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components). Also, an extensive investigation is carried out to propose a systematic and optimal selection of the Adaptive RBFNN 

parameters. These parameters will ensure fast and stable convergence and minimum estimation error. The results show an 
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1. Introduction 

Recently, power quality has become a major concern 

for modern power systems. One of the main power 

quality issues is the harmonic distortion in power 

systems.  The excessive presence in harmonics in power 

system can cause many problems such as: 

malfunctioning of circuit breakers and relays, 

overheating of conductors and motors, insulation 

degradation, and communication interference (Eyad 

Almaita, 2016; Izhar, Hadzer, Masri, & Idris, 2003; 

Rahmani, Hamadi, & Al-Haddad, 2009; Sumaryadi, 

Gumilang, & Susilo, 2009). 

Different approaches have been used for harmonics 

mitigation in power systems. Active Power filters (APFs) 

are considered an effective means to reduce harmonics 

to acceptable levels. Any  APF  is consist of two main 

parts: (i) Control part that  measures  the distorted signal 

(voltage or current) then decomposed the measured 

signal  into fundamental component and other harmonic 

components based on on-line harmonic estimation 

algorithm. (ii) Power part consists of   power electronics 
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module to compensate for all harmonic distortions 

(Akagi, Watanabe, & Aredes, 2007). On-line harmonic 

estimation algorithms have been extensively studied. 

They can be classified into three main classes; (i) time 

domain algorithms, (ii) frequency domain algorithms, 

and (iii) artificial intelligent algorithms (Akagi, 1996; 

Rahmani et al., 2009; Wang, Wong, & Member, 2015; 

Yasmeena & Das, 2016; Zhang, Li, & Wang, 2010). Time 

domain algorithms always have to compromise between 

the phase delay and the attenuation, also, oscillations is 

always can be caused by fast transition time (Zhang et al., 

2010). On the hand, frequency domain algorithms need 

high computations and considered not real-time filters 

(Zhang et al., 2010). The artificial intelligent (neural 

networks) algorithms have been successfully tested to 

overcome the disadvantages of the time and frequency 

domain filters. The three main techniques used in neural 

networks algorithms are (i) adaptive linear neuron 

(ADALINE), (ii) back propagation (BP), and (iii) radial 

basis function neural networks (RBFNN). The ADALINE 

is used as online harmonics identifier and its 

performance depends on the number of harmonics 
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included in its structure. The convergence of the 

ADALINE slows as the number of harmonics included 

increases because the ADALINE can only approximate 

linear functions (Chang, Chen, & Teng, 2010; Zouidi, 

Fnaiech, AL-Haddad, & Rahmani, 2008). On the other 

hand, The BPNN is more capable and can approximate 

linear and nonlinear function. It uses offline supervised 

training to identify selected harmonics. The long training 

time required in BPNN and the chance of falling into local 

minima is always present (Haykin, 1999; Kasabov, 

1996). The RBFNN has several advantages over 

ADALINE and BPNN; capable of approximating highly 

nonlinear functions, its structural nature facilitate the 

training process because the training can be done in a 

sequential manner, and the use of local approximation 

can give better generalization capabilities (Haykin, 1999; 

Kasabov, 1996).  Several schemes for RBFNN have been 

used; some of these schemes have large number of 

hidden neurons and still uses training algorithm similar 

to that of BPNN (Chang et al., 2010). Other schemes gets 

better results and with small number of hidden neurons 

using direct inversion matrix as training algorithm (E 

Almaita & Asumadu, 2011a, 2011b). An adaptive version 

of RBFNN has been introduced in ( Almaita, 2012). In this 

adaptive version the parameters of RBFNN can be 

modified after the deployment without the need of re-

training the RBFNN. This gives an additional strength to 

the RBFNN. The main problem of this adaptive version is 

the learning rate, which needs to be selected very 

carefully to ensure the convergence and stability of the 

system. 

In this paper, which is an extension to the works in 

(Almaita, 2012;  Almaita & Asumadu, 2011a, 2011b), a 

systematic approach is introduced to select the 

parameters of the adaptive RBFNN algorithm. This 

approach will ensure the stability and will also minimize 

the estimation error.  Also, the adaptive RBFNN will be 

used to estimate the fundamental and harmonic contents 

in current signal of non-linear load. 

 

2. Conventional RBFNN 

2.1 Structure of RBFNN 

The RBFNN structure consists of three main 

different layers as shown in Fig. 1; one input layer 

(source nodes with inputs I1, I2,.., IN), one hidden layer has 

K neurons, and one output layer (with outputs y1, y2,.., ym). 

The input-output mapping consists of two different 

transformations; nonlinear transformation from the 

input layer to the hidden layer and linear transformation 

from hidden to the output layer. The connections 

between the input and hidden layers are called centers 

and the connections between the hidden and output 

layers are called weights (Almaita & Asumadu, 2011a, 

2011b). 

The most common radial basis function used in RBFNN 

is given by 

      

  i=1,2,…,K   (1)       

 

 

 

This is a Gaussian basis function with φi as the 

output of the ith hidden neoron , x is the input vector data 

sample (I1, I2,…,IN) (could be training, actual, or test data), 

ci  is centers vector of the ith hidden neuron (ci1,ci2,.., ciN), 

σi  is the normalization factor, and (x-ci)T(x-ci) is the 

square of the vector (x-ci) (Almaita & Asumadu, 2011a, 

2011b). The ith output node yi is a linear weighted 

summation of the outputs of the hidden layer and is given 

by 

 𝑦𝑖 = 𝑤𝑖𝑇∅(𝑥), 
 

             i=1, 2,…., m              (2) 

 

where wi is the weight vector of the output node and Ф(x) 

is the vector of the outputs from the hidden layer 

(augmented with an additional bias which assumes a 

value of 1). 

 

2.2 Training Algorithm of RBFNN 

The block diagram shown in Fig. 2 illustrates one of 

the RBFNN training processes called hybrid learning 

process (Moody & Darken, 1989; Yousef & Hindi, 2005). 

The hybrid learning process has two different stages; (i) 

finding suitable locations for the radial basis functions 

centers of the hidden neurons (Moody & Darken, 1989; 

Yousef & Hindi, 2005) and (ii) finding the weights 

between the hidden and output layers.  In the first stage 

the K-means (Moody & Darken, 1989; Yousef & Hindi, 

2005) clustering algorithm is used to locate the centers 

in the input data space regions where a significant data 

are present (shown as I in Fig. 2). In the second stage 

(shown as II in Fig. 2) the weights between the hidden 

and the output layers are found by linear matrix 

inversion algorithm based on the least-square solution, 

which minimizes the sum-squared error function 

(Yousef & Hindi, 2005). 

 

Figure 1 Structure of Conventional RBFNN Network 
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Figure 2 Block Diagram for the RBFNN Hybrid Learning Process 

 

The weights matrix w is given by 

 

DAw
T 1

                                                                            (3) 

where D is the desired output vector for l training data 

samples set and given by  

 

                                                                

 

 

 

    (4) 

 

 

 

 

where d(xj) describes the output vector corresponding to 

the jth training data samples vector (xj).  is a matrix 

where each element φi(xj), is a scalar value  and 

represents the output of the ith hidden neuron for the jth 

training data samples vector (xj).  

 

The  matrix for l training data samples is given by 

 

                                     

  (5) 

 

 

 

 

 

A-1, the variance matrix and given by 

 

  11   T
A

                                                      (6) 

 

One of the advantages of this method compare to 

other training algorithms is that it does not need 

iterations in the training phase; what it needs is the 

matrix inversion shown in Eq (6), which needs negligible 

time to be calculated. 

 

3. Adaptive RBFNN 

One of the major disadvantages of the feed 

forward neural networks (BPNN and conventional 

RBFNN) techniques is that; the obtained parameters do 

not changed once the training process is completed. In the 

presence of the noise, these fixed parameters can degrade 

the performance of the neural networks. The main 

objective of the adaptive RBFNN algorithm is to enhance 

the reliability of the conventional RBFNN after 

embedding the network in the system. This can be 

achieved by introducing an adaptive algorithm for 

RBFNN structure that allows the change of the weights of 

RBFNN after the training process is completed. As shown 

in II, the RBFNN adjustable parameters that will affect the 

output are the centers and the weights. This algorithm 

assumes that the noise present in the system can be 

mitigated only by adjusting the weights between the 

hidden and the output layers, without the need of 

adjusting the values of the centers between the input and 

hidden layers.  

Figure 3 shows the general structure of the 

adaptive RBFNN algorithm.  It has the same conventional 

RBFNN structure regarding input layer, hidden layer, and 

output layer. But it has two extra components; (i) 

Summation component, which is located after the outputs 

of the RBFNN. The goal of this component is to calculate 

the error signal between the estimated outputs y and the 

reference (actual) signal (R). (ii) Weights updating 

component. The goal of this component is to adjust the 

weights in order to reduce the error signal. In the absence of the noise δ(k) in the input side,  the summation of the 
outputs of the RBFNN model is equal to the reference 

signal R(k). 

 

 

Figure 3 General Structure of Adaptive Conventional RBFNN Network 
 

 

In this case the error E(k) equal to zero and no change in 

the RBFNN weights. 

 𝐸(𝑘) = 𝑅(𝑘) − {𝑦1(𝑘) +  𝑦2(𝑘) + ⋯ + 𝑦𝑚(𝑘)}           (7) 

 

In the presence of noise in the input side, the jth output 

node of the RBFNN will be affected by this noise as 

 𝑦𝑗(𝑘) = 𝑦𝑜𝑗(𝑘) +  𝛿𝑗(𝑘)                                                           (8) 

 

where 𝑦𝑜𝑗(𝑘)  is the jth output node without noise and 𝛿𝑗(𝑘)  is the added noise error to the jth output node.  
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In this case the error E(k) is not equal to zero. 

 

In order to mitigate the effect of the noise in the 

performance of the RBFNN, the error E(k) is used to 

update the weights vectors based on the least-mean- 

square-error algorithm (Moody & Darken, 1989) as: 

 𝑤1𝑛𝑒𝑤 = 𝑤1𝑜𝑙𝑑 +  µ1∅(𝑘)𝐸(𝑘)                                         (9) ⋮ 𝑤𝑚𝑛𝑒𝑤 = 𝑤𝑚𝑜𝑙𝑑 +  µ𝑚∅(𝑘)𝐸(𝑘)                                   (10) 

 

where µj is the regulation factor for the jth output node. 

 

The weights updating will continue until the error E(k) 

become zero again. The above algorithm has several 

advantages including the following: 

 It has a fast convergence time because it adjusts 

only the weights between the hidden and 

output layers, which is a linear relationship. 

Therefore, fast convergence can be achieved. 

 The updating process could be initiated based 

on threshold value for E(k) (different  from 

zero), which gives the flexibility to the 

algorithm and saves excessive computations. 

 This algorithm has greater capabilities compare to the 

popular neural linear adaptive algorithm (ADALINE) 

because the RBFNN structure can be used to realize linear 

and nonlinear functions. 

 

4. Methodology 

Figure 4 shows the inputs and outputs signals for 

the adaptive RBFNN used in this paper. The input signal 

is sampled at constant rate and passed through first-

input-first-output (FIFO) buffer to create a delayed vector 

with length 64, represent a half cycle of the signal, which 

match the length of the input vector of RBFNN.   The 

adaptive RBFNN used in this paper has two outputs; one 

of them is to estimate the fundamental component (yf) 

and the other is to estimate the harmonic components 

(yh), these outputs are calculated as follows: 

                                                   (11) 

                                                    
(12) 

 

where Wf, Wh, is the weight vector of the  fundamental 

and harmonic components output , respectively and Ф(x) 

is the vector of the outputs from the hidden layer. 

    The accurate online estimation of the 

fundamental and harmonic components depends on 

continuous updating of the weight vectors of 

fundamental and harmonic components Wf, Wh, 

respectively, as illustrated in III. Updating the weight 

vectors depends on the values of regulation factors f 

and h as follows: 

 

                                   (13) 

                                    
(14) 

 

These values should be selected carefully to ensure fast 

convergence and system stability. The range of f and h  

depends on the greatest eigenvalue max of 

autocorrelation matrix R, where  

                                                     (15) 

 

And 

 

 

 

 

 

Figure 4 The Block Diagram for the Input and Output signals for the 

Adaptive RBFNNN model 

 

The value of  can be express in terms of max as follows: 
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of f and h to minimize the error between the measured 

and estimated outputs.  

In this paper, the values of f and h will be changed to 

investigate the effect of their values on the system 

performance based on the mean square error MSE value. 
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value of f that give the minimum MSE, Then adapting  

the harmonics weights only to find the stable and 

optimal range of h. Then both of fundamental and 

harmonic weights will be update and comparing the 

range of stability and optimality of f and h in this case 

with the previous values. The effect of the noise is also 

investigated in this paper by defining the stable range 

and the optimal value of f and h in terms of signal to 

noise ratio SNR. 

 

5. Results and Discussion 

At first the input current for a three-phase controlled 

rectifier shown in Fig.5 is measured and sampled using 

digital oscilloscope. The measured signal represents the 

input current for different firing angle to ensure the 

robustness of the system and to cover all the range. RBFN 

now will be used to estimate the fundamental and the 

harmonic components of the measured signal. First the values of ηf and ηh is examined carefully to ensure 

system stability, then to determine the optimal values of ηf and ηh to minimize the Mean Square Error (MSE) 
between the measured and the estimated signals, after 

that the effect of the noise on the optimal values of η is 

examined. Fig. 6 shows the actual signal and the 

estimated signal form conventional RBFNN.  It is clear 

from Fig.6 that the error between the actual and 

estimated signal is significant and cannot be tolerated for 

on-line harmonic estimation, where the MSE equals 

2.2224. By adopting adaptive RBFNN this error can be 

minimized without the need to retrain the RBFNN.  

 

5.1 Minimizing Error Using Regulation Factors 

First, the weight vector of the fundamental component Wf 

is only updated by using eq.14, while the weight vector of the harmonic component is remained unchanged (ηh=0), 

updating Wf  depend on the value ηf, the value of ηf is changed over the whole stability range for η (from 0 to 2), 
and the Mean Square Error (MSE= 1𝑁 ∑ (𝑒(𝑘)2𝑁𝑖=1 ) is 

calculated for each value of ηf, as shown in Fig,7.  

 

Figure 5 Schematic Diagram for a Three-Phase controlled Converter 

The value of MSE is decreased as ηf increased until ηf 

equals 0.9779 (approximately in the mid of stability 

range). As ηf  value increases further, the MSE increases. 

This pattern continues till the value of ηf approaches the 

stability range limit (ηf ≈ 2) the MSE is increased rapidly 
and this causes the system to diverge. This result is a 

perfect match with theoretical stability range of  ηf . Fig 8 

shows the actual signal and the estimated signal from 

adaptive RBFNN for ηf equals to 0.9778 (optimal value). The MSE for this ηf value is minima and equals to 

0.276978 

 

 

Figure 6 Measured current signal (solid)  and estimated current 

signal from Conventional RBFNN (dashed), MSE equals 2.2224 

Figure 7 MSE for different values of ηf 

Secondly, the weight vector of the harmonic component 

Wh is only updated, while the weight vector of 

fundamental component is remained unchanged (ηf=0), 

updating Wh depend on the value ηh. ηh value also is changed over the whole stability range for η (from 0 to 2), 
and the mean square error (MSE) is calculated for each value of ηh, as shown in Figure 4. 
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Figure 8 Measured current signal (solid)  and estimated current signal from Adaptive RBFNN (dashed). (ηf=0.9778 and ηh=0) 

 

Figure 9. MSE against h,f equals 0. 

Again, the minimum value of MSE is 0.276978  and it is 

obtained when ηh  value is approximately in the middle of 

stability range (ηh =0.9779). As ηh value approaches the stability range limit (ηh ≈ 2) the MSE is increased rapidly 
and this causes the system to diverge. These are the same 

results obtained when ηf is only changed. Thirdly, both of 

fundamental and harmonic weight vectors are adapted. Fig.10 shows the variation in MSE as ηh is changed for 

different values of ηf. It can be noticed that the minimum 

value of MSE is still the same value that is obtained from changing only ηh or ηf alone (i.e. 0.276978), but this time 

it occurs with several combinations of ηf and ηh values.  

The stability region for changing both ηf and ηh is shown 

in Fig.11. The two solid lines represent the range of the 

stability, which means that any values of ηf and ηh in the 

area between the two solid lines maintain the stability of 

the system, otherwise any combination out of this area 

will cause system divergence. The equations of the two 

solid lines are:  

 

     
ηf + ηh =0                                                                             (16) 

     
ηf + ηh =2                                                                             (17) 

 

The combinations of ηf and ηh that give the minimum MSE 

are shown also in Fig.6 and they are represented by the 

dashed line. It is clear that the relation between them is 

linear and can be given by:  

 

                                                          
(18) 

which means that any combination of ηf and ηh satisfies 

this equation will produce an estimated signal with 

minimum  MSE (MSE= 0.276978), which is the minimum 

MSE can be achieved of this system. 

 

 

Figure 10 MSE versus ηh for different values of ηf 

 

Figure 11 The values of ηf and ηh that give the minimum MSE 

97780. hf 
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Figure 12  The FFT of the measured signal. 

Fig. 12 shows the Fast Fourier Transform (FFT) of the 

measured signal of the fundamental (Fun) and harmonic’s orders components. Fig.13 shows  the 

difference of the FFT component between the measured 

signal and the estimated signal using the conventional 

filter (red bar) and the difference between the FFT 

components of the measured signal and the estimated 

signal using the adaptive filter (blue bar). This figure 

prove that adapting technique improves system 

capability of detecting all the harmonics component, so 

the improvement of MSE value does not come from 

improving one harmonic component, but it comes from 

improvement of all the harmonics components. 

 

 

Figure 13. The difference between the FFT components between 
measured signal and conventional filter (red bar) and between 
measured signal and the adapting filter ( blue bar)  

 

5.2 Effect of the noise 

The effect of the noise in the performance of the adaptive 

RBFNN is investigated in this section. An additive white 

Gaussian noise is added to the original signal. The 

performance of the RBFNN is investigated under three 

different cases: (i) update only the weight vector of the harmonic component using optimal value for ηh 

(ηh=0.9778, ηf=0), (ii)  update only the weight vector of 

the fundamental component using optimal value for ηf 

(ηf=0.9778, ηh=0), and (iii) update both the weight vectors 

of the harmonic component and fundamental component using optimal combination  for ηh and ηf  (ηh+ ηf =0.9778). 

The parameter used in this paper to measure the noise 

level in this paper is Signal to Noise Ratio (SNR), where 

the SNR in dB is given by: 

         
                                             

                                      (19) 

 

Where Psignal and Pnoise are the signal and noise power 

respectively. 

In this paper the SNR level will be changed from 20 db to 

100 db. This level is above the common SNR level in 

electrical power signals that had been adopted in the 

previous literature, which was above 30 (Đurić & Đurišić, 
2010; Liu, Wang, Liu, & Cui, 2016).  Figure 14 shows the 

MSE for several values of signal to noise ratio SNR, the 

value of h is zero and f is 0.9778 where these values 

give a minimum MSE without noise, when the SNR of the 

measured signal is above 20, the adaptation values still 

give minimum error, the same curve of Fig.14 is also 

obtained when the values of  are chosen to lie on the line 

h +f =0.9778, which shows that the noise with a SNR greater than or equal to 30dB, didn’t affect the 
performance of the filter. 

 

 

                         Figure 14. MSE against SNR for ηh=0 and ηf =0.9778 

In Fig.15 the values of h and f are changed, then the 

value of MSE is calculated for a signal has a SNR equals to 30dB, the minimum value of each curve is denoted by ‘*’, if we examine the “*’ points, it is clear that the relation 

between them is linear since they lie on the same line and 

)log(
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P

p
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the equation of this line is still the same as previous and 

is given by: h +f =0.9778.  

 
Figure 15 MSE against ηh and ηf for SNR=30dB, the ‘*’ represented 
the minimum MSE. 

5.3  Effect of threshold value 

Usually the adapting is required when the error exceeds 

a certain limit to avoid extra calculations, while in 

previous sections the threshold value of the error (i.e  

e(k)=abs(yest(k)-ymeasured(k))) was zero, which 

means that at each k the value of either h,f  or both of 

them are modified. In this sectionf are adapted only 

when e(k) exceeds a threshold value, the threshold value 

is changed from 0 to 3, and for each one of them  f is 

changed, then the MSE is calculated, the results of 

minimum MSE are shown in Fig. 16 and Fig.17. In Figure 

16 x-axis is the threshold value and Y-axis is the 

minimum MSE value, this value is obtained by changing 

f, while Fig.17 shows the value of f that gives the 

minimum MSE for each threshold value.  

 

 

Figure 16  Minimum error for each threshold value 

 

Figure 17 The value of f  that gives minimum error for each 

threshold value 

The result in those figures shows that the minimum MSE 

can be achieved when the threshold value is zero and f 

= 0.9778. Even though the MSE is decreased when the 

threshold value is decreased, but decreasing the 

threshold value means extra calculations (i.e extra 

calculation due to adaptation process) as it is shown in 

Fig. 18, where it shows that the number of calculations is 

decreased as the threshold value is increased. 

 

Figure 18 Number of calculations for different values of threshold 

value (constant adaptation coefficient). 

 

6. Conclusions 

In this paper, the stability and performance 

enhancement of adaptive RBFNN is investigated. 

Adapting the weight vectors of the fundamental and 

harmonic components based on LMS algorithm improve 

RBFNN capability to estimate output signal from a power 

electronic circuit, which is totally different from the 

signal that the RBFNN is trained for, the stability range of 

the adapting parameters ηf and ηh are investigated and by 

carefully selecting these values, the MSE between the 

estimated and the measured signal is minimized. The 

adapting RBFNN shows the capability for disturbance 

rejection even when the signal has 30 to 100 dB SNR of 
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Gaussian noise. Further investigating  for the adaptive 

RBFNN is carried out by exploring the effect of the 

adapting trigger threshold to prevent excessive 

calculations. 
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