EFEKTIVITAS DISTRIBUSI PRODUK DALAM RANTAI PASOK MENGGUNAKAN SAVING MATRIX METHOD DAN GENERALIZED ASSIGNMENT METHOD

Cyrilla Indri Parwati¹, Juviana Eny Jeronimo Neto²
¹,² Institut Sains & Teknologi AKPRIND Yogyakarta
e-mail : cindriparwati@yahoo.com

ABSTRAK
PT. Mondrian adalah sebuah perusahaan yang bergerak dalam bidang manufaktur yang memproduksi produk garment antara lain Sekido, Begaya dan Dadung. Untuk mendistribusikan hasil produknya, PT. Mondrian membagi wilayah pemasarannya kedalam empat regional. Dalam penelitian ini pendistribusian dibatasi dengan pusat distribusi ada di daerah Klaten sedangkan daerah tujuan pada wilayah Jawa Tengah dan Daerah Istimewa Yogyakarta. Keputusan operasional yang sangat penting dalam supply chain adalah penentuan rute pengiriman produk dari gudang pusat ke beberapa daerah tujuan, sehingga didapatkan rute yang dapat mengoptimalkan biaya transportasi. Oleh karena itu dibutuhkan suatu metode yang dapat membantu menentukan rute pengiriman yang efektif yaitu metode saving matrix dan metode generalized assignment. Metode saving matrix bekerja dengan membuat suatu matriks yang disebut matriks penghematan atau saving matrix, matriks ini berisi daftar penghematan yang diperoleh jika menggabungkan permintaan dua retailer dalam satu kendaraan dengan mempertimbangkan kapasitas kendaraan sedangkan metode generalized assignment bekerja dengan menentukan Seed Point atau titik tengah kendaraan kemudian menghitung jarak penyiapan untuk setiap retailer. Dari hasil pengolahan data didapat bahwa metode saving matrix memberikan rute yang efektif
Kata Kunci : Metode Saving Matrix, Metode Generalized Assignment

ABSTRACT
PT. Mondrian is a company that specializes in manufacturing that produce garment products include Sekido, Begaya and Dadung. To distribute their products, PT. Mondrian divide into four regional marketing. In this research the distribution is limited to distribution centers in Klaten district, while the goal in the region of Central Java and Yogyakarta Special Region. The important decision operational in supply chain is determination of product delivery routes from the central warehouse to multiple destinations, thus obtained can optimize the route of transportation costs. Therefore needed a method that can help determine an effective delivery route of saving matrix method and generalized assignment method. Saving matrix method works by creating a matrix called the matrix of savings or saving matrix, this matrix contains a list of savings obtained if the combined demand of two retailers in a vehicle with a vehicle capacity while considering the generalized assignment method works by determining Seed Point or the midpoint of the vehicle and then calculate insertion distance for each retailer. From the results obtained that the data processing method of saving matrix provides an effective.
Keywords: Saving Matrix Method, Generalized Assignment Method
PENDAHULUAN

Tuntutan konsumen akan kualitas, produk, harga, pelayanan yang lebih baik, ketepatan pengiriman serta kesediaan produk dipasaran pada saat ini semakin tinggi (Kartika, 2008) Untuk menempatkan produk dan jasa pada tempat yang tepat, kualitas yang tepat, harga yang tepat dan waktu yang tepat dibutuhkan distribusi yang tepat pula. Distribusi merupakan unsur yang sangat penting dalam proses pemasaran sehingga produk sampai ke tangan konsumen. Tekanan kompetisi serta kebutuhan pelanggan yang tinggi mendorong perusahaan untuk melakukan berbagai perbaikan dalam kegiatan distribusi. Jaringan distribusi tidak lagi dipandang hanya sebagai serangkaian fasilitas yang mengerjakan fungsi-fungsi fisik seperti pengangkutan dan penyimpanan, tetapi merupakan bagian integral dari kegiatan supply chain.

Efektivitas adalah pencapaian tujuan secara tepat atau memilih tujuan yang tepat dari serangkaian alternatif atau pilihan cara dan menentukan pilihan dari beberapa pilihan lainnya. Pemilihan saluran distribusi salah dapat menimbun akibat penghamburan biaya atau pemborosan. Sehingga masalah pemilihan saluran distribusi akan sangat penting artinya bagi perusahaan yang menginginkan perkembangan kegiatanannya. Dalam rangka memperkecil kesalahan-kesalahan penggunaan sistem distribusi yang dipilih, maka sebelum pemasaran dikembangkan terlebih dahulu masalah-masalah yang berkaitan dengan saluran distribusi diinventarisasi.

PT. Mondrian merupakan salah satu proudusen garmen memiliki jangkauan pasar yang cukup luas diseluruh wilayah Indonesia. Sistem distribusi pada PT.Mondrian masih bersifat fleksibel. Permasalahan yang dihadapi perusahaan saat ini adalah bagaimana perusahaan mengalokasikan produknya dengan sistem distribusi yang tepat sehingga dapat mengoptimalkan biaya transportasi, jarak tempuh serta waktu pengiriman.

Dengan latar belakang masalah tersebut, maka penelitian akan menganalisis bagaimana menentukan rute pendistribusian yang efektif dengan menggunakan saving matrix method dan generalized assignmet method guna mengoptimalkan biaya transportasi. Tujuan penelitian ini untuk menentukan model jaringan distribusi guna mengoptimalkan jarak dan biaya transportasi.

Distribusi

Distribusi sering digambarkan sebagai satu dari bauran pemasaran (4P) yaitu price, place, product, promotion dengan menempatkan produk pada tempat yang sesuai untuk pembelian (Kotler,2009). Manajemen distribusi dan transportasi dapat disebut juga sebagai manajemen logistik atau distribusi fisik. Logistik modern dapat didefinisikan sebagai proses pengelolaan yang strategis terhadap pemindahan dan penyimpanan barang, suku cadang dan barang jadi dari para supplier, diantara fasilitas-fasilitas perusahaan dan kepada para pelanggan (Bowersox, 2006).

Kegiatan transportasi dan distribusi bisa dilakukan oleh perusahaan manufaktur dengan membentuk bagian distribusi atau transportasi tersendiri atau diserahkan ke pihak ketiga. Dalam upayanya untuk memenuhi tujuan-tujuan diatas, siapapun yang melaksanakan (internal perusahaan atau mitra ketiga), manajemen distribusi dan transportasi pada umumnya melakukan sejumlah fungsi dasar yang terdiri dari (Pujawan, 2005) melakukan segmentasi dan menetukan target service level Menentukan mode transportasi yang akan digunakan, melakukan konsolidasi informasi dan pengiriman, melakukan penjadwalan dan penentuan rute pengiriman, memberikan pelayanan nilai tambah, menyimpan persediaan, menangani pengembalian (return).

Salah satu keputusan operasional yang sangat penting dalam manajemen distribusi adalah penentuan jadwal serta rute pengiriman dari satu lokasi ke beberapa lokasi tujuan dengan metode saving matrix method. Metode saving matrix merupakan
metode untuk meminimumkan jarak atau waktu atau ongkos dengan mempertimbangkan kendala-kendala yang ada. Dengan cara mengidentifikasi matrik jarak (Identify The Distance Matrix). Jarak juga dapat diasumsikan sebagai pengganti untuk biaya perjalanan antara pasangan lokasi. Jarak Distribusi (A, B) pada titik koordinat antara titik A dengan koordinat \((x_a,y_a)\) dan titik B dengan koordinat \((x_b,y_b)\) dievaluasi sebagai berikut (Pujawan, 2005):

\[
\text{Jarak } \sqrt{(X_1-X_2)^2+(Y_1-Y_2)^2}
\]

Jarak antara setiap pasangan dari lokasi selanjutnya digunakan untuk mengevaluasi matrik penyimpanan. Langkah selanjutnya adalah mengidentifikasi matrik penghematan (saving matrix). Penghematan bisa dievaluasi dalam istilah jarak, waktu, atau uang. Perjalanan DC – pelanggan x - DC, diawali pada DC, mengunjungi pelanggan x dan kembali ke DC ke pelanggan x dan ke DC, dan DC ke pelanggan y ke DC merupakan kombinasi satu perjalanan. Penyimpanan ini dapat dikalkulasikan dengan mengikuti persamaan berikut:

\[
S(x, y) = \text{jarak } (G, x) + \text{jarak } (G, y) - \text{jarak } (x, y)
\]

Langkah selanjutnya melakukan proses penandaan pelanggan atau perutean, mengurutkan pelanggan-pelanggan dalam rute.

The Generalized Assignment Method adalah metode penandaan yang telah digeneralisasi lebih rumit dari pada metode matrik penghematan dan biasanya menghasilkan solusi yang lebih baik ketika ada sedikit constrains pengiriman untuk dipenuhi. Prosedur perutean dan pengurutan kendaraan meliputi penandaan titik awal untuk masing-masing rute (Assignment seed point for each route), evaluasi jarak penyisipan untuk masing-masing pelanggan (Evaluate Insertion cost for each customer). Untuk masing-masing titik awal pelanggan \(S_k\), biaya penyisipan \(C_k\) merupakan jarak ekstra yang akan dilalui jika pelanggan disisipkan pada perjalanan dari DC ke titik awal dan kembali lagi ke DC, dengan menggunakan persamaan:

\[
\text{titik seed } i \text{ adalah : } \sqrt{(x - S_1 x)^2 + (y - S_1 y)^2}
\]

Sedangkan jarak penyisipan diberikan sebagai:

\[
= j_{R1}, D_{C} + j_{R1}, Seed_{1} - J_{D C}, Seed_{1}
\]

METODE PENELITIAN

Langkah selanjutnya pengurutan pelanggan pada rute-rute (Assign customer to Route) (Chopra, 2001). Dalam pendistribusian hasil produknya kepada retailer, PT. Mondrian memiliki 2 cara pendistribusian, yaitu mengirimkan produk ke kantor perwakilan yang berada di tiap regional pemasaran yang merangkap sebagai distribution center, kemudian dari distribution center produk didistribusikan ke retailer-retailer dalam daerah cakupan pemasaran kantor perwakilan dan mengirimkan langsung ke retailer-retailer yang menjadi mitra bisnis.

HASIL DAN PEMBAHASAN

Dalam pendistribusian hasil produknya PT. Mondrian membagikan retailer-retailer ke dalam 4 regional pemasaran yaitu regional Jawa Tengah dan Daerah Istimewa Yogyakarta, regional Jawa Barat, Jabotabek, luar Jawa. Retailer yang sudah terbagi dalam 4 regional pemasaran tersebut memiliki 2 sistem kerja sama yaitu Retailer dengan sistem putus dan Retailer dengan sistem konsinyasi. Dalam penelitian ini data retailer diambil hanya untuk konsinyasi Jawa Tengah seperti tabel 1 berikut:
<table>
<thead>
<tr>
<th>N</th>
<th>O</th>
<th>Retailer konsinyasi</th>
<th>Jarak dari distribusi center (km)</th>
<th>kode</th>
<th>Order</th>
<th>Jumlah order (Pcs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Yogyakarta</td>
<td>28.75</td>
<td>R1</td>
<td>100</td>
<td>95 98 293</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Semarang</td>
<td>85</td>
<td>R2</td>
<td>61</td>
<td>73 70 204</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Magelang</td>
<td>68.75</td>
<td>R3</td>
<td>60</td>
<td>70 80 210</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Salatiga</td>
<td>52.5</td>
<td>R4</td>
<td>98</td>
<td>80 75 253</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Purwokerto</td>
<td>193.75</td>
<td>R5</td>
<td>90</td>
<td>95 89 274</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Tegal</td>
<td>280</td>
<td>R6</td>
<td>134</td>
<td>20 93 247</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Wonosobo</td>
<td>131.25</td>
<td>R7</td>
<td>141</td>
<td>96 110 347</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Kebumen</td>
<td>123.75</td>
<td>R8</td>
<td>120</td>
<td>78 140 338</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Pekalongan</td>
<td>217.5</td>
<td>R9</td>
<td>56</td>
<td>70 56 182</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Cilacap</td>
<td>205</td>
<td>R1</td>
<td>100</td>
<td>95 79 274</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>960 772 890 2622</td>
</tr>
</tbody>
</table>

(Sumber: Pengolahan data)

Dalam pendistribusian produknya PT. Mondrian memiliki 5 buah mobil box. Kapasitas mobil box maksimal adalah 8 karung dengan isi 10 lusin. Jadi jumlah produk yang bisa diangkut mobil box adalah sesuai dengan kapasitas mobil box yaitu 960 Pieces.

Tabel 2 Matrik jarak dari gudang dan antar retailer (satuan km)

<table>
<thead>
<tr>
<th>Retailer</th>
<th>DC</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>R10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>28.75</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>85</td>
<td>108.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>68.75</td>
<td>45</td>
<td>62.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>52.5</td>
<td>78.25</td>
<td>38.75</td>
<td>36.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>193.75</td>
<td>166.25</td>
<td>175</td>
<td>143.75</td>
<td>160</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>280</td>
<td>261.25</td>
<td>270</td>
<td>238.75</td>
<td>255</td>
<td>95</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>131.25</td>
<td>107.5</td>
<td>125</td>
<td>62.5</td>
<td>98.75</td>
<td>206.25</td>
<td>175</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>123.75</td>
<td>105.5</td>
<td>143.75</td>
<td>81.25</td>
<td>117.5</td>
<td>69</td>
<td>164</td>
<td>67.75</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>217.5</td>
<td>182.5</td>
<td>200</td>
<td>137.5</td>
<td>173.75</td>
<td>103.75</td>
<td>198.75</td>
<td>75</td>
<td>142.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>205</td>
<td>180.5</td>
<td>218.75</td>
<td>156.25</td>
<td>192.5</td>
<td>55</td>
<td>170</td>
<td>281.25</td>
<td>75</td>
<td>178.8</td>
<td>0</td>
</tr>
</tbody>
</table>

(Sumber: Pengolahan data)

Langkah selanjutnya mengidentifikasi matrik penghematan (savings matrix) sesuai dengan persamaan 2. Penghematan akan diperoleh dengan menggabungkan dua

Tabel 3. Matrik penghematan dengan menggabungkan dua rute yang berbeda

<table>
<thead>
<tr>
<th>TUJUAN</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>R10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>5.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>52.5</td>
<td>91.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>3</td>
<td>98.75</td>
<td>85</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>56.2</td>
<td>103.7</td>
<td>86.2</td>
<td></td>
<td>378.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>5</td>
<td>5</td>
<td>118.75</td>
<td>5</td>
<td>0</td>
<td>236.2</td>
<td>187.2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>52.5</td>
<td>91.25</td>
<td>137.5</td>
<td>85</td>
<td>118.75</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>47</td>
<td>65</td>
<td>111.25</td>
<td>5</td>
<td>248.5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>63.7</td>
<td>148.7</td>
<td>96.2</td>
<td></td>
<td>298.7</td>
<td>273.7</td>
<td>198.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>3.2</td>
<td>43</td>
<td>117.5</td>
<td>65</td>
<td>5</td>
<td>315</td>
<td>55</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(Sumber: Pengolahan data)

Selanjutnya mengalokasikan retailer ke kendaraan atau rute, dilakukan prosedur berulang untuk menandai retailer-retailer terhadap kendaraan-kendaraan dan rute-rute. Pada awalnya tiap retailer memiliki rute yang berbeda-beda. Rute perjalanan retailer dapat dilihat pada tabel 4 berikut.

Tabel 4. Rute awal perjalanan retailer

<table>
<thead>
<tr>
<th>Tujuan Retai</th>
<th>Rute</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>R10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rute 1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rute 2</td>
<td>5.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rute 3</td>
<td>52.5</td>
<td>91.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Rute 4</td>
<td>3</td>
<td>90</td>
<td>85</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>Rute 5</td>
<td>56.25</td>
<td>103.75</td>
<td>118.75</td>
<td>86.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>Rute 6</td>
<td>47.5</td>
<td>95</td>
<td>110</td>
<td>77.5</td>
<td>378.75</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>Rute 7</td>
<td>52.5</td>
<td>91.25</td>
<td>137.5</td>
<td>85</td>
<td>118.75</td>
<td>236.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>Rute 8</td>
<td>47</td>
<td>65</td>
<td>111.25</td>
<td>58.75</td>
<td>248.5</td>
<td>239.75</td>
<td>187.25</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>Rute 9</td>
<td>63.75</td>
<td>10.5</td>
<td>148.75</td>
<td>96.25</td>
<td>307.5</td>
<td>298.75</td>
<td>273.75</td>
<td>198.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>Rute 10</td>
<td>53.25</td>
<td>71.25</td>
<td>117.5</td>
<td>65</td>
<td>343.75</td>
<td>315</td>
<td>55</td>
<td>253.75</td>
<td>243.8</td>
<td>0</td>
</tr>
</tbody>
</table>

(Sumber: Pengolahan data)

Dari tabel rute perjalanan tersebut kemudian dilakukan penandaan retailer terhadap mobil box. Retailer-retailer tersebut bisa digabungkan sampai pada batas

<table>
<thead>
<tr>
<th>Tujuan Retailer</th>
<th>Rute</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>R10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rute 1</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rute 2</td>
<td>5.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rute 3</td>
<td>52.5</td>
<td>91.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Rute 4</td>
<td>3</td>
<td>90</td>
<td>85</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>Rute 5</td>
<td>56.25</td>
<td>103.75</td>
<td>118.75</td>
<td>86.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>Rute 6</td>
<td>47.5</td>
<td>95</td>
<td>110</td>
<td>77.5</td>
<td>378.75</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>Rute 7</td>
<td>52.5</td>
<td>91.25</td>
<td>137.5</td>
<td>85</td>
<td>118.75</td>
<td>236.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>Rute 8</td>
<td>47</td>
<td>65</td>
<td>111.25</td>
<td>58.75</td>
<td>248.5</td>
<td>239.75</td>
<td>187.25</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>Rute 9</td>
<td>63.75</td>
<td>10.5</td>
<td>148.75</td>
<td>96.25</td>
<td>307.5</td>
<td>298.75</td>
<td>273.75</td>
<td>198.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>Rute 10</td>
<td>53.25</td>
<td>71.25</td>
<td>117.5</td>
<td>65</td>
<td>343.75</td>
<td>315</td>
<td>55</td>
<td>253.75</td>
<td>243.8</td>
<td>0</td>
</tr>
</tbody>
</table>

(Sumber: Pengolahan data)

Langkah yang tersebut diatas dilakukan sampai selesai semua rute terpenuhi. Kemudian mengurutkan retailer (tujuan) dalam rute yang sudah terdefinisi, dilakukan untuk meminimasi jarak perjalanan mobil box. Metode yang digunakan untuk mengurutkan rute pengiriman produk adalah metode Nearest Insert (Pujawan, 2005). Metode Nearest insert adalah metode dengan memilih retailer yang jika dimasukkan dalam rute yang sudah ada menghasilkan tambahan jarak yang minimum. Langkah pertama adalah menghitung jarak dari DC ke salah satu retailer kembali lagi ke DC. Berikut perhitungan jarak alternatif ketiga rute. Rute pertama : R5, R6 dan R10 perhitungannya dari DC ke R5 ke DC = 193.75 + 193.75 = 387.5 km, DC ke R6 ke DC = 280 + 280 = 560 km dan DC ke R10 ke DC = 205 + 205 = 410 km. Dari perhitungan rute pertama yang menghasilkan jarak minimum adalah jarak dari distribusi center ke retailer 5 kemudian balik lagi ke distribusi center sebesar 387.5 maka yang dikenjungi pertama adalah retailer 5. Evaluasi selanjutnya adalah retail mana yang akan dikenjungi. Dari dua alternatif diperoleh Karena yang minimum adalah alternatif 1 dengan jarak 453.75, maka yang dikenjungi setelah retailer 5 adalah retailer 10. Karena hanya tersisa satu retailer maka rute yang terbentuk adalah :

DC R5 R10 R6 DC = 193.75 + 55 + 170 + 280 = 698.75

Dan seterusnya sehingga diperoleh seperti tabel 6.
Tabel 6. Rute perjalanan dan jarak tempuh mobil box (metode savings matrix)

<table>
<thead>
<tr>
<th>Mobil Box</th>
<th>Rute perjalanan</th>
<th>Jarak pada peta (cm)</th>
<th>Jarak riil (km)</th>
<th>Jumlah barang yang diangkut (pieces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>DC ke R5 ke R10 ke R6 ke DC</td>
<td>279.5</td>
<td>698.75</td>
<td>795</td>
</tr>
<tr>
<td>II</td>
<td>DC ke R8 ke R7 ke R9 ke DC</td>
<td>193.6</td>
<td>484</td>
<td>894</td>
</tr>
<tr>
<td>III</td>
<td>DC ke R1 ke R3 ke R2 ke R4 ke DC</td>
<td>91</td>
<td>227.5</td>
<td>960</td>
</tr>
</tbody>
</table>

(Sumber: Pengolahan data)

Penentuan Rute Pengiriman Barang dengan Metode Generalized Assignment dan efektivitasnya sesuai langkah-langkah penandaan titik awal untuk masing-masing rute (Assignment seed point for each route). Tujuan utamanya adalah untuk menentukan titik awal sesuai dengan pusat perjalanan yang diambil oleh masing-masing kendaraan. Dengan cara menggambar posisi sudut retailer pada garis sumbu x dan sumbu y. Perjalanan dilakukan dengan mengikuti perputaran arah jam dimana perjalanan dimulai dari pusat distribusi (PT. Mondrian Klaten) ke retailer R3, R7, R9, R6, R2, R4, R1, R8, R10, R5 sesuai dengan gambar 1 posisi sudut retailer pada sumbu x dan sumbu y. langkah selanjutnya mengevaluasi jarak penyisipan untuk masing-masing retailer. Untuk jarak penyisipan 1 ke titik seed 1, dengan jarak retailer 1 ke DC adalah 28.75 km, koordinat R1 (x,y) adalah (-10.1,-10.1) dan titik seed 1 (x,y) adalah (217.47,-3.316). sehingga diperoleh jarak R1 ke titik seed 1 adalah :

\[
\frac{\sqrt{(x-S_1x)^2 + (y-S_1y)^2}}{\sqrt{(-10.1 - 217.47)^2 + (-10.1 - (-0.209))^2}} = \sqrt{51836.6022} = 227.67
\]

Jarak dari DC ke titik Seed 1/ dengan koordinat DC (x,y) adalah (0,0) dan koordinat titik seed 1 adalah (217.47,-3.316).sehingga jarak DC ke titik seed 1 =

\[
\frac{\sqrt{DCx - S_1x)^2 + (DCy - S_1y)^2}}{\sqrt{0 - 217.47)^2 + (-10.1 - (-, 209)^2}} = \sqrt{47302.8345} = 217.49
\]

Maka jarak penyisipan R1 ke titik seed1 adalah

\[
= jR1,DC + jR1,Seed1 - JDC,Seed1
= 28.75 + 227.67 - 217.49
= 38.93 km
\]

Dengan melakukan perhitungan yang sama didapatkan jarak penyisipan untuk masing-masing retailer.

Gambar 1. posisi sudut retailer pada sumbu x dan sumbu y.

(Sumber: Pengolahan data)
Perhitungan Waktu Pengiriman Barang dengan Metode Saving Matrix

Rute pertama:

a) Waktu untuk Penaksiran Muatan
 - Pemeriksaan Kendaraan 20 Menit
 - Memuat barang ke kendaraan 25 menit
 - Buku administrasi 15 menit
 - Istirahat 40 menit

b) Jarak tempuh ke pelanggan kecepatan rata- rata = 45 km/jam, menempuh jarak Rute 1 sebesar :
 \[\frac{698.75}{45} = 15.52 \times 60 \text{menit} = 931.66 \text{menit} \]

c) Waktu penurunan barang
 Penurunan barang untuk 3 lokasi = 90 menit
 Sehingga proses pengiriman pada Rute pertama = 1021 menit atau 17 jam.
 Rute selanjutnya dicari dengan cara yang sama.
 Sedang untuk metode Generalized Assignment, rute pertama :

 a) Waktu untuk Penaksiran Muatan
 - administrasi 15 menit
 - Pemeriksaan Kendaraan 20 menit
 - Memuat barang ke kendaraan 25 menit
 - Buku Istirahat 40 menit

b) Jarak tempuh ke pelanggan kecepatan rata-rata = 45 km/jam, menempuh jarak Rute 1 sebesar :
 \[\frac{423.75}{45} = 9.42 \times 60 \text{menit} = 565 \text{menit} \]

c) Waktu penurunan barang
 Penurunan barang untuk 3 lokasi = 90 menit
 Sehingga proses pengiriman pada rute ini adalah 755 menit atau 13 jam

Perhitungan Biaya Transportasi

1. Biaya Perawatan Kendaraan
 Dilakukan secara berkala 2 bulan sekali, biaya perawatan rutin dan anti oli = Rp. 300.000
 biaya/hari = Rp. 300.000/60 = Rp. 5000/hari
 biaya/jam = Rp.5000/8 = Rp. 625,-/jam

2. Biaya Operasi Tetap
 Biaya Tenaga Kerja
 Biaya sopir & kneet = Rp. 1.000.000 + 850.000
 = Rp. 1.850.000
 Perhari = Rp. 185.000/30 = Rp. 61.666
 Setiap jam = Rp.61.666/8 = Rp. 7.708

3. Biaya bahan bakar
 Harga / liter solar = Rp. 4500
 Jarak tempuh = 15 km
 Biaya bahan bakar/km = Rp. 4500 / 15 = Rp. 300/km

Perhitungan biaya transportasi tanpa metode Saving matrix:

Rute pertama = \{(Rp.4.500/15km) x 1.357,5 km\} + Rp.61.664 + Rp. 100.000,- + Rp. 625,-
Rute kedua = \{(Rp. 4.500/15 km) x 944 km\} + Rp. 61.664 + Rp. 100.000 + Rp. 625,- = Rp. 445.489,-

Rute ketiga = \{(Rp. 4.500/15km) x 1.357,5 km\} + Rp. 61.664 + Rp. 100.000,- + Rp. 625,- = Rp. 319.639,-

Perhitungan biaya transportasi tanpa metode Generalized Assignment :

Rute pertama = \{(Rp. 4.500/15km) x 835 km\} + Rp. 61.664 + Rp. 100.000 + Rp. 625,- = Rp. 412.789,-

Rute kedua = \{(Rp. 4.500/15 km) x 892,5 km\} + Rp. 61.664 + Rp. 100.000 + Rp. 625,- = Rp. 430.039

Rute ketiga = \{(Rp. 4.500/15 km) x 935 km\} + Rp. 61.664 + Rp. 100.000,- + Rp. 625,- = Rp. 442.789,-

Perhitungan biaya transportasi dengan metode Saving matrix pada rute pertama adalah

Waktu proses pengiriman pada rute pertama adalah 17 jam ini berarti dibutuhkan tambahan 9 jam kerja (17 jam – 8 jam kerja/hari). Maka biaya lembur tenaga kerja adalah:

Biaya lembur = Rp. 7.708 x 9 jam lembur = Rp. 69.372,-

Total biaya tenaga kerja = Biaya kerja/hari + biaya lembur + biaya makan = Rp. 61.664 + Rp. 69.372,- + Rp. 100.000 = Rp. 231.036,-

Biaya bahan bakar = Rp. 300 x 635 km = Rp. 190.500,-

Biaya transportasi rute pertama = Biaya Perawatan Kendaraan + total biaya tenaga kerja + biaya bahan bakar = Rp. 625,- + Rp. 231.036,- + Rp. 190.500,- = Rp. 422.161,-

Dengan melakukan perhitungan yang sama maka akan didapat biaya transportasi kedua.

Kesimpulan yang dapat diambil dalam penelitian ini adalah parameter hasil perhitungan metode Saving Matrix adalah sebagaimana terdapat pada tabel 7.

<table>
<thead>
<tr>
<th>Mobil Box</th>
<th>Rute perjalanan</th>
<th>Jarak ril (km)</th>
<th>Waktu pengiriman barang</th>
<th>Biaya Transportasi</th>
<th>Jumlah barang yang diangkut (pieces)</th>
<th>Jumlah barang yang diangkut (karung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>DC ke R5 ke R10 ke R6 ke DC</td>
<td>698,75</td>
<td>17 jam</td>
<td>Rp.422.161,-</td>
<td>796</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>DC ke R7 ke R8 ke R9 ke DC</td>
<td>484</td>
<td>14 jam</td>
<td>Rp. 353.737,-</td>
<td>867</td>
<td>8</td>
</tr>
<tr>
<td>III</td>
<td>DC ke R1 ke R3 ke R2 ke R4 ke DC</td>
<td>227,5</td>
<td>8 jam 22 mnt</td>
<td>Rp. 232.243,-</td>
<td>960</td>
<td>8</td>
</tr>
</tbody>
</table>

(Sumber:Pengolahan data)

Sedangkan parameter hasil perhitungan metode Generalized Assignment terdapat pada tabel 8.
Tabel 8 Parameter hasil perhitungan metode Generalized Assignment

<table>
<thead>
<tr>
<th>Mobil Box</th>
<th>Rute perjalanan</th>
<th>Jarak ril (km)</th>
<th>Waktu pengiriman barang</th>
<th>Biaya transportasi</th>
<th>Jumlah barang yang diangkut (pieces)</th>
<th>Jumlah barang yang diangkut (karung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>DC ke R3 ke R7 ke R9 ke DC</td>
<td>423.75</td>
<td>13 jam</td>
<td>Rp.327.954,-</td>
<td>793</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>DC ke R1 ke R4 ke R2 e R6 ke DC</td>
<td>695.75</td>
<td>19 jam mnt</td>
<td>Rp.458.345,-</td>
<td>862</td>
<td>8</td>
</tr>
<tr>
<td>III</td>
<td>DC ke R8 ke R5 ke R10 ke DC</td>
<td>452.72</td>
<td>13 jam mnt</td>
<td>Rp.339.188,-</td>
<td>875</td>
<td>8</td>
</tr>
</tbody>
</table>

(Sumber: Pengolahan data)

KESIMPULAN

Dari kedua metode tersebut yang menghasilkan jarak, waktu tempuh yang efektif dan biaya transportasi yang efisien adalah metode Saving Matrix. Sehingga metode Saving Matrix yang dipilih sebagai metode untuk perutean dan penjadwalan pengiriman produk Sekido, Begaya dan Dadung pada PT. Mondrian Klaten.

DAFTAR PUSTAKA