Analisa Penempatan Distributed Generation pada Jaringan Distribusi 20kV

Rizky Pratama Putra, Ontoseno Penangsang, Adi Soeprijanto Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111

E-mail: ontosenop@ee.its.ac.id

Abstrak - Beberapa teknologi telah diterapkan dalam aplikasi DG dengan berbagai sumber energi terbarukan. Diantaranya adalah turbin angin, tenaga air berskala kecil, biomassa, photovoltaic, dan fuel cell.

Tugas Akhir ini akan membahas mengenai bagaimana DG dapat mempengaruhi faktor daya pada jaringan yang telah ada dan gangauan apa saja yang dapat terjadi sehingga dapat dilakukan tindakan pencegahan terhadap gangguan yang terjadi di masa yang akan datang. Setelah dilakukan analisis load flow, direncanakan penempatan DG pada beberapa bus untuk membandingkan tingkat kualitas daya yang paling baik. DG yang digunakan berupa wind turbine dengan generator induksi. Penyelesaian permasalahan dalam tugas akhir ini dibatasi hanya menggunakan DG yang dipasang pada bus 1, bus 4, bus 23, bus 48 dan bus 69 dengan level tegangan 20 kV.

Hasil simulasi menunjukkan bahwa pemasangan DG dapat menaikkan rating tegangan. Namun, metode pemasangan DG ini masih memberikan penurunan faktor daya pada bus disekitarnya sehingga perlu melakukan perbaikkan faktor daya dengan cara memasang kapasitor bank.

Kata kunci - Kualitas Daya, DG, Wind Turbine, energi terbarukan

I. PENDAHULUAN

Asalah energi mempunyai kecenderungan meningkat dan berkembang, termasuk di dalam negara berkembang. Beberapa negara diberkahi dengan sumber energi yang baru akan habis setelah beberapa dasawarsa lagi. Disamping itu, perkembangan teknologi tentang sumber energi terbarukan dikombinasikan dengan berkembangnya perhatian masyarakat akan isu-isu lingkungan maka DG yang terhubung dengan jaringan telah banyak digunakan. [1]

Pembangkit Listrik Tenaga Angin sebagai salah satu penghasil energi listrik mengalami perkembangan yang cukup pesat. Hal ini disebabkan karena kelebihan-kelebihan yang dimiliki oleh pembangkit tersebut, seperti ramah lingkungan, bebas polusi dan merupakan penghasil energi listrik yang dapat diperbaharui. Seiring dengan

perkembangan semikonduktor dan elektronika daya maka Pembangkit Listrik Tenaga Angin juga semakin banyak digunakan dalam sistem tenaga. Pada tahun 2006, di Eropa, negara yang mempunyai kapasitas total generator tenaga angin terbesar adalah Jerman dengan 20621 MW. Spanyol dan Amerika Serikat di urutan kedua dan ketiga dengan lebih dari 11603 MW. Berdasarkan data *GWEC (Global Wind Energy Council)*, pertumbuhan pembangunan generator tenaga angin sebesar 32 % dari tahun 2005 [2].

Tugas Akhir ini akan membahas mengenai bagaimana DG dapat memperbaiki power quality pada jaringan yang telah ada dan gangguan apa saja yang dapat terjadi sehingga dapat dilakukan tindakan pencegahan terhadap gangguan yang terjadi di masa yang akan datang

II. KUALITAS DAYA LISTRIK

A. Kualitas Daya Listrik (Power Quality)

Dalam tugas akhir ini, topik yang dipilih adalah kualitas daya. Terlebih dahulu pemahaman dasar teori untuk menunjang topik tugas akhir ini adalah teori tentang konsep daya. Kualitas Daya Listrik (Power Quality) adalah Tingkat Kualitas dari jaringan listrik dan Tingkat Efisiensi dari penggunaan energi. Kualitas daya listrik ini terdiri dari tiga komponen utama[3]:

- 1) Kontinuitas (kebebasan dari gangguan)
- 2) Tingkat Tegangan
- 3) Efisiensi

B. Parameter Kualitas Daya Listrik

Ada bermacam-macam gangguan yang berhubungan dengan kualitas daya listrik, adapun gangguangangguan tersebut dapat digolongkan menjadi beberapa kategori , yaitu [3]:

1) Transient

Transient adalah perubahan / variasi yang tidak diinginkan pada bentuk gelombang yang terjadi secara tibatiba dan hanya dalam waktu yang singkat. Transient sendiri dibagi menjadi 2 macam, yaitu impulsive transient dan oscillatory transient

2) Short Duration Variation

Short duration variation diklasifikasikan menjadi tiga kategori yaitu instantenous, momentary dan temporary, tergantung pada durasinya. Informasi sepenuhnya dapat dilihat pada table 1 di bawah. Gangguan ini dapat

disebabkan oleh gangguan, pembebanan dengan arus start yang tinggi, atau *intermittent lose connection* pada sistem tenaga. Tergantung pada lokasi gangguan dan kondisi dari sistem, fault dapat mengakibatkan penurunan tegangan secara sementara (*sags*), kenaikan tegangan secara sementara (*swell*) ataupun pemadaman (*interruption*).

3) Long Duration Variations

Fenomena-fenomena pada durasi ini biasanya tidak disebabkan oleh gangguan pada sistem tenaga Listrik, tetapi disebabkan oeh perubahan beban pada sistem atau operasi switching pada sistem tenaga Listrik. Long duration variation diklasifikasikan menjadi tiga kategori, yaitu overvoltage, undervoltage, dan sustained interruption

4) Ketidakseimbangan Tegangan (Voltage Unbalance)

Ketidakseimbangan tegangan didefinisikan sebagai deviasi maksimum dari rata-rata tegangan atau arus 3 fasa, dibagi dengan rata-rata tegangan atau arus 3 fasa dinyatakan dalam persen (%). Ketidakseimbangan juga didefinisikan sebagai rasio dari komponen urutan nol atau negatif terhadap komponen urutan positif dinyatakan dalam persen. Penyebab utamanya adalah pembebanan yang tidak seimbang pada masing-masing fasanya dalam sistem 3 fasa.

5) Distorsi Bentuk Gelombang (Waveform Distortion)

Didefinisikan sebagai deviasi steady state dari gelombang sinus ideal yang mempunyai frekuensi dasar (50 Hz). Ada 5 jenis distorsi bentuk gelombang, yaitu *DC offset*, harmonisa, *interharmonics*, *notching* dan *noise*.

6) Fluktuasi Tegangan (Voltage Flicker)

Adalah gangguan berupa variasi dari voltage envelope atau perubahan tegangan secara random dan berurutan/kontinyu, dimana magnitudonya tidak melebihi batasan yang diijinkan (0.9-1.1 pu). Beban yang dapat menyebabkan perubahan arus yang kontinyu dan cepat dapat mengakibatkan variasi tegangan (voltage fluctuation) atau yang biasa disebut voltage flicker. Voltage flicker diukur terhadap sensitivitas mata manusia, biasanya magnitudonya sebesar 0.5 % (terhadap tegangan dasar) dengan frekuensi 6-8 Hz dapat menyebabkan kedip pada lampu yang dapat dilihat oleh mata.

7) Variasi Frekuensi Daya

Adalah deviasi frekuensi dasar sistem tenaga dari harga nominalnya (50 Hz). Variasi frekuensi diluar batas yang diijinkan pada operasi normal steady state disebabkan oleh gangguan pada sistem transmisi, lepasnya beban dalam jumlah besar, atau generator dengan kapasitas besar keluar/lepas dari sistem. Pada sistem tenaga yang modern dan terinterkoneksi, variasi frekuensi yang signifikan jarang terjadi.

Tabel 1 jenis-jenis gangguan power quality

Kategori	Spectral content	Durasi	Tingkat tegangan		
Transients					
Impulsive					
Nanoseconds	5 ns rise	< 50 ns			
Microseconds	1 μs rise	50 ns – 1 ms			
(Lanjutan) Tabel 1 Jenis-Jenis Gangguan Power Quality					

Kategori	Tingkat		
Kategori	Spectral content	Durasi	tegangan
Milliseconds	0.1 ms rise	> 1 ms	tegangan
Oscillatory	0.1 IIIs lise	> 1 IIIS	
Low frequency	< 5 kHz	0.3 – 50 ms	0 – 0.4 pu
Medium	5 – 500 kHz	20 μs	0 – 0.4 pu 0 – 8 pu
frequency	3 – 300 KHZ	20 μs	0 – 8 pu
High frequency	0.5 – 5 MHz	5 μs	0 – 4 pu
Short Duration			1
Variations			
Instantenous			
Sag		0.5 – 30 cycles	0.1- 0.9 pu
Swell		0.5 – 30 cycles	1.1-1.8 pu
Momentary			
Interruption		0.5 cycles-3s	< 0.1 pu
Sag		30 cycles-3s	0.1- 0.9 pu
Swell		30 cycles-3s	1.1- 1.4 pu
Temporary			
Interruption		3s – 1 min	< 0.1 pu
Sag		3s – 1 min	0.1- 0.9 pu
Swell		3s – 1 min	1.1- 1.2 pu
Long Duration			
Variations			
Interruption,		> I min	0.0 pu
sustained			
Undervoltage		> I min	0.8- 0.9 pu
Overvoltage		> I min	1.1-1.2 pu
Voltage Imbalance		Steady state	0.5 – 2 %
Waveform			
Distortion			
DC offset	th	Steady state	0 – 0.1 %
Harmonics	$0 - 100^{\text{th}} \text{H}$	Steady state	0 – 20 %
Inter-harmonics	0 – 6 kHz	Steady state	0 – 2 %
Notching		Steady state	
Noise	Broad-band	Steady state	0-1%
Voltage Fluctuations	<25 Hz	Intermittent	0.1 – 7 %
Power Frequency		< 10 s	
Variations		< 10 8	
v ai lativiis	1	1	

C. Distributed Generation (DG)

DG dapat didefinisikan sebagai pembangkit tenaga listrik pada jaringan distribusi atau pada sisi jaringan pelanggan. Maksimum rating dari DG yang dapat dikoneksikan pada jaringan distribusi tergantung dari kapasitas jaringan distribusi, yang berkolerasi dengan tingkat tegangan dalam jaringan distribusi tersebut. Misalnya DG dengan kapasitas pembangkit $100-150~\mathrm{MW}$ tidak dapat dihubungkan pada tingkat tegangan $110\mathrm{kV}$ karena terkendala masalah teknis. Rating dari kapasitas pembangkit DG dapat dilihat pada tabel 2~[4]

Tabel 2 Data kapasitas dan rating DG

Kapasitas DG	Daya Terpasang (MW)
Mikro	1 Watt < 5 kW
Kecil	5 kW < 5 MW
Sedang	5 MW < 50 MW
Besar	50 W < 300 MW

D. Turbin Angin (Wind Turbine)

Turbin angin merupakan suatu bagian dari sistem pembangkit tenaga angin yang berperan sebagai penangkap energi angin untuk ditransformasikan menjadi energi untuk memutar generator. Ada banyak tipe dari turbin angin menurut bentuknya, antara lain jenis propeller, darrieus, sailwing, fan-type, savious, dan lain-lain.

Turbin angin mengambil energi angin dengan menurunkan kecepatannya. Untuk bisa mencapai efisiensi 100%, maka sebuah turbin angin harus menahan 100% kecepatan angin yang ada dan rotor harus terbuat dari piringan solid dan tidak berputar sama sekali, yang artinya tidak ada energi kinetik yang akan dikonversi. Energi angin bisa ditangkap dengan dua atau tiga buah bilah sudu yang didesain seperti sayap pesawat terbang.

Ketika angin bertiup melalui bilah tersebut, maka akan timbul udara bertekanan rendah di bagian bawah dari sudu, Tekanan udara yang rendah akan menarik sudu bergerak ke area tersebut. Gaya yang ditimbulkan dinamakan gaya angkat. Besarnya gaya angkat biasanya lebih kuat dari tekanan pada sisi depan bilah atau yang biasa disebut tarik. Kombinasi antara gaya angkat dan tarik menyebabkan rotor berputar seperti propeler dan memutar generator. Turbin angin bisa digunakan secara stand-alone, atau bisa dihubungkan ke jaringan transmisi atau bisa dikombinasikan dengan sistem panel surya.

Untuk perusahaan listrik, sejumlah besar turbin angin dibangun berdekatan untuk membentuk pembangkit listrik tenaga angin. Secara teori, efisiensi maksimum yang bisa dicapai setiap desain turbin angin adalah 59%, artinya energi angin yang bisa diserap hanyalah 59%. Jika faktorfaktor seperti kekuatan dan durabilitas diperhitungkan, maka efisiensi sebenarnya hanya 35 - 45%, bahkan untuk desain terbaik. Terlebih lagi jika ditambah inefisiensi sistem wind turbin lengkap, termasuk generator, bearing, transmisi daya dan sebagainya, hanya 10-30% energi angin yang bisa dikonversikan ke listrik.[5].

PENGUJIAN SISTEM DAN ANALISIS DATA III.

A. Sistim Distribusi di Surabaya Selatan

Transmisi tenaga listrik adalah penyaluran listrik dari sumber pembangkitan ke suatu sistem distribusi atau kepada konsumen, atau penyaluran tenaga listrik antar sistem. Sedangkan distribusi adalah penyaluran tenaga listrik dari sistem transmisi atau dari sistem pembangkitan kepada konsumen. Sistem kelistrikkan pada Gi Wonorejo ini merupakan sistem distribusi dengan rating tegangan 20 kV, sampai dengan. 0.4 kV. Dengan suplai daya dari sumber (bus swing) sebesar 1.741 MW yang terdapat pada bus 1.

Pada operasi normal sistem kelistrikkan di GI Wonorejo menggunakan sistem kelistrikkan radial. Transmisi dan distribusi daya ini didukung oleh beberapa trafo daya untuk menyuplai beban dengan rating tegangan tertentu. Trafo-trafo yang digunakan mempunyai spesifikasi sebagai berikut:

Tabel 3 Transformator Dava Penyuplai Beban

No	Transformator ID	MVA	Primary kV	Secondary kV
1	BE 718	0.250	20.000	0.400
2	BE 719	0.160	20.000	0.400
3	BE 720	0.100	20.000	0.400
4	BE 721	0.160	20.000	0.400
5	BE 722	0.200	20.000	0.400
6	BE 723	0.160	20.000	0.400
7	BE 724	0.200	20.000	0.400
8	BE 725	0.160	20.000	0.400
9	BE 726	0.200	20.000	0.400
10	BE 731	0.200	20.000	0.400
11	BE 777	0.160	20.000	0.400
12	BE 832	0.200	20.000	0.400
13	BE 833	0.100	20.000	0.400
14	BE 834	0.200	20.000	0.400
15	BE 835	0.160	20.000	0.400
16	BE 836	0.160	20.000	0.400
17	BE 933	0.200	20.000	0.400
18	BE 934	0.160	20.000	0.400
19	BE 1027	0.100	20.000	0.400
20	BE 1034	0.200	20.000	0.400
21	BE 1038	0.200	20.000	0.400
22	BE 1178	0.200	20.000	0.400
23	BE 1325	0.100	20.000	0.400
24	TRAFO SISIPAN BE	0.100	20.000	0.400
	731			
25	TRAFO SISIPAN BE	0.100	20.0	0.400
	836			

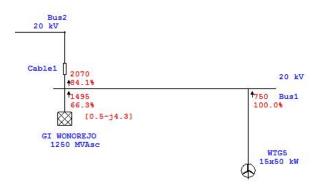
Kondisi Eksisting Aliran Daya

Elemen data yang digunakan pada simulasi ini adalah data - data yang terdapat pada GI Wonorejo. Berikut ini adalah daftar elemen pada GI Wonorejo yang digunakan dalam simulator ETAP. Data-data mengenai aliran daya diambil saat beban dalam kondisi semua beban beroperasi dan dalam keadaan steady state. Pada keadaan ini didapat data bahwa sistem memerlukan pasokan daya sebesar 1.741 MW yang terdiri dari total beban motor 1.387 MW, total beban statik 0.329 MW dan total losess 0,025 MW. Pasokan daya tersebut diperoleh dari jaringan distribusi PLN. Faktor daya sistem tercatat sebesar 84.12%.

Tabel 4 Aliran daya bus beban kondisi <i>existing</i>					
Bus	kV	MVA	PF (%)	Amp	V drop (%)
Beban					
Bus1	20.000	2.070	84.1	59.7	100.000
Bus2	20.000	2.072	84.0	59.8	99.975
Bus3	20.000	2.061	84.1	59.8	99.464
Bus4	20.000	2.060	84.2	59.8	99.411
Bus6	20.000	0.043	84.5	1.2	99.410
Bus7	0.400	0.042	85.0	61.8	97.996
Bus14	20.000	1.947	84.1	56.6	99.383
Bus15	0.400	0.184	85.0	276.0	96.423
Bus16	20.000	1.706	84.2	49.6	99.352
Bus22	0.400	0.044	85.0	64.2	98.479
Bus23	20.000	1.604	84.2	46.6	99.334
Bus27	0.400	0.088	85.0	129.4	97.953
Bus28	20.000	0.454	84.1	13.2	99.333

(Lanjutan) Tabel 4 Aliran Daya Bus Beban Kondisi Existing

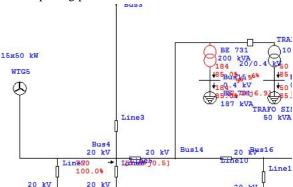
Bus Beban	kV	MVA	PF (%)	Amp	V drop (%)
Bus30	20.000	0.365	84.1	10.6	99.331
Bus34	0.400	0.028	85.0	40.2	98.902


	T				
Bus35	20.000	0.094	84.4	2.7	99.330
Bus38	20.000	0.067	84.2	1.9	99.328
Bus39	0.400	0.065	85.0	96.7	97.112
Bus42	0.400	0.122	85.0	182.5	96.886
Bus43	20.000	0.271	83.9	7.9	99.327
Bus46	20.000	0.146	84.0	4.2	99.325
Bus47	0.400	0.142	85.0	211.7	97.061
Bus48	20.000	1.105	84.2	32.1	99.283
Bus51	20.000	0.046	84.4	1.3	99.282
Bus52	0.400	0.045	85.0	66.9	97.752
Bus53	20.000	1.059	84.2	30.8	99.280
Bus60	20.000	0.070	84.5	2.0	99.410
Bus61	0.400	0.069	85.0	101.3	98.330
Bus62	20.000	0.102	84.3	3.0	99.350
Bus63	0.400	0.100	85.0	147.8	97.773
Bus67	0.400	0.131	85.0	196.0	96.640
Bus68	20.000	1.058	84.2	30.8	99.265
Bus69	20.000	0.873	84.3	25.4	99.241
Bus70	20.000	0.279	84.3	8.1	99.240
Bus73	0.400	0.067	85.0	99.3	97.916
Bus74	20.000	0.068	84.4	2.0	99.240
Bus77	0.400	0.080	85.0	117.5	97.986
Bus78	20.000	0.211	84.2	6.1	99.238
Bus81	0.400	0.128	85.0	189.4	97.212
Bus82	20.000	0.130	84.1	3.8	99.237
Bus83	20.000	0.594	84.3	17.3	99.241
Bus85	0.400	0.023	85.0	34.3	98.876
Bus86	20.000	0.024	84.8	0.7	99.241
Bus87	20.000	0.570	84.2	16.6	99.227
Bus90	0.400	0.072	85.0	106.1	97.813
Bus91	20.000	0.073	84.4	2.1	99.227
Bus92	20.000	0.497	84.2	14.5	99.225
Bus94	0.400	0.072	85.0	106.3	98.092
Bus95	20.000	0.073	84.5	2.1	99.224
Bus98	0.400	0.085	85.0	125.6	97.540
Bus99	20.000	0.424	84.2	12.3	99.216
Bus100	20.000	0.338	84.1	9.8	99.215
Bus103	20.000	0.062	84.2	1.8	99.215
Bus104	0.400	0.060	85.0	89.6	97.161
Bus105	20.000	0.276	84.1	8.0	99.211
Bus107	0.400	0.106	85.0	157.2	97.107
Bus108	20.000	0.108	84.1	3.1	99.208
Bus111	20.000	0.168	84.2	4.9	99.209
Bus112	0.400	0.046	85.0	68.0	98.637
Bus115	0.400	0.119	85.0	176.6	96.844
Bus116	20.000	0.121	83.9	3.5	99.207
Bus118	0.400	0.050	85.0	73.2	97.707
Bus120	0.400	0.050	85.0	73.2	97.588
245120	0.400	0.050	05.0	, 5.2	71.500

C. Analisa Pemasangan DG pada Bus Jaringan

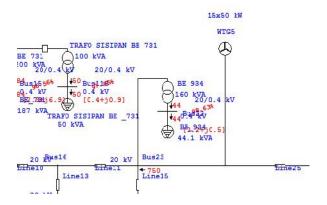
Pemasangan DG pada jaringan dilakukan pada berbagai bus untuk mengetahui dampak dari pemasangan DG terhadap kualitas daya pada jaringan distribusi.

1. DG di pasang pada bus 1


Pada kasus ini DG dipasang pada bus 1 yang dekat dengan sumber.

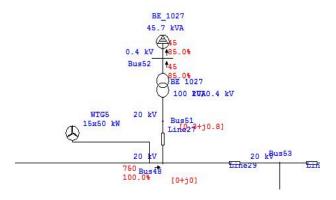
Gambar 1. Pemasangan DG pada bus 1

Dari hasil simulasi setelah pemasangan DG tidak ada perubahan yang signifikan kecuali pada bus swing, karena bus tersebut mensuplai daya reaktif, sedangkan DG yang dipakai memerlukan daya reaktif sehingga terjadi penurunan yang signifikan pada faktor daya di bus swing dari 84.12% menjadi 66.00%.


2. DG di pasang pada bus 4

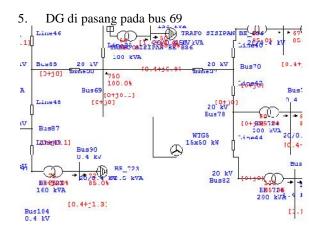
Gambar 2. Pemasangan DG pada bus 4

Dari hasil simulasi setelah pemasangan DG terdapat beberapa bus yang faktor dayanya turun selain bus swing,yaitu bus 1, bus 2 dan bus 3. Penurunan faktor daya terjadi karena bus tersebut mensuplai daya reaktif, sedangkan DG yang dipakai memerlukan daya reaktif sehingga terjadi penurunan yang signifikan pada faktor daya pada bus swing dari 84.12% menjadi 66.34%, bus 1 dari 84,1% menjadi 66,3%, bus 2 dari 84% menjadi 66.2% dan pada bus 3 dari 84.1% menjadi 66.2%.


3. DG di pasang pada bus 23

Gambar 3. Pemasangan DG pada bus 23

Dari hasil simulasi setelah pemasangan DG terdapat beberapa bus yang faktor dayanya turun selain bus swing,yaitu bus 1, bus 2, bus 3, bus 4 dan bus 16. Penurunan faktor daya terjadi karena bus tersebut mensuplai daya reaktif, sedangkan DG yang dipakai memerlukan daya reaktif sehingga terjadi penurunan yang signifikan pada faktor daya pada bus swing dari 84.12% menjadi 66.35%, bus 1 dari 84,1% menjadi 66,4%, bus 2 dari 84% menjadi 66.2%, bus 3 dari 84.1% menjadi 66.2%, bus 4 dari 84.2% menjadi 66.2% dan pada bus 16 dari 84.2% menjadi 59.8%.


4. DG di pasang pada bus 48

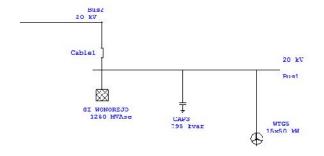
Gambar 4. Pemasangan DG pada bus 48

Dari hasil simulasi setelah pemasangan DG terdapat beberapa bus yang faktor dayanya turun selain bus swing,yaitu bus 1, bus 2, bus 3, bus 4, bus 14, bus 16 dan bus 23. Penurunan faktor daya terjadi karena bus tersebut mensuplai daya reaktif, sedangkan DG yang dipakai memerlukan daya reaktif sehingga terjadi penurunan yang signifikan pada faktor daya pada bus swing dari 84.12% menjadi 66.36%, bus 1 dari 84,1% menjadi 66,4%, bus 2 dari 84% menjadi 66.2%, bus 3 dari 84.1% menjadi 66.2%, bus 4 dari 84.2% menjadi 66.2%, bus 14 dari 84.1% menjadi

64.5%, bus 16 dari 84.2% menjadi 59.8% dan pada bus 23 dari 84.2% menjadi 57%.

Gambar 5. Pemasangan DG pada bus 69

Dari hasil simulasi setelah pemasangan DG terdapat beberapa bus yang faktor dayanya turun selain bus swing,yaitu bus 1, bus 2, bus 3, bus 4, bus 14, bus 16, bus 23, bus 48, bus 53 dan bus 68. Penurunan faktor daya terjadi karena bus tersebut mensuplai daya reaktif, sedangkan DG yang dipakai memerlukan daya reaktif sehingga terjadi penurunan yang signifikan pada faktor daya pada bus swing dari 84.12% menjadi 66.36%, bus 1 dari 84,1% menjadi 66,4%, bus 2 dari 84% menjadi 66.2%, bus 3 dari 84.1% menjadi 66.2%, bus 4 dari 84.2% menjadi 66.3%, bus 14 dari 84.1% menjadi 64.5%, bus 16 dari 84.2% menjadi 59.8%, bus 23 dari 84.2% menjadi 57%, bus 48 dari 84.25 menjadi 29%, bus 53 dari 84.2% menjadi 24.1% dan pada bus 68 dari 84.2% menjadi 26.3%.


D. Hasil Analisa Pemasangan DG

Berdasarkan analisa dari pemasangan DG pada beberapa bus, maka disimpulkan bahwa pemasangan DG lebih baik diletakkan pada bus 1, karena DG tersebut menggunakan generator induksi sehingga memerlukan daya reaktif. Daya reaktif tersebut diambil dari jaringan yang menyebabkan turunya faktor daya pada sumber. Dari pembahasan tersebut dapat ditarik kesimpulan bahwa semakin jauh DG diletakkan dari sumber maka akan mempengaruhi faktor daya pada bus - bus disekitarnya. Untuk mengkompensasi turunnya daya reaktif pada sumber maka dipasang kapasitor bank. Agar pemasangan kapasitor bank menjadi efektif maka DG sebaiknya diletakkan pada bus 1 sehinnga hanya bus 1 saja yang diberi kapasitor bank. Jika DG diletakan di bus yang lain maka akan mempengaruhi faktor daya bus disekitarnya sehingga perlu pemasangan kapasitor bank pada tiap bus yang faktor dayanya berkurang.

Akibat pemasangan DG pada bus 1 maka, bus sumber memiliki faktor daya 66% *lagging*. Perbaikan faktor daya pada bus ini direncanakan hingga mencapai 95%. Daya

reaktif yang akan diinjeksikan ke sistem kelistrikan melalui bus 1 diperoleh dari perhitungan di bawah ini:

$$\Delta Q = Px(\tan \theta_1 - \tan \theta_2)$$

 $\Delta Q = Px(\tan(\cos^{-1}PF \ lama) - \tan(\cos^{-1}PF \ baru))$
 $\Delta Q = 1741 \ x \ (\tan(\cos^{-1}0.66) - \tan(\cos^{-1}0.95))$
 $\Delta Q = 789.28 \ kVAR$

Gambar 6 Pemasangan kapasitor pada bus 1

Menurut hasil dari simulasi, besarnya daya reaktif yang akan diinjeksikan ke bus 1 adalah sebesar 3789,28 kVAR dan dibulatkan menjadi 790 kVAR agar mendapat faktor daya sebesar 95%.

Pemasangan DG wind turbine pada jaringan berfungsi untuk membantu memenuhi kebutuhan daya yang semakin meningkat. Jika pada saat ini total daya yang dibutuhkan sebesar 1,741 MW, maka sumber tenaga pada saluran transmisi hanya perlu mensuplai daya sebanyak 0,988 MW ke dalam jaringan distribusi. Pemakaian DG wind turbine dapat menghemat biaya pembangkitan yang diakibatkan oleh penngunaan bahan bakar fosil.

IV. KESIMPULAN

- Potensi angin di Surabaya dapat dimanfaatkan secara maksimal menjadi pembangkit listrik tenaga angin sehingga kebutuhan listrik di Surabaya Selatan dapat tercukupi dan tidak tergantung dari pembangkit berbahan baku fosil lagi.
- Untuk memperbaiki faktor daya akibat pengaruh dari pemasangan DG ini, perlu digunakan kapastior bank. Pemakaian kapasitor bank ini juga mampu meperbaiki faktor daya pada bus sumber (swing bus).
- 3. DG *wind turbine* ini mampu memberikan daya aktif. Total daya yang dihasilkan dengan kecepatan angin yang dikontrol tetap pada kecepatan rata-rata 5 m/s adalah 15 x 50 kW dengan frekuensi 50 Hz.

DAFTAR PUSTAKA

[1] A. Moreno-Munoz and J.J.G. de-la-Rosa, "Improvement of Power Quality Using Distributed Generation," Electrical Power and Energy Systems 32, (2010, Juni) 1069–1076.

- [2] Z.Chen and F.Blaabjerg, "Wind farm-A power source in future power systems," Elsevier Renewable and Sustainable Energy Reviews 13 (2009) 1288–1300.
- [3] Penangsang, Ontoseno. "Diktat Kuliah Kualitas Daya Listrik," ITS. (2011).
- [4] Ackermann, Thomas dan Andersson ,Go"ran, "Distributed generation: a definition", Electric Power Systems Research 57 (2001, Desember) 195–204.
- [5] Masters, Gilbert M.. "Renewable & Efficient Electric *ower System". Wiley Interscience. London, (2004).