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Abstract. Accurate assessment of anchoring quality depends on the accuracy of 

assessing stress wave velocity in the anchor system. Stress wave velocity is closely 

related to collaborative vibration and depends on the degree of bonding between 

anchor body and anchorage medium. Bonding differences can be large at different 

ages. Based on stress wave reflection methods, non-destructive testing of anchors 

was performed using sensors arranged at the same cross-section of the anchor body 

and anchorage medium, which showed stress wave synchronization. In the early 
stage of filling, stress wave synchronicity was poorer between the anchor body 

and mortar. Therefore, the anchor should not be treated as a composite material 

when determining its wave velocity. Once the mortar hardens, the stress waves 

become more synchronous and the anchor can be regarded as a composite 

material. Stress wave synchronicity between the anchor body and mortar is related 

to mortar age and anchorage length. The anchor length required to provide stress 

wave synchronization between the anchor body and mortar decreases with 

increasing mortar age. Stress wave velocity rules were derived for different ages 

to provide the basis for accurately determining the stress wave velocity in the 

anchor. 

Keywords: anchoring quality; collaborative length; geotechnical engineering; non-
destructive testing; stress wave propagation velocity; synchronization. 

1 Introduction 

When anchors are applied on a large scale, the surrounding rock mass is out of 

control frequently in a large area due to the influence of various factors, such as 
on-site construction technology, operating environment and anchor quality [1]. 

Therefore, real-time, fast, non-destructive testing is becoming an increasingly 

important issue to be solved in geotechnical engineering [2-4]. Many studies have 
investigated improving non-destructive testing accuracy for anchorage quality [5-

7]. Beard, et al. discussed the application of ultrasonic guided waves for non-

destructive testing of anchors and developed a special vibrator [8,9]. Zou, et al. 

obtained the propagation law of low-frequency ultrasonic guided waves for 
different ages of concrete anchorage systems based on the transmission method 

[10,11]. Ming-wu, et al. analyzed the characteristics of the reflection phase and 
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variation law of energy attenuation with regards to the acoustic frequency stress 

wave in anchorage systems [12,13] and showed that the amplitude ratio can be 

used to determine the anchoring state. Jian-gong, et al. considered the dynamic 

testing signal of the anchorage system and identified the quality of the 
surrounding rock mass [14,15]. Yi, et al. studied various methods of non-

destructive testing for the anchor and key parameters and excitation waves 

[16,17]. Bing, et al. discussed propagation differences for the stress wave 
between the dynamic testing pile with low strain and the anchor based on stress 

wave reflection methods [18]. 

In practical engineering, wave velocity is an important parameter to assess 

anchorage quality and determine defect locations. However, since stress wave 
and vibration propagation in the bolts and anchorage medium is complex, it is 

difficult to empirically calculate wave velocity accurately. Thus, there is no 

accurate and effective approach to quantify the velocity. The anchor is generally 
regarded as a one-dimensional rod and dynamic testing theory of the pile is used 

to determine the stress wave velocity in the anchor as defined by Eq. (1) [19], 

 E
C


 , (1) 

where C is the stress wave velocity,   is the density of the medium, and E is the 
medium’s elastic modulus. The wave velocity is not only related to material 
properties, but also to bond stiffness at the bonding interface to a great extent. In 

practice, the rod does not effectively bond with the mortar in the early stage of 

grouting the anchor. Although the mortar will have reached a certain stiffness at 
this stage, the interface adhesion is still weak and stress wave propagation is 

significantly different to that of a composite material, where the anchor body and 

anchorage medium vibrate collaboratively. 

From initial anchor grouting to hardening completion, the material properties and 
bond stiffness constantly change. Propagation of the stress wave in the anchor is 

also different and the wave velocity changes accordingly. The wave velocity has 

a direct influence on assessing anchor quality. Therefore, it is necessary to study 
the wave propagation of the anchor during the construction process and later 

usage. The changing stress wave characteristics in the wave front of the anchor 

medium and bolt body as well as the required coordination length for the two 

waves to reach the same wave front were investigated. For laboratory model 
testing, sensors were arranged in the same cross section but at different positions 

along the anchor, and non-destructive testing was performed at different ages. 

Thus, changing wave front characteristics with age were analyzed, and the 
formation and variation of composite stress wave velocity when the anchor 

changes into a composite material were revealed. This research provides the basis 
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for accurately determining stress wave propagation velocity of stress wave in 

anchors. 

2 Theoretical Analysis of Stress Wave Propagation in the Anchor 

The current study was based on the wave velocity concept determining the stress 

wave velocity in the anchor. Pei-ji, et al. introduced the material dynamic 

response under strong impulse loading [20]. The stress wave velocity in the 

anchor refers to the velocity when the excited stress wave passes to the anchor. 
We assumed there was sufficient bonding stiffness between the bolt body and 

anchorage medium, i.e. the anchor was regarded as a composite material. Figure 

1 shows the control volume in the anchorage section. For the case of small strain, 
when the stress wave propagates in the bolt the interface between the bolt body 

and the anchorage medium distorts in the area immediately after the wave front, 

since there is dynamic shear stress along the curved surface. 

 

Figure 1 Control volume. 

In the undisturbed region ahead of the wave front, elongation is equivalent to 
normal strain. Deformation is compatible between the anchorage medium and the 

bolt body due to bonding. Thus, from the Love kinematic conditions, we have the 

following Eq.(2): 

 
1 2x x x

v

c
        , (2) 

where εx1, εx2 are the normal strains of the anchorage medium and the bolt body, 

respectively; ε, εx are the elongations ahead of the wave front and normal strain, 

respectively; and ν is the particle movement velocity. 

In the quasi-static strain region, the unidirectional material equations can be 
expressed as in Eqs. (3) and (4): 

 
1 1 1x x
k   (3) 
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2 2 2x x
k   (4) 

where, σx1, σx2 are the uniaxial stresses of the anchorage medium and the bolt 
body, respectively; and k1, k2, are the coefficients of equivalent stiffness of the 

anchorage medium and bolt body, respectively. 

The coefficient of equivalent stiffness is determined by the equilibrium 
conditions and geometric constraints applied to the anchors rather than conditions 

for the anchorage medium and bolt body alone. Combining Eqs. (3) and (4), the 

average stress can be obtained from the average equivalent stiffness: 

 xxx k
A

A
k

A

A

A

A

A

A
 )( 1

2
1

12
2

1
1  , (5) 

where A is the sum of the anchorage medium and bolt body volumes, A1 and A2, 

respectively; and from the conservation of momentum, as shown in Eq. (6):  

 )( 2211

'

22

'

11 AAcvAA xx   . (6) 

If the area ratio of the anchor medium to the bolt body is a = A1/A2, then when the 

anchor is small, deformation state 1// 2

'

21

'

1  AAAA  and the velocity of the 

wave front can be obtained by combining Eqs. (2), (4), and (5) as shown in Eq. 

(7), 

 
2211
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 AA

kAkA
c




 , (7) 

where the numerator represents the average equivalent stiffness derived from the 

status of the interface between the anchorage medium and the anchor body as 

well as the geometry sizes of the two media, which is different from the result 
obtained by the mixing method; the denominator represents the average density, 

which is the same as the one obtained by the mixing method. 

In the velocity analysis above, the anchor was regarded as a composite material, 
i.e. the bonding between the anchor body and the anchorage medium assumed the 

ideal premise that they can vibrate totally collaboratively. However, when the 

adhesive force between the two tends to 0, applying an excitation wave to the bolt 

body will not transfer the dynamic shear stress in the distorted region to the 
surrounding anchorage medium effectively. Thus, in this case the anchor cannot 

be treated as a composite material. To explore stress wave synergy in the anchor 

body and anchorage medium it is necessary to consider the actual bonding 
situation between them. 
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3 Synchronization Testing on Stress Wave Propagation in the 

Anchor 

3.1 Test Method and System 

Stress wave reflection considers the impact load at the outer end of the bolt body 

due to the vertical vibration of a force hammer. The anchor was excited at 
multiple points and the output signal was measured at one single point. Figure 2 

shows the test system, which comprised a dynamic signal analyzer, piezoelectric 

force hammer, piezoelectric acceleration sensor, signal amplifier, data collection, 

controller, and microcomputer processing system. The force hammer was a 2.5g 
LC percussion hammer (Lian Neng Company, Jiangsu, China) with charge 

sensitivity 3.57 PC/N. The dynamic signal analysis system was an AVANT-10 

(Yi Heng Company, Hangzhou, China). To avoid frequency folding while 
sampling, the sampled frequency (100 kHz) was at least twice that of the highest-

frequency band-limited signal. A total of 4096 samples were measured with 

analysis bandwidth 38.4 kHz. There were five piezoelectric acceleration 
transducers with frequency domains from 0.5 to 10 kHz and sensitivity 2.47 

Pc/m/s2. The measuring point locations are shown in Figure 2. 

3.2 Laboratory Model 

The complete anchor bolt was labeled A-1 and the defective anchor bolt A-2. The 

anchor dimensions were 200 mm in diameter, 2500 mm long, with a molded PVC 

plastic pipe. The structural scheme is shown in Figure 2. 

a6

a7 1100 1001000 300

 
 (a) Anchor A-1 

1100
1001000 300

a1

a4a5

a3

a7

a6

 
(b) Anchor A-2 

Figure 2 Structural scheme and arrangement of measuring points. Note: the unit 

is mm, ai (i = 1,3,4,5,6,7) is the sensor number of the corresponding measuring 

point. 

The twisted steel used for the bolt body had a diameter of 28 mm. Cement mortar 
was used for the anchorage medium, with 1:2:4 water:cement:mortar 

composition. The construction order was that the steels were inserted first and 

file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150404175809/javascript:void(0);
file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150404175809/javascript:void(0);
file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150806173941/javascript:void(0);
file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150806173941/javascript:void(0);
file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150806173941/javascript:void(0);
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then the mortar was poured. There was no cement mortar in the anchor defective 

region.  

3.3 Dynamic Testing Signal Variation in the Anchor 

3.3.1 Intact Anchor, A-1 

The essence of non-destructive testing of an anchor is that the overall quality can 

be determined through vibration at a point. Between the excitation and reflection 
stress waves, particle vibration can be regarded as free vibration with damping 

under instantaneous impact load. Different measuring points have different 

material and vibration characteristics. Thus, it cannot be determined whether the 
signals from two points represent the same stress wave or not. However, if the 

stress waves between the steel and the mortar in the anchor system are not the 

same, their wave fronts are also different. They have different propagation 

speeds, which causes different wave front propagation times. After one reflection, 
a reflected fast wave front still spreads fast and a slow one still spreads slowly. 

This will cause the distance between the two wave fronts to increase and the time 

difference between the two becomes unstable, i.e. the time difference between 
the spreading and returning wave measured by two sensors becomes unstable.  

In the early stage of grouting, the wave propagation velocity changes rapidly in 

the mortar but is relatively stable in the bolt body and anchor medium. Therefore, 
the propagation velocities of the two wave fronts are quite different and show a 

large time difference between the two wave fronts. With increasing age, the speed 

of propagation in the mortar becomes stable and the time difference between the 

two wave fronts reduces. Although the simplified mechanical models of two 
measurement points are different after hardening, their signal curves are fairly 

similar, since the points are in the same cross-section, forming two concentric 

circles respectively, and the wave front is a curve. However, due to differences 
in material properties, such as stiffness, propagation velocity differs, i.e. fast 

inside but slow outside. Therefore, the changing stress wave synchronization can 

be analyzed from the measurement point signals obtained by the sensors. 

Figure 3 shows that with increasing age, the vibration frequency of the measured 

points increases. In the early stage, when the grouting has just been completed, 

there is little bonding between the mortar and steel and the anchor can be regarded 

approximately as two separate materials. As the mortar hardens, the interface 
bonding between the two materials gradually improves until finally the anchor 

can be treated as a composite material. Thus, for example, the signals from 

sensors a6 on the steel and sensor a7 on the mortar show time differences that 
decrease rapidly with aging. However, the time differences tend to a stable value 

rather than 0 due to innate material differences. 

file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150806173941/javascript:void(0);
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Figure 3 Dynamic testing signal of anchor A-1 at various curing times. 

3.3.2 Defective Anchor, A-2 

Figure 4 shows the sensor signals for the defective anchor, A-2. Similar to the A-

1 case, there are time differences between sensors in the same position but on 
different parts before the mortar completely hardens (e.g. a6 and a7 are opposite; 

a3 and a5 are opposite; a1 and a4 are opposite). After the mortar hardens, the 
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anchor can be regarded as an approximately composite material, but the time 

difference when the stress wave passes through the lead position of the defect is 

different from when it passes through the tail position of the defect.  

Therefore, stress wave propagation in a defective bolt can be seen as if coming 
from two different materials, which separates the stress waves because in a 

defective region stress wave velocity in steel is larger than in mortar. Thus, the 

sensor on the steel at the end of the defect receives the signal first and the sensor 
at the same position in the mortar receives it later. If the anchor is regarded as a 

composite material, time differences for signals measured by the sensor at the 

bottom will reduce when the stress wave in the steel and mortar pass through a 

defective part due to the synergy of the interface. It is close to the signal of time 
differences for intact anchors at the bottom.  

If the length before the defect meets the required length for coordination, the 

signal time differences for the two sensors at the beginning of the defect will be 
substantially the same as those at the bottom of the defective anchor. If the anchor 

can be treated as a composite material, after the stress wave has been reflected 

several times, time differences of the corresponding signals measured by sensors 
in a defective anchor and an intact anchor should be approximately the same. 
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Figure 4 Dynamic testing signal of anchor A-2 at various curing times. 
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Figure 4 continued. Dynamic testing signal of anchor A-2 at various curing times. 

3.4 Stress Wave Synchronization Variance with Aging 

Figures 5 and 6 show the acceleration response curves for anchors A-1 and A-2 

as the mortar ages. Section 3.3 shows that stress wave synchronization can be 

fully reflected by signal time differences. 
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Figure 5 Time difference of two relative points on anchor A-1 at various curing 

times. 

 
Figure 6 Time difference of two relative points on anchor A-2 at various curing 
times. 
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the time differences measured by a3 and a5 during the first two days. Whereas, 
once the mortar hardening was substantially completed, the time differences 

measured by the sensor pairs at the beginning and end of the defect tended to be 

stable. Thus, the anchor needs to have a certain length to ensure collaborative 

vibration at the bonding interface. The required length is related to the bonding 
stiffness. With increasing bonding stiffness, the required length to ensure stress 

wave collaboration between the anchor body and mortar decreases.  

With increasing age, signals measured by the same sensor may also change. Since 
overall stiffness increases, the period shortens and frequency increases at the 

same time as the stress wave velocity increases. However, due to different 

parameters, such as the damping and stiffness of each particle at the measured 
points, the mechanical parameters are also different. Thus, particle vibration 
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differs. If it is on the same wave front, when the stress wave arrives time 

differences between two opposing sensors are constant regardless of multiple 

reflections. 

3.5 Required Conditions to Obtain Waveform Coordination 

Figures 3 and 4 show that the measured signals for sensors a6 and a7 at the bottom 

can reflect anchorage quality. However, the steel signal is significantly better than 

the mortar signal. The mortar signal has a large vibration amplitude and small 
damping. Thus, although the a6 and a7 signals differ somewhat in vibration, they 

have consistent changes.  

Because of the defect, the signals a6 and a7 for anchor A-2 vary widely at 
different ages. Figure 4 shows that the signals are very chaotic during the first 

five days and do not show the same characteristics as the detected stress wave or 

change tendency. However, after six days, the a6 and a7 signals show stable 
significant characteristics. Figure 3 shows that the integrity of A-1 is superior and 

the required time for waveform stabilization is relatively short. 

Figures 5 and 6 show that with increasing age, the time differences measured for 

sensors a1 and a4 at the beginning of the defect decrease gradually but remain 
larger than the signals measured by sensors a6 and a7 at the bottom of the anchor 

for both A-1 and A-2. While a stable wave front has not yet formed at the 

beginning and end of the defect, it becomes closer to a stable wave front, i.e. the 
required length to provide stress wave coordination shortens with age. With 

increasing age, time differences measured by sensors a6 and a7 at the bottom of 

the anchors become smaller and will tend to the same wave front. 

4 Conclusions 

Based on stress wave reflection methods, non-destructive testing of anchors was 

performed by sensor pairs arranged at the same cross-section of the anchor body 
and anchorage medium. Time differences for arrival of the stress wave front in 

the anchor body and anchorage medium were evident, and different ages had 

different degrees of bonding and various stress wave velocities. In later usage 
stages, the defect meant that the required anchor length for collaborative vibration 

between the anchor body and mortar must also be considered. 

In the early stage of grouting, stress wave synchronization between the mortar 

and anchor body is poor and the anchor cannot be treated as a composite material 
to determine stress wave velocity. Thus, stress wave synchronization can be used 

to determine stress wave velocity and identify anchorage quality, even in early 

stages of construction. 
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After the mortar hardens, the material physical and mechanical parameters in the 

anchor tend to be stable and the bonding stiffness between the bolt body and the 

mortar is larger. Stress wave synchronization in the bolt body and in the mortar 

is superior, provided the anchorage length is sufficient. The anchor can be treated 
as an approximately composite material to determine stress wave velocity. 

The collaborative vibration of the stress wave between the anchor body and the 

mortar is related not only to age but also to anchorage length. A certain length is 
required for the stress wave of the anchor body and the mortar to reach the same 

wave front. With increasing age, the required anchorage length for collaboration 

reduces. However, further research is required to determine the specific required 

anchorage length for collaboration. 
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