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ABSTRACT 
 
Neural networks system identification have been widely used for estimate the nonlinear model of system. In this paper, 
multilayer perceptron neural network is used for identifying the Nonlinear AutoRegressive with eXogenous input (NARX) 
model of a quarter car passive suspension system. Input output data are acquired by driving a car on a special road event. 
The networks structure is developed based on system model. The Networks learning algorithm is derived using Fisher’s 
scoring method. Then the Fisher information is given as a weighted covariance matrix of inputs and outputs the network 
hidden layer. Unitwise Fisher’s scoring method reduces to the algorithm in which each unit estimate its own weights by a 
weighted least square method. The results show that the method uses suitable for modeling a quarter car passive suspension 
systems. 
 
Keywords: neural network system identification, NARX model, multilayer perceptron, weighted least square, fisher’s 

scoring, fisher information. 
 
 

INTRODUCTION 
 
Multilayer perceptrons have been applied success-
fully to solve some difficult and diverse problems by 
training them in a supervised manner. The highly 
popular training algorithm is known as the error 
backpropagation algorithm [1,2]. Squared error 
criterion is usually used as a cost function. The cost 
function is minimized for update the networks 
weights by the steepest decent method [3].  
 
In this paper, the error is assumed has Gaussian 
distribution. The cost function minimizing is inter-
preted as maximum likelihood parameter estimation 
[3,4,5]. The iterative weighted least squares 
algorithm is derived from the cross entropy cost 
function by applying maximum likelihood estimation 
procedure [3]. A learning algorithm is presented 
based on Fisher’s scoring method. The Hessian 
matrix is constructed using Newton Raphson method 
and Fisher’s information matrix. The algorithm is 
presented as iterative weighted least square method 
[3,6]. Fisher information is also given as weighted 
covariance matrix of hidden layer neuron input and 
output. In this research, the values of delta weight are 
controlled to keep them in a special range.   
  
 

Note: Discussion of this paper must be submitted before June, 1st 2008. The 
proper discussion will be published in Electrical Engineering Journal 
volume 8, number 2, September 2008. 

The neural network develop in this research is used 
to identify nonlinear model of a quarter car passive 
suspension system. One of the well known nonlinear 
model structure is NARX, where it has been widely 
use for modeling the nonlinear system dynamics 
[7,8]. Therefore, the car suspension system model is 
derived in NARX structure. The input output data of 
car is measured in experimental way. The car is 
driven on the random type of artificial road surface. 
 
Objectives  
1. To design the neural networks structure based on 

nonlinear model of a quarter car passive sus-
pension system. The network type is a multilayer 
perceptron.  

2. To design and to implement the system identi-
fication algorithm combination between neural 
networks and weighted least square method. The 
algorithm is called Multilayer Perceptron 
Weighted Least Square (MLPWLS) Neural 
Networks. 

3. To identify model parameters of NARX model of 
a quarter car passive suspension system applied 
MLPLS neural network. 

 
A Quarter Car Mathematical Model 

The main functions of the ground vehicle suspension 
is to support the car weight, keep the wheel on the 
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ground, minimize transient force to the body, 
maintain good ride comfort and enhance handling 
performance [9,10]. 
 
The suspension systems are influenced by the 
excitations due to the road unevenness and variable 
velocity. In earlier work on the analysis of car 
response, the car velocity was considered as constant, 
since it was difficult to introduce the effect of 
variable velocity formulation of the model [10]. 
 
The physical constraint of the suspension system is 
the limited suspension travel. A basic passive 
suspension consists of a spring with a parallel damper 
at each wheel.  
 
In this paper, a generic of quarter car passive 
suspension model has been modified for analysis 
[11,12,13,14,15,16]. Related to the current trend 
using four independent suspensions on a single car, a 
quarter car systems offer a quite reasonable 
representation of the actual suspension system [12]. 
Figure 1 shows the schematic diagram of this model. 
 

 
Figure 1. A quarter car suspension schematic 

diagram 
 

where, 
uss MM ,  are their respective masses. Between 

these masses, 
uss KK ,  are the spring rates and 

uss CC ,  
are the damping rates. ouss ZZZ ,,  are respectively the 
vertical displacement of sprung mass, the vertical 
displacement of unsprung mass, and road surface 
elevation.  
 
The dynamics of real suspensions are inherently non-
linear. Therefore in past decade, the car suspension 
system dynamic has been modeled in nonlinear 
formulation [12,14,15,16]. The Nonlinear Auto-
Regressive with eXogenous input (NARX) structure 
model of a quarter car passive suspension system is 
determined based on Figure 1. Equation 1 and 2 
respectively show the vehicle body vertical displace-
ment and vehicle axle vertical displacement. 
Equation 3 represented the suspension displacement 
as output model. Equation 4 is a nonlinear function of 
the model. 
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where, Y is output variable, na and nb are polynomial 
order, k = 0,1,2,..., f is a nonlinear function, and T is 
sampling time. 

),)((,),)1((()( TnZTZfTZ aususus −−= kkk L                                           
),)((,),)1(( TnZTZ boo −− kk L  

)))((,),)1(( TnYTY b−− kk L            (2) 
))(),(()( TZTZfTY uss kkk =                         (3)                                          

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
= 5.0

1
)( .

.

netc

netc

e
eCnetf  (4) 

where, net is the sum of multiple input with related 
weight, C is sigmoid constant and c is exponential 
constant. 
 
Network Structure Based on NARX Model of a 
Quarter Car Passive Suspension Systems 
 
Model parameters are taken to be the neural networks 
weights. Input vector for each layer of the networks 
is written as the following: 
• First part of hidden layer input vector  

,),)1((),)((,),)1(([1 LL TYTnZTZx ass −−−= kkk      
        )])1(( TnkY b −−  

• Second part of hidden layer input vector 
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        ,),)1((),)(( LTYTnZ bo −− kk  
        )])1(( TnY b −−k  

• Input vector of output layer  
)](),([ kTZkTZZ uss=  

 
The network block diagram is shown by Figure 2. 
 

M
))1(( TZs −k

M

))(( TnZ aus −k

))1(( TZus −k

M

M

))1(( TZo −k

))(( TnZ bo −k

M

)( TZs k

)( TZus k

)( TY k

11w

11 +anw

anw1

ba nnw +1

M

M

21w

12 ++ ba nnw

ba nnw 22 +

12 +anw

mnw +2

anw2

M

M

M

11v

12v

))1(( TY −k

))(( TnY b−k

))(( TnY b−k

))1(( TY −k

))(( TnZ as −k

 
Figure 2. MLPWSLNN Structure 
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MLPWLS Neural Network Training Algorithm 
 
The cost function in this research is formulated in log 
likelihood formulation [3]. 
 
Likelihood 
 
In this case, we assumed that: Jj ,...,2,1= are 
numbers of hidden layer neuron; Kk ,...,2,1= are 
numbers of output layer neuron; Ii ,...,2,1= are 
numbers of input layer neuron or unit input; and 

Pp ,...,2,1= are numbers of input data. 
),,( 1 pIpp xxx L=  is the networks input vector. 

The output vector of the network in Figure 2, 
],,
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where, pjς  is the sum of multiple input with related 

weight of hidden layer, and pkη  is the sum of 
multiple input with related weight of output layer. 
 
Let the set of learning samples 
be{ }Pptx pkpi ,,2,1, L=>< , P is a number of input 
variable. pkt  is the teacher’s signal. The error is 
assumed has normal Gaussian distribution. If each 
element of output vector of the network is 
conditionally independent, then the log likelihood of 
the network for the set of learning samples is given 
by 
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Fisher Information 
 
In this network, Fisher Information for hidden layer 
is calculated explicitly [3]. The first and second 
derivative of Equation 7 are given as 
• The first derivatives 
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Minimization of criteria function define as 
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Fisher Information (F) related for each weight vector 
of network is written as the following 
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Iterative Weighted Least Squares Algorithm 
 
The learning algorithm for weight updating is done 
by minimizing Equation 7. We apply steepest decent 
optimization method with use the first derivative of 
objective function [3]. Assumed the current estimate 
of the weights is W and α is learning rate. Then 
estimate process is repeatedly updated by  

lWW ∇−=∗ α                                                        (19) 
 
If weights are updated to each set of learning sample, 
Equation 19 can be modified to be: 

plWW ∇−=∗ α                                                   (20) 
 
where pl∇ is the first derivative to the sample 
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p
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called steepest decent method. 
 
In this case Fisher’s scoring algorithm is developed 
with uses Fisher’s information. The estimated is 
repeatedly changed by  

WWW δ+=∗      (21) 
where the increment Wδ is calculated by solving the 
following equation. 

lWF ∇=δ    (22) 
 
This is called Fisher’s scoring method. 
 
Unitwise Iterative Weighted Least Squares 
Algorithm  
 
Fisher’s Information related with the weights from 
input layer to hidden layer are given by [3] 
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and j is the number of hidden neuron. This is a 
weighted covariance matrix of input vectors. Using 
Equation 22 and 23, the normal equation of weighted 
least squares estimation to obtain the current 
estimates of the weights ∗
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Similarly, Fisher’s information for output layer 
weights and corresponding normal equation are 
written as: 
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The estimates },...,1{ JjW
jw = and },...,1{ KkV

kv = are 

repeatedly update by solving normal equation. This 
method is called Unitwise Fisher’s scoring method. 
In this algorithm each neuron weights is a unit of the 
networks estimate by the iterative weighted least 
squares algorithm. 
 
Next we will consider the recursive formulas to solve 
these normal equations for the weighted least 
squares. This reveals the close relation between the 
proposed Unitwise Fisher’s Scoring algorithm and 
the backpropagation learning algorithm.  
 
The optimal estimate parameters respect to the set of 
earlier learning samples and the new learning 
samples. The recursive equation is written as 
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where the matrix jwR gives the estimates of the 

inverse of the weighted covariance matrix 
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In the same way the recursive formula for the 
estimate kvv  is given by 
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MODEL VALIDATION 

 
Model validation is needed to verify that identified 
model fulfills the modeling requirement according to 
subjective and objective criteria of good model 
approximation. In this paper several criteria are 
applied among: 
 
1. Compare between the signal graph of system 

output   and estimate model output. 
2. Residual analysis: auto correlation and cross 

correlation, and test statistic. 
3. Percent Variance Accounted For (% VAF). 
 
Data Collection  
 
Input variable is one of decisive factor for system 
identification. The input data must be able to generate 
the dynamic properties of system. The major source 
of vehicle vibration is road surface [9]. Therefore in 
this research, the experimental was carried out using 
driving test car on the artificial road surface. The 
artificial road surface is designed for imitate the real 
road surface. The random type of artificial road 
surface is made using the three different beams. They 
are arranged with random dimension and distance. 
The random artificial road surface used in this 
research is shown in Figure 3. 

 
Figure 3. Random type artificial road surface 

 
Three signals are carried out from this experiment. 
First the road surface signal as input variable is 
produced by converting the road surface parameter in 
to signal form. Second, the vehicle suspension 

displacement signal is collected using displacement 
sensor (LVDTs) and the third is vehicle body 
acceleration signal is acquired using accelerometer 
sensor. All signals are needed in system identifi-
cation. 
  
System Identification Result 
 
The data sampling (T) is assumed 1 second. 
The graph of input signal and output signal of system 
are shown by Figure 4 and 5. The data will be 
divided in to two parts. Half of them use for 
estimating the model parameter and other part use for 
model validation. 

 
Figure 4. Random  type of artificial road surface 

 

 
Figure 5. The signal graph of output system 

 
Figure (6) shows the signal graph comparing 
between output system (acquired signal) and output 
estimate model. The model output has similar trend 
with the system output. It means the model has same 
dynamic with the system. 

 
Figure 6. The signal graph comparing between 

system output and estimate model output 
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The MSE as a parameter in neural networks training 
is represented in Figure 7. The minimum value is 
3.29x10-4 and it defined after 1843 iterations. The 
training process was stopped at that iteration number. 

 
Figure 7. MSE value  

 
The residual autocorrelation graph closely laid in the 
99% confidence interval limit while the cross-
correlation with input exactly laid in the 99% 
confidence interval limit as shown in Figure 8. 
Therefore, the residual can be said not correlate.  

 
Figure 8. Residual autocorrelation and crosscorrela-

tion with input with 99% confidence interval. 
 
A typical training is reported in Figure 6. The MSE 
on the training set is reported as a function of the 
number of iterations. A standard way to present the 
decision problem in the case of interactive system 
identification is to show a diagram of residual auto-
correlation. Figure 7 is shown residual autocorre-
lation and crosscorrelation with the input with 99% 
confident interval limit. A test for the independence 
of input and residual is based on the cross correlation 
covariance function. Both of the graphs are laid in the 
interval limit. It means the residual has not corre-
lation with the input. 
 
The best identified model has 5=an and 7=bn . From 
statistical analysis, we defined the value of the 

autocorrelation test statistic is 34.66 and cross 
correlation test statistic is 23.91 (for 30=l  theses 
value must be less than 50.9). Loss function and 
%VAF are respectively 0.0033 and 97.0%. 
 

DISCUSSION 
 
Determination of the nonlinear model of a quarter car 
suspension system has been discussed. The model is 
formulated in NARX structure and used to design the 
neural network structure. The network structure is 
defined as a Multilayer Perceptron. The networks 
training algorithm is written down applying Fisher’s 
information and Fisher’s scoring algorithm. The 
algorithm is interpreted as iterations of weighted least 
square method. The system input output data are 
acquired from experimental by running the test car 
on artificial road surface. The development algorithm 
examined using those data. A detailed description of 
the taken to perform the modeling, i.e. the data 
acquisition and application of neural network 
structures and algorithm, is given and the results are 
displayed.  
 

CONCLUSION 
 
In this paper system identification technique for a 
quarter car suspension systems dynamic has been 
developed. The neural network weight update is done 
using weighted least squares method. The weighted 
least square works as a function for tuning the 
network weights. The system identification algorithm 
is used to identify nonlinear model of a quarter car 
passive suspension system. The results show that the 
trend of output signal of estimate model is nearly 
similar with output signal of system. The autocorre-
lation graph of residual and cross correlation graph 
between residual and input signal is laying in 99% 
confident limit. The value of Percent Variance 
Accounted For (%AVF) and loss function are 
acceptable. 
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