to some criterion; let    be 

the result of this phase. 

2. Regularization: given the parametrization (     ) of 

an approximate optimum shape   , the new support    is taken to be the better support for which the total 

variation (TV) in the components of the corresponding 

vector    is minimal, such that the correspondant 

shape    to (     ) approximates    in the sense of 

least squares; subtitute    to   . 
 

We note that the support of the parametrization is the 

regularization parameter; it plays the same role as the 

parameter   in Tikhonov regularization. 

3.2 Principles 
For complex three-dimentional problems, such as 

those encountered in aerodynamics, the Free-Form 

Deformation (FFD) approach is adopted. In this case, one 

proposes here the notion of parametrization adaptivity. In 

the framework of aerodynamic shape optimization, two 

outcomes are expected: 

 reach a shape of better fitness (i.e. decrease the 

distance between reachable shapes and the best 

existing shape) ; 

 increase the convergence rate (i.e. improve the 

conditioning of the numerical optimization problem 

by modifying the topology of the cost function). 

 

Representing the shape by Free-Form Deformation 

allows to deform mesh and shape simultaneously. The 

quality of the shape is kept and a costly re-meshing is 

avoided. During the optimization, The shape together 

with the grid embedded into the FFD control volume are 

deformed. Continuity with the CFD mesh outside of the 

volume is guaranteed by fixing the control point of the 

boundary. 

The parameterization adaptivity in this general 

context is inspired from the approach in two-dimensional 

presented in the previous section. The main idea consiste 

to yield the control volume more regular during the shape 

optimization process. In fact, it was observed that the 

control volume become very irregular after some 

iterations. So, we use the parametrization adaptivity 

process, explained below, in order to change the actual 

neighboring control points by a new one which is more 

regularized. 

Denote by (              ) and (              ) 
the corners of a deformation region. 

Let (        ) a Cartesian coordinates of an interior point    of the initial mesh. 

The deformation of the lattice around an object is 

specified by changing the initial control points       

defined by, 
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      (       (                 (                 (         )) 
 
In order to find the current mesh before fitness evaluation, we add each node    of the initial mesh with the 

corresponding deformation, it follows that      ∑∑∑    
   

 
   

 
   (   )    (   )    (   )       

where,                                                                  
 
After performing   optimization steps, the shape and the 

computational grid follow all deformation applied to the 

control volume; the resulting control volume       is 

irregular as illustrated by Figure 4. The current mesh 

inside the lattice volume is achieved by adding the initial 

mesh to the current control points,       ∑∑∑    
   

 
   

 
   (  )    (  )    (  )       

Our approach of parametrization adaptivity consist to 

restart the optimization by both the current mesh and the 

initial volume      , it follows that for each node  (     ) 
of the current mesh,       ∑∑∑    

   
 
   

 
   (  )    (  )    (  )       

where,                                                             
 

So, the optimization restarts with exactly the same 

deformed mesh/shape but a new regular control volume 

as depicted in Figure 4. This adaption pocedure happens 

at some steps during the optimization process. It is not 

clear practically when the adaptivity procedure takes 

place optimally. 

 

4. Results 

4.1 Test-case description 

The test-case considered here corresponds to the 

optimization of the wing shape of a business aircraft 

(courtesy of Piaggio Aero Industries) in a transonic 

regime. The free-stream Mach number is         and 

the incidence      . Initially, the wing section 

corresponds to the NACA 0012 airfoil. An unstructured 

mesh, composed of 31124 nodes and 173 445 elements, is 

generated around the wing, including a refined area in the 

vicinity of the shock (Figure 5). Flow fields are obtained 

by solving compressible Euler equations using a finite-

volume method. 

The goal of the optimization is to reduce the drag 

coefficient    subject to the constraint that the lift 

coefficient    should not decrease more than 0.1%. The 

constraint is taken into account using a penalization 

approach. Then, the resulting cost function is : 

                   (             )      and     are respectively the drag and lift coefficients 

corresponding to the initial shape (NACA 0012 section). 
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 Figure 4: The control points of the lattice before and after adaption. 

 

 
 

Figure 5: Initial wing shape and mesh in the symmetry plane. 

 
The FFD lattice is built around the wing with  ,   and   in the chord-wise, span-wise and thickness directions 

respectively. The lattice is chosen in order to fit the 

planform of the wing. Then, the leading and trailing edges 

are kept fixed during the optimization by freezing the 

control points that correspond to     and     . 
Moreover, control points are only moved vertically. 

Results are presented for three parameterizations. The 

coarsest one corresponds to     ,      and     . 

Therefore, (   )        degrees of freedom are 

taken into account in the optimization. The medium 

parameterization corresponds to     ,      and      and counts (   )         degrees of 

freedom. Finally, the finest parameterization corresponds 

to     ,      and      and counts (    )         degrees of freedom. In this study,  

The Nelder-Mead simplex method [7] is used as 

optimization algorithm. 

 

For the coarse parameterization (     ) two stratgies 

are compared: 

 Basic method : optimization without adaption until full 

convergence; 

 Adaptive method: optimization with adaption. 
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In this test case, the adaption process occurs after 100 

iterations of the shape optimization process. 

4.2 Aerodynamic coefficients 
The aerodynamic coefficients obtained for each 

method are compared in Table 1. The lift coefficient is 

approximately maintained or slightly increased by the 

shape optimization process. Important reductions of the 

drag coefficient are reported. As observed, the utilization 

of adaption method improve significantly the 

aerodynamic performance. 

 
Table 1: Comparison of aerodynamic coefficients and cost function values. 

Method       Cost 

Reference 0.319192893 0.026352608 1. 

Basic method 0.318874966 0.017450289 0.662184501 

Adaptive method 0.318999078 0.016299483 0.618515468 

 

4.3 Convergence history plots 
Figure 6 shows a comparison of the convergence for 

the two strategies under consideration. The adaptive 

method is significantly efficient than the basic method, 

yielding a shape of better fitness using a smaller 

computational effort. 

4.4 Flows 
A comparison of the flow fields for the final shapes 

obtained with the different strategies is presented in 

Figures 7 to 9. The Mach number field on the wing surface 

and Mach number contours in the symmetry plane are 

represented. Visibly, this drag reduction exercise results 

in a strong reduction of the shock wave. Using a basic 

method, the shock reduction is not as important, whereas 

in the adaption approaches, the shock at the root section 

disappears. 

 
Figure 6: Comparison of the convergence history for the two strategies. 

 
Figure 7: Mach number field on the wing and Mach number contours in the symmetry plane: initial shape. 
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Figure 8: Mach number field on the wing and Mach number contours in the symmetry plane: basic method. 

 
Figure 9: Mach number field on the wing and Mach number contours in the symmetry plane: adaptive method. 

 
5. Conclusion 

A self-adaptive procedure was developped for 3D 

optimum design in aerodynamics by using Free-Form 

Deformation (FFD). This approach which regularize the 

shape representation during the optimization process, is 

very effective in accelerating the convergence rate as 

shown by the numerical results. It follows clearly that the 

parametrization has a great impact on the results of 

aerodynamic shape optimization. this self-adaptive 

approach can be used to support a multilevel strategies 

developed in [4] . 

This study can be extended for more complex 

engineering designs by using isogeometric analysis based 

on advanced techniques like non-uniform rational B-

splines (NURBS) [2]  due to its compact and shape 

representation capability [8]. Isogeometric analysis was 

introduced at first by Hughes et al. [9] to close the gap 

between computer aided design (CAD) and finite element 

analysis. Since then, many researchers in the fields of 

computational mechanical and geometric computation 

were involved in this topic [10][11][12]. The main idea 

behind isogeometric analysis is that the basis used to 

exactly parametrize the geometry will also serve as the 

basis for the solution space of the numerical method. This 

technique allows to best represent the shape and reduce 

the time required for its analysis. Although both positions 

and weights of control points affect the NURBS geometry 

instead of taking only the positions of control points as 

design variables when using the Bézier parameterization. 
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