Bioakumulasi Timbal (Pb) oleh *Hydrilla verticillata* L.f. Royle di Danau Rawapening, Ambarawa Semarang

1Wildan Suyuti Mustofa Marthana, 2Tri Retnaningsih Soeprobowati, 3Munifatul Izzati
1Mahasiswa Magister Biologi Undip
2Jurusan Biologi FSM Undip
Jurusan Biologi Fakultas Sains dan Matematika UNDIP

ABSTRACT

Rawapening lake is the one of national priority 2010 – 2014 that must get safe because the worse condition from eutrofication and water degradation quality. Eutrofication of Rawapening lake caused by nutrients/organic compounds enrichment naturally or anthropogenically, that signed by higher concentration of Nitrogen and Phosphate that trigger hydriilla blooming. The blooming of hydriilla disturb Rawapening Lake functions like flood bender, fisheries and tourism. However in another side this plants can be used to heavy metal remediation such as Pb as act of human activities like farming, fisheries, tourism, and home industry around the lake. There were many researches to explore hydriilla potential for remediation, but still laboratory scale with under control condition. Because of these, it’s required to do a research to find out fitoremediation potential of hydriilla to remediate heavy metal Pb in Rawapening Lake water and sediment (In – situ) to study its Pb bioaccumulation. Research was start in August – October 2013 used hydriilla in three weeks. That plants was planted in pond 1 m³. It was planted one plant each pond with 100 gram fresh weight and observed each week to calculated the Pb concentration. The parameter was observed was BAF (bioaccumulation factor) Pb sediment. The result is hydriilla has highest BAF value in week two with 97.90%. Hydriilla has potential to remediate heavy metal Pb that contain in sediment and it can harvested in two weeks.

Keywords: Eutrofication, Rawapening Lake, hydriilla, bioaccumulation, fitoremediation.

ABSTRAK

Kata Kunci: Eutrofikasi, Danau Rawapening, hydriilla, bioakumulasi, fitoremediasi
PENDAHULUAN

Danau Rawapening dimanfaatkan oleh pemerintah dan masyarakat diantaranya adalah sebagai reservoir atau tempat penampungan mata air untuk berbagai keperluan, antara lain sebagai sumber air minum, sumber keanekaragaman hayati, pembangkit listrik (PLTA), pengendali banjir, perikanan, irigasi pertanian, penampung air saat musim hujan dan kegiatan wisata (Budihardjo dan Huboyo, 2007; Prayitno, 2013; Sasongko dkk., 2013).

Namun kenyataan tersebut harus dibayangkan mahal oleh kondisi perairan yang saat ini sangat memprihatinkan. Pencemaran perairan yang diakibatkan oleh kegiatan pertanian, kegiatan jasa pariwisata dan budidaya perikanan telah memicu peningkatan kandungan bahan organik yang pada akhirnya memicu proses penyuburan perairan (eutrofikasi).

Berdasarkan beberapa penelitian yang dilakukan, Danau Rawapening saat ini telah mengalami masalah kesuburan perairan atau eutrofikasi dengan kategori perairan eutrofik menuju hipertrofik. Eutrofikasi merupakan proses pengayaan unsur hara atau produktivitas perairan karena pasokan bahan organik yang ditandai dengan tingginya konsentrasi total-P, total-N, dan klorofil-a, sehingga memicu pertumbuhan yang tidak terkontrol dari tumbuhan air (Reddy, 2005). Akibat yang ditimbulkan dari eutrofikasi salah satunya adalah perkembangbiakan tumbuhan air seperti hydrrila yang tidak terkendali sehingga mengganggu ekosistem di danau tersebut.

Apabila tidak ada tindakan untuk mengurangi kandungan logam berat Pb, maka lingkungan Danau Rawapening akan mengalami peningkatan akumulasi logam berat Pb yang menyebabkan semakin turunnya kualitas perairannya yang mengancam kesehatan apabila masuk dan terakumulasi oleh manusia atau organisme lainnya. Oleh karena itu, perlu diadakannya penelitian untuk mengkaji potensi hydrrila dalam memperbaiki kualitas perairan di lingkungan Danau Rawapening yang sudah tercemar logam berat Pb. Kemampuan hydrrila dalam meremediai logam berat Pb dapat dilihat dari nilai bioaccumulation factor (BAF).

2012). Namun dari penelitian – penelitian tersebut untuk remediasi logam berat Pb yang ada di belum ada penelitian hydrida yang digunakan Rawapening.

Tabel 1. Daftar penelitian pemanfaatan hydrida

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Author</th>
<th>Pemanfaatan</th>
<th>Hydrida</th>
<th>Hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Saham Ali Ali D., Munifatul Izzati, dan Tri Retnaningsih Soeprobowati</td>
<td>The Role of Aquatic Plants Eichhornia crassipes, Hydrida verticillata, and Ceratophyllum demersum In Reducing Fertilizer Concentration in Aquatic Ecosystem</td>
<td>E. crassipes memiliki kemampuan paling tinggi dalam mereduksi nutrient fosfat dan nitrat.</td>
<td></td>
</tr>
</tbody>
</table>

METODOLOGI

Waktu dan Tempat
Penelitian ini dilaksanakan di Desa Kebon Dowo, Danau Rawa Pening, Semarang yang sebelumnya telah dilakukan prapenelitian untuk menentukan lokasi yang tercermin logam berat Pb serta sebagai tempat pelaksanaan penelitian (Gambar 1) dan untuk analisis logam berat dan klorofil dilakukan di Laboratorium Wahana Lingkungan, Semarang dan Laboratorium Biologi Struktur dan Fungsi Tumbuhan, Jurusan Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, serta dilaksanakan pada bulan Agustus - Oktober 2013.

Gambar 1. Lokasi penelitian di Danau Rawapening, Desa Kebon Dowo, Ambarawa, Semarang
Alat dan Bahan
Alat yang digunakan dalam penelitian ini antara lain adalah plastik UV, bambu, ekman grab, kantong plastik, timbangan manual merk Fujiko, timbangan analitik, label, pH meter, DO meter, tabung reaksi, gelas ukur, pipet tetes, mortar, GPS dan spektrofotometer. Bahan-bahan yang digunakan dalam penelitian ini adalah H. verticillata, air dan sedimen yang dikoleksi dari Rawapening, aseton PA, alkohol.

Cara Kerja
Prasurvei
Prasurvei dilakukan dengan tujuan untuk menentukan lokasi penelitian. Penentuan lokasi dengan cara mengambil sampel sedimen menggunakan ekman grab dan pengambilan air dengan ember sebanyak 3 kali dan dianalisis kandungan logam berat Pb-nya.

Aklimatisasi
Hydrilla diambil dari Rawapening dengan berat basah yang sama dan diaklimatisasi dengan ditanam di media air yang bebas dari logam berat Pb selama 2 minggu.

Mesocosm

Analisis kandungan logam
Penguakuran kandungan logam Pb dilakukan di laboratorium anorgaik menggunakan metode uji AAS, metode ini telah dilakukan dalam menganalisis logam (Handayani, 2004). Secara teknis sebagai berikut : Hydrilla yang akan ditanam bersama air dan sedimen dijukan kandungan logam berat Pb sebagai kontrol. Selama penelitian berlangsung, kedua jenis tanaman bersama air dan sedimen di masing-masing plot diambil untuk dijukan logam berat Pb tiap minggu (minggu I, minggu II, minggu III).

<table>
<thead>
<tr>
<th>No</th>
<th>Tujuan</th>
<th>Hipotesis</th>
<th>Variabel Data</th>
<th>Analisis/Sumber Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mengkaji konsentrasi logam berat Pb pada perairan dan sedimen di Danau Rawapening.</td>
<td>Logam Pb merupakan logam berat dengan konsentrasi tinggi yang mencermiri perairan Danau Rawapening.</td>
<td>Pb air, Pb sedimen, Pb akar</td>
<td>Metode uji AAS (Handayani, 2006)</td>
</tr>
</tbody>
</table>
| 2 | Membandingkan bioakumulasi Pb pada hydrilla. | Bioaccumulation factor (BAF) hydrilla mengalami peningkatan dan berbeda dari waktu ke waktu | Bioaccumulation factor (BAF) | $F_B = \frac{C_m \times 100}{C_S}$
Keterangan :
F_B = Bioaccumulation factor
C_m = konsentrasi logam berat Pb pada hydrilla
C_s = konsentrasi logam berat Pb di dalam substrat | Gabriela dkk., (2010) |

HASIL DAN PEMBAHASAN
Prapenelitian
Untuk mengetahui kandungan logam berat yang terkandung dalam sedimen di Danau Rawapening, maka dilakukan prapenelitian dengan mengambil sedimen dari desa...
Kebondowo. Hasil pengamatan menunjukkan bahwa kandungan logam di dalam sedimen paling tinggi juga Pb = 3,208 ppm dan Cu = 2,032 ppm (Tabel 3).

Tabel 3. Hasil analisis logam berat dari sedimen Danau Rawapening (Prapenelitian)

<table>
<thead>
<tr>
<th>Logam berat</th>
<th>Konsentrasi (ppm)</th>
<th>ISQG Low (ppm)</th>
<th>ISQG high (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timbal (Pb)</td>
<td>3,208</td>
<td>50</td>
<td>220</td>
</tr>
<tr>
<td>Kadmium (Cd)</td>
<td>1,653</td>
<td>1,5</td>
<td>10</td>
</tr>
<tr>
<td>Kromium (Cr)</td>
<td>1,880</td>
<td>80</td>
<td>370</td>
</tr>
<tr>
<td>Tembaga (Cu)</td>
<td>2,032</td>
<td>65</td>
<td>270</td>
</tr>
</tbody>
</table>

Selain menentukan jenis logam yang diteliti, ditentukan pula organ hydrida yang akan diteliti. Organ yang dipilih dalam penelitian ini adalah akar dari hydrida dengan berdasarkan pencatatan – penelitian sebelumnya yang meneliti organ hydrida terbukti bahwa akumulasi logam Pb paling tinggi pada bagian akar dibandingkan dengan organ yang lainnya (Yuliat, 2010).

Bioakumulasi Pb oleh Hydrida

Hasil penelitian menunjukkan bahwa hydrida mampu mengakumulasi logam Pb (Gambar 4.1). Nilai bioaccumulation factor (BAF) tertinggi pada minggu kedua sebesar 97,90%. Namun pada minggu ketiga, nilai BAF mengalami penurunan dengan nilai BAF sebesar 93,35%.

![Gambar 2. Bioaccumulation factor hydrida terhadap logam berat Pb di dalam sedimen](image-url)

Nilai BAF hydrilla mengalami penurunan pada minggu ketiga hal ini disebabkan hydrilla sudah mengalami gangguan pada metabolismenya / toksifikasi, sehingga kemampuan untuk mengakumulasi logam Pb menurun. Tanaman tenggelam tidak direkomendasikan pada pengolahan limbah, karena produksinya rendah, banyak spesies yang tidak tahan terhadap kondisi eutrofik, namun memiliki peran penting bila dikombinasikan dengan jenis tanaman lain dalam sistem pengolahan limbah (Hammer dan Bastian, 1989). Polutan yang masuk ke dalam sel mesofil, akan memberi pengaruh pada tingkat molekuler atau struktural, yang menyebabkan perubahan dalam respon stomata, struktur kloroplas, fiksasi CO₂, dan sistem transpor elektron fotosintetik (Anggarwulan dan Solichatun, 2007) sehingga apabila ada aktivitas penyerapan logam berlangsung dan terjadi akumulasi pada organ-
organ tanaman, maka akan mengganggu proses metabolisme tanaman.

KESIMPULAN
Hydrilla memiliki potensi untuk mengakumulasi logam Pb yang terkandung di dalam sedimen dengan nilai bioaccumulation factor sebesar 97,90% dan efektif digunakan dalam jangka waktu 2 minggu untuk remediasi.

DAFTAR PUSTAKA

www.wageningenur.nl/en/show/Mesocosm.htm

Royle, dan Salvinia molesta Mitchell, terhadap Kapasitas Lapang Tanah Pasir dan Tanah Liat serta Pertumbuhan Kacang Hijau (Vigna radiate L.)

