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ABSTRACT 
 

This paper describes LSE method for improving Takagi-Sugeno neuro-fuzzy model for a multi-input and multi-output 
system using a set of data (Mackey-Glass chaotic time series).  The performance of the generated model is verified using 
certain set of validation / test data. The LSE method is used to compute the consequent parameters of Takagi-Sugeno neuro-
fuzzy model while mean and variance of Gaussian Membership Functions are initially set at certain values and will be 
updated using Back Propagation Algorithm. The simulation using Matlab shows that the developed neuro-fuzzy model is 
capable of forecasting the future values of the chaotic time series and adaptively reduces the amount of error during its 
training and validation. 
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INTRODUCTION 
 
When considering fuzzy logic for analyzing and 
solving certain problem in engineering which requires 
computational intelligence, practically ones choose 
between Mamdani model and Takagi-Sugeno model. 
Of course another model also could be used as well. 
But, Takagi-Sugeno model is preferred in the case of 
data-based (or numerically-data-driven) fuzzy 
modeling [1, 2, 3] as well as forecasting time series 
data where in many cases it can be seen as system 
with locally linear model. Another advantage is that 
the inference formula of the Takagi-Sugeno model is 
only two-step procedure, based on a weighted average 
defuzzifier, whereas Mamdani type of fuzzy model 
basically consists of four steps [4, 5]. 
 
In this paper, we implement neuro-fuzzy modeling 
which combines the ability of reasoning on a 
linguistic level and handling of uncertain or imprecise 
data with the ability of learning and adaptation certain 
aspects of intelligent system. Here we choose Takagi-
Sugeno type fuzzy model along with differentiable 
operators and membership function and also the 
weighted average defuzzifier for defuzzification of 
output data. The corresponding output inference can 
then be represented in a multilayer feedforward 
network structure such as described in [4, 5] which is 
identical to the architecture of ANFIS [6]. Since we 
use Takagi-Sugeno fuzzy model with Gaussian 
Membership Function (GMF), then we have three 
types of  free  parameters: mean  and variance of each 
  
 
Note: Discussion is impected before December, 1st 2007, and will 
be publiced in the “Jurnal Teknik Elektro” volume 8, number 1 
March 2008. 

GMFs and also Takagi-Sugeno Rule’s Consequent 
Parameters (we usually name them as theta). 
Optimizing these parameters so that the speed of 
convergence can be accelerated becomes special 
interest in the research field of neuro-fuzzy technique. 
This paper concentrates our main interest in the 
optimization of theta by estimation using least square 
method (LSE) for MIMO system. So, we arrange our 
presentation as follows. First, we explain the 
importance of MIMO Takagi-Sugeno Neuro-Fuzzy 
implementation for time series forecasting and 
treatment procedure of data, in this case we use 
Mackey-Glass chaotic time series. Next, we explain 
how we implement least square method for 
optimizing the free parameters of Takagi-Sugeno 
Rule’s Consequent Parameter. All important 
equations or equation(s) derived directly from its 
definition will be numbered, while its derivation steps 
will not be numbered. Finally, the result from Matlab 
simulation will be discussed. 

 
MIMO TAKAGI-SUGENO NEURO-FUZZY 

FOR FORECASTING CHAOTIC TIME 
SERIES 

 
Here we consider short-term forecasting as the 
implementation case of MIMO Takagi-Sugeno 
Neuro-Fuzzy for chaotic time series. The chaotic time 
series are generated from deterministic nonlinear 
systems that are sufficiently complicated as they 
appear to be random. The chaotic time series we use 
here is Mackey-Glass Time Series which available in 
Matlab. This chaotic time series generated by solving 
the Mackey-Glass time delay differential equation [7]:  
(dx/dt) = (0.2*x(t-δ)/(1+x10(t-δ)))-0.1*x(t)  (1) 
where x(0)=1.2, δ=17 and x(t)=0 for t<0. 
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Since we work with time series data which already 
exist, then data preparation for forecasting consists 
only structuring of data and determination of training 
and validation data set. According to Matlab 
documentation, Mackey-Glass data consists of 1200 
data points. For our experiment purpose, we neglected 
the first 100 data due to its harmonic nature, then we 
took next 200 data for training, and finally we used 
the next 800 data for validation. So, we have time 
series in the form of X = {X1, X2, X3, …, Xn} which is 
taken at regular intervals of time t = {1, 2, 3, …, n}. 
For this forecasting problem, usually a set of known 
values of the time series up to a point in time, say t, is 
used to predict the future value of the time series at 
some point, let’s say (t+P). Then we created a 
mapping from S sample data points, sampled every s 
units in time, to a predicted future value of the time 
series at time point which resulted an S-dimensional 
vector of the form:  

XI(t) = [X{t-(S-1)s}, X{t-(S-2)s}, …, X{t}] 
 
Palit [3] shows that for predicting the Mackey-Glass 
time series, the value of S=4 and s = P = 6 are good 
choices. The output data of the fuzzy predictor 
corresponds to the trajectory prediction, where for 
MIMO case, it can be written as: 

XO(t) = [X{t+P}, X{t+2P}, X{t+3P}, …] 
 
For n-times of sampling data, we combine vector XI 
and XO, name it as XIO which stands for Input-
Output Matrix. For our MIMO case, we use 4 input 
and 3 output so that the XIO matrix can be written in 
the form: 
 

The structure of Takagi-Sugeno Neuro-Fuzzy we use 
here is the same with that one described in [4, 5] 
which is similar with MANFIS (Multiple-output 
ANFIS) model [1, 6]. For convenient, here we redraw 
the neuro-fuzzy model proposed by [5] in comparison 
with MANFIS model [1], both for two input and two 
output system. 
 

 
(a) 
 

  
(b) 

Figure 1. Structure of Takagi-Sugeno neuro-fuzzy as 
proposed by Palit (a) and Jang (b) 

 
Referring to figure 1.a above, the fuzzy logic system 
considered here for constructing neuro-fuzzy 
structures is based on Takagi-Sugeno fuzzy model 
with Gaussian membership functions. It uses product 
inference rules and a weighted average defuzzifier-
defines as: 
 
 

(2) 
 
 
 
where j = 1,2,3,…m reflects the number of outputs, 
and l = 1,2,3,…M reflects the number of rules 
(Gaussian membership function). 
  
The output consequent of the lth rule for each output jth 
is: 
  

 (3)
          
where i = 1, 2, 3, … n reflects the number of input. 
 
Then we generate degree of fulfillment and fuzzi-
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Where, ix are the n system inputs, j
ly are M rules 

output consequents, and jf are its m outputs. If all 
the parameters for neuro-fuzzy network are properly 
selected, then the system can correctly approximate 
any nonlinear system based on given XIO matrix data. 

 
For training that neuro-fuzzy, which equivalent with 
multi-input multi-output (MIMO) feedforward net-
work, we use backpropagation algorithm (BPA). 
Generally, BPA based on Steepest Descent Gradient 
Rule uses a low learning rate (η) for network training 
in order to avoid the oscillations in the final phase of 
the training. That is why BPA needs large number of 
epochs (recursive steps) for the smallest SSE (Sum of 
Squared Error).  The steepest descent gradient rule, 
used for Neuro-Fuzzy network training is based on 
the recursive expression: 
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where j = 1,2,3,…m reflects the number of outputs, l 
= 1,2,3,…M reflects the number of rules (Gaussian 
membership function), and i = 1, 2, 3, … n reflects the 
number of input. In the sense of BPA, θ, c, and σ are 
parameters that will be updated during the training 
phase. Here we differentiate θ0 from θi since it will not 
contain any part of input vector, hence will be 
calculated independently. The SSE for each epoch 
reflects the training performance function. Here we 
use notation S for the squared error, which can be 
described as: 
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where E is the error vector in which its element ej is 
the difference between the real sampled data from 
XIO matrix and its prediction, or, ej = (dj – fj).  

With E = [e1 e2 e3 … en], then we can derive 
lS 0/ θ∂∂ as follows: 
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2 + e2

2 + …. en
2] 










∂
∂

+
∂
∂

+
∂
∂

=







⋅

∂
∂
⋅++⋅

∂
∂
⋅⋅=

∂
∂

l
nn

ll

nl
n

ll

eeeeee

e
e

e
eS

0

2

0

2
22

0

2
11

0

2

1
0

2
1

0

...

2...2
2
1

θθθ

θθθ   (6) 

Recall that ej = (dj – fj) and also 

∑

∑

=

==
M

l

l

M

l

ll
j

j

z

zy
f

1

1 , whereas 

dj taken directly from XIO matrix, then we can derive 
l

jf 0/ θ∂∂ as follows: 



















⋅++⋅
∂
∂

=
∂
∂

∑∑
==

M

l

l

l
m
jM

l

l

l

jll
j

z

zy
z

zy
f

11

1

00

...
θθ

        (7) 

With l
j

jjll
j f

fd
e

000

)(
θθθ ∂
∂

−=−
∂
∂

=
∂
∂

 

Because zl is independent from l
0θ then 

 
 
 
 
 
 

where, b = ∑
=

M

l

lz
1

 

Then we have 

( ) ( ) 








∂
∂

⋅−++
∂
∂

⋅−

=








∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

l
n

nnl

l
nn

lll

f
df

f
df

eeeeeeS

00

1
11

0

2

0

2
22

0

2
11

0

...

...

θθ

θθθθ   (8) 

or in matrix form we can write it as: 
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Using the same method described above, the rest of 
derivative for the adjustable parameters can be 
obtained as: 
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LEAST SQUARE METHOD FOR 

OPTIMIZING THE FREE PARAMETERS OF 
TAKAGI-SUGENO RULE’S CONSEQUENT 

PARAMETER 
 
Consider the following rules in Takagi-Sugeno fuzzy 
model: 
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Therefore, for a given set of inputs the corresponding 
Takagi-Sugeno inference will be: 
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Where zl is the degree of fulfillment of the lth rule, 
which is computed for the n input system using the 
product operator as: 
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Recall that XIO matrix is composed of XI and XO 
matrices. We can apply Least Square Estimation 
using XI matrix into matrix fj. But first, we append 1 
along with n inputs in XI which take care of l

0θ  from 

the rule consequent and name this new matrix as XIe 
so that the consequent parameters can be written as: 
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and the XIe vector will have the form of: 

XIe = [1, X{t-(S-1)s}, X{t-(S-2)s}, …, X{t}] 
here we use S = 4 and s = 6 (as described in the 
previous section). 
 
Then the matrix form of the corresponding Takagi-
Sugeno inference can be written as: 





















⋅





















⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

=



















M
NNNNNNN XIeXIeXIe

XIeXIeXIe

XIeXIeXIe

f

f

f

θ

θ

θ

γγγ

γγγ

γγγ

MMM

2

1

221

2
2
22

2
22

1
2

1
2
11

2
11

1
1

2

1

....

....

....

 
The Least Square Estimation in matrix form, there-
fore 

[f] = [γXIe]·[θ], or, 
[γXIe]T·[γXIe]·[θ] = [γXIe]T·[f] 

which yield: 
[θ] = ([γXIe]T·[γXIe])-1·[γXIe]T·[f] (13) 

 
SIMULATION USING MATLAB 

 
We wrote all of the equations described above in 
matrix form and we use Matlab to simulate them so 
that we can observe its performance. For the first 
experiment, we generate matrix c (mean) and σ 
(variance) of the Gaussian membership function 
randomly and matrix θ is also generated randomly. 
Here is the result from the simulation using randomly 
generated free parameters of Takagi-Sugeno neuro-
fuzzy network. 
 

 
Figure 2. Plot of SSE vs Epoch for training using 
randomly generated free parameters of Takagi-

Sugeno neuro-fuzzy network 
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Since all parameters are generated randomly, we got 
different results from the above figure. We recorded 
the best simulation which yield SSE = 0.14347. Here 
is the best simulation for initially random parameters 
during validation process. 
 

 
 

Figure 3. The best simulation for initially random 
parameters during validation process. 

 
The next experiment is using LSE to optimize the rule 
consequent parameters θ. First we modify the 
equation for θ with small adaptation step µ to avoid 
singularities problem during matrix calculation so it 
became: 

[θ] = ([γXIe]T·[γXIe] + µI)-1·[γXIe]T·[f]      (14) 
 
Here is the optimized result of the Gaussian 
membership function after being updated in 200 
iterations (recall that we use first 200 data of XIO 
matrix for training). 

 
 

Figure 4. The optimized result of the Gaussian 
membership function after being updated in 200 

iterations 

The implementation of LSE method for rule cones-
quent parameters reduces the value of SSE down to 
0.0206 which is much smaller than the previous SSE. 
It means that the performance of neuro-fuzzy system 
is increased by factor up to 700%. Simulation during 
validation process yields the following result. 
 

 
Figure 5. Simulation during validation process with 

LSE method. 
 

 
Figure 6. Final calculation of SSE which reflects the 

improvement from the previous result. 
 

DISCUSSION AND CONCLUSION 
 
After developing and testing program in Matlab, we 
conclude two important remarks here: 
a.  From the simulation, we can see that LSE method 

can enhance the performance of Takagi-Sugeno 
neuro-fuzzy for time series forecasting although it 
requires more computational power. Although 
GMFs aren’t equally distributed along the uni-
verse of discourse, the system gives satisfactory 
prediction of Mackey-Glass Data. 

b. The value of η for updating the parameters should 
be choosen properly since this value is sensitive. 
Too high value of this parameter makes the 
program tends to oscillating. This computation 
involves huge number of data. One must find 
optimization procedure to simplify the program or 
accelerate the calculation process. 
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Comparing to the previous work as described in [8], 
this paper certainly confirm that the same perfor-
mance can only be achieved with the high number of 
rules which in turn will require much efforts to reduce 
redundancies and conflicting rules. 
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